1
|
Park YB, Park YJ, Jang MJ. Growth Characteristics of Pseudomonas putida and Pleurotus ostreatus After Co-Cultivation. MYCOBIOLOGY 2025; 53:72-78. [PMID: 39980703 PMCID: PMC11841171 DOI: 10.1080/12298093.2024.2436774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 02/22/2025]
Abstract
This study was conducted to investigate the growth characteristics and morphology of Pleurotus ostreatus mycelium during co-cultivation with Pseudomonas putida. For selection of the most effective Pseudomonas species in coculture, Three strains of Pseudomonas putida and one strain of Pseudomonas fluorescens were co-cultured with heuktari, one of the varieties of P. ostreatus, on NPDA agar medium to observe the growth pattern of mycelium. It was found that the microorganism affecting mycelium growth during co-cultivation was P. putida KACC 10275, and co-cultivation of these two species resulted in enhanced mycelium growth on both NPDA and sawdust agar media. Furthermore, while primordium formation and fruit body development did not occur on plates inoculated only with heuktari, fruit bodies were observed only on plates where heuktari and P. putida were co-cultured, as confirmed by cultivation in the growth chamber for the same duration.
Collapse
Affiliation(s)
- Yu-Bin Park
- Department of Plant Resources, Kongju National University, Yesan, Korea
| | - Youn-Jin Park
- Kongju National University Legumes Green Manure Resource Center, Yesan, Korea
| | - Myoung-Jun Jang
- Department of Plant Resources, Kongju National University, Yesan, Korea
| |
Collapse
|
2
|
Kobisi ANA, Balah MA, Hassan AR. Bioactivity of silverleaf nightshade (Solanum elaeagnifolium Cav.) berries parts against Galleria mellonella and Erwinia carotovora and LC-MS chemical profile of its potential extract. Sci Rep 2024; 14:18747. [PMID: 39138246 PMCID: PMC11322330 DOI: 10.1038/s41598-024-68961-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
Natural products received much attention as an environmentally beneficial solution for pest management. Therefore, the extracts of invasive silverleaf nightshade (Solanum elaeagnifolium Cav.) weeds using their berries parts (seeds, peels and mucilage) supported by bioassay-guided fractionation were tested against both the greater wax moth (Galleria mellonella) and Erwinia carotovora pv. carotovora causes of the blackleg of potatoes. The seeds and peels of S. elaeagnifolium were successively extracted by maceration using dichloromethane (DCM), ethyl acetate (EtOAc), and ethanol (EtOH), respectively. While, its mucilage was extracted using EtOAc. The successive EtOH extract of the plant seeds had promising inhibition efficacy and the best minimal inhibition concentration (MIC) of 50 µg/ml against E. Carotovora amongst other extracts (DCM and EtOAc of the plant berries parts). Depending on dose response activity, EtOH extract had G. mellonella larval mortality and pupal duration rates (LC50; 198.30 and LC95; 1294.73 µg/ml), respectively. Additionally, this EtOH extract of seeds was fractionated using preparative TLC to three characteristic bands. The insecticidal and bacterial activities of these isolated bands (SEA, SEB, and SEC) were evaluated at a dose of 100 µg/ml, causing mortality by 48.48, 62.63 and 92.93% (G. mellonella larvae) and inhibition by 15.22, 0.00 and 31.66 mm (E. carotovora), respectively. Moreover, the separated major three bands were tentatively identified using LC-ESI-MS analysis revealing the presence of two phenolic acids; chlorogenic acid (SEA) and dicaffeoyl quinic acid (SEB) in addition to one steroidal saponin (SEC) annotated as borassoside E or yamoscin. Finally, the plant seeds' successive EtOH extract as well as its active constituents, exhibited potential broad-spectrum activity and the ability to participate in future pest management initiatives. A field study is also recommended to validate its bio-efficacy against selected pests and to develop its formulations.
Collapse
Affiliation(s)
| | - Mohamed A Balah
- Plants Protection Department, Desert Research Center, Cairo, Egypt.
| | - Ahmed R Hassan
- Medicinal and Aromatic Plants Department, Desert Research Center, Cairo, Egypt
| |
Collapse
|
3
|
Babinska-Wensierska W, Motyka-Pomagruk A, Fondi M, Misztak AE, Mengoni A, Lojkowska E. Differences in the constituents of bacterial microbiota of soils collected from two fields of diverse potato blackleg and soft rot diseases incidences, a case study. Sci Rep 2024; 14:18802. [PMID: 39138329 PMCID: PMC11322387 DOI: 10.1038/s41598-024-69213-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
The presence of bacteria from the Dickeya spp. and Pectobacterium spp. in farmlands leads to global crop losses of over $420 million annually. Since 1982, the scientists have started to suspect that the development of disease symptoms in crops might be inhibited by bacteria present in the soil. Here, we characterized in terms of physicochemical properties and the composition of bacterial soil microbiota two fields differing, on the basis of long-term studies, in the occurrence of Dickeya spp.- and Pectobacterium spp.-triggered infections. Majority, i.e. 17 of the investigated physicochemical features of the soils collected from two fields of either low or high potato blackleg and soft rot diseases incidences turned out to be similar, in contrast to the observed 4 deviations in relation to Mg, Mn, organic C and organic substance contents. By performing microbial cultures and molecular diagnostics-based identification, 20 Pectobacterium spp. strains were acquired from the field showing high blackleg and soft rot incidences. In addition, 16S rRNA gene amplicon sequencing followed by bioinformatic analysis revealed differences at various taxonomic levels in the soil bacterial microbiota of the studied fields. We observed that bacteria from the genera Bacillus, Rumeliibacillus, Acidobacterium and Gaiella turned out to be more abundant in the soil samples originating from the field of low comparing to high frequency of pectinolytic bacterial infections. In the herein presented case study, it is shown for the first time that the composition of bacterial soil microbiota varies between two fields differing in the incidences of soft rot and blackleg infections.
Collapse
Affiliation(s)
- Weronika Babinska-Wensierska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307, Gdansk, Poland
- Research and Development Laboratory, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, University of Gdansk, 20 Podwale Przedmiejskie, 80-824, Gdansk, Poland
| | - Agata Motyka-Pomagruk
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307, Gdansk, Poland
- Research and Development Laboratory, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, University of Gdansk, 20 Podwale Przedmiejskie, 80-824, Gdansk, Poland
| | - Marco Fondi
- Laboratorio di Genetica Microbica, Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, Florence, Italy
| | - Agnieszka Emilia Misztak
- Génétique et Physiologie des Microalgues, InBioS/Phytosystems, Institut de Botanique, Université de Liège, Place du 20 Août 7, 4000, Liège, Belgium
| | - Alessio Mengoni
- Laboratorio di Genetica Microbica, Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, Florence, Italy
| | - Ewa Lojkowska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307, Gdansk, Poland.
- Research and Development Laboratory, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, University of Gdansk, 20 Podwale Przedmiejskie, 80-824, Gdansk, Poland.
| |
Collapse
|
4
|
Maciag T, Kozieł E, Otulak-Kozieł K, Jafra S, Czajkowski R. Looking for Resistance to Soft Rot Disease of Potatoes Facing Environmental Hypoxia. Int J Mol Sci 2024; 25:3757. [PMID: 38612570 PMCID: PMC11011919 DOI: 10.3390/ijms25073757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Plants are exposed to various stressors, including pathogens, requiring specific environmental conditions to provoke/induce plant disease. This phenomenon is called the "disease triangle" and is directly connected with a particular plant-pathogen interaction. Only a virulent pathogen interacting with a susceptible plant cultivar will lead to disease under specific environmental conditions. This may seem difficult to accomplish, but soft rot Pectobacteriaceae (SRPs) is a group virulent of pathogenic bacteria with a broad host range. Additionally, waterlogging (and, resulting from it, hypoxia), which is becoming a frequent problem in farming, is a favoring condition for this group of pathogens. Waterlogging by itself is an important source of abiotic stress for plants due to lowered gas exchange. Therefore, plants have evolved an ethylene-based system for hypoxia sensing. Plant response is coordinated by hormonal changes which induce metabolic and physiological adjustment to the environmental conditions. Wetland species such as rice (Oryza sativa L.), and bittersweet nightshade (Solanum dulcamara L.) have developed adaptations enabling them to withstand prolonged periods of decreased oxygen availability. On the other hand, potato (Solanum tuberosum L.), although able to sense and response to hypoxia, is sensitive to this environmental stress. This situation is exploited by SRPs which in response to hypoxia induce the production of virulence factors with the use of cyclic diguanylate (c-di-GMP). Potato tubers in turn reduce their defenses to preserve energy to prevent the negative effects of reactive oxygen species and acidification, making them prone to soft rot disease. To reduce the losses caused by the soft rot disease we need sensitive and reliable methods for the detection of the pathogens, to isolate infected plant material. However, due to the high prevalence of SRPs in the environment, we also need to create new potato varieties more resistant to the disease. To reach that goal, we can look to wild potatoes and other Solanum species for mechanisms of resistance to waterlogging. Potato resistance can also be aided by beneficial microorganisms which can induce the plant's natural defenses to bacterial infections but also waterlogging. However, most of the known plant-beneficial microorganisms suffer from hypoxia and can be outcompeted by plant pathogens. Therefore, it is important to look for microorganisms that can withstand hypoxia or alleviate its effects on the plant, e.g., by improving soil structure. Therefore, this review aims to present crucial elements of potato response to hypoxia and SRP infection and future outlooks for the prevention of soft rot disease considering the influence of environmental conditions.
Collapse
Affiliation(s)
- Tomasz Maciag
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Edmund Kozieł
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Katarzyna Otulak-Kozieł
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama Street 58, 80-307 Gdansk, Poland;
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama Street 58, 80-307 Gdansk, Poland;
| |
Collapse
|
5
|
Fenta L, Mekonnen H, Kabtimer N. The Exploitation of Microbial Antagonists against Postharvest Plant Pathogens. Microorganisms 2023; 11:microorganisms11041044. [PMID: 37110467 PMCID: PMC10143894 DOI: 10.3390/microorganisms11041044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Postharvest disease management is vital to increase the quality and productivity of crops. As part of crop disease protection, people used different agrochemicals and agricultural practices to manage postharvest diseases. However, the widespread use of agrochemicals in pest and disease control has detrimental effects on consumer health, the environment, and fruit quality. To date, different approaches are being used to manage postharvest diseases. The use of microorganisms to control postharvest disease is becoming an eco-friendly and environmentally sounds approach. There are many known and reported biocontrol agents, including bacteria, fungi, and actinomycetes. Nevertheless, despite the abundance of publications on biocontrol agents, the use of biocontrol in sustainable agriculture requires substantial research, effective adoption, and comprehension of the interactions between plants, pathogens, and the environment. To accomplish this, this review made an effort to locate and summarize earlier publications on the function of microbial biocontrol agents against postharvest crop diseases. Additionally, this review aims to investigate biocontrol mechanisms, their modes of operation, potential future applications for bioagents, as well as difficulties encountered during the commercialization process.
Collapse
Affiliation(s)
- Lamenew Fenta
- Department of Biology, Debre Markos University, Debre Markos P.O. Box 269, Ethiopia
| | - Habtamu Mekonnen
- Department of Biology, Bahir Dar University, Bahir Dar P.O. Box 79, Ethiopia
| | - Negash Kabtimer
- Department of Biology, Bahir Dar University, Bahir Dar P.O. Box 79, Ethiopia
| |
Collapse
|
6
|
El-Naggar NEA, Bashir SI, Rabei NH, Saber WIA. Innovative biosynthesis, artificial intelligence-based optimization, and characterization of chitosan nanoparticles by Streptomyces microflavus and their inhibitory potential against Pectobacterium carotovorum. Sci Rep 2022; 12:21851. [PMID: 36528632 PMCID: PMC9759534 DOI: 10.1038/s41598-022-25726-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Microbial-based strategy in nanotechnology offers economic, eco-friendly, and biosafety advantages over traditional chemical and physical protocols. The current study describes a novel biosynthesis protocol for chitosan nanoparticles (CNPs), employing a pioneer Streptomyces sp. strain NEAE-83, which exhibited a significant potential for CNPs biosynthesis. It was identified as Streptomyces microflavus strain NEAE-83 based on morphological, and physiological properties as well as the 16S rRNA sequence (GenBank accession number: MG384964). CNPs were characterized by SEM, TEM, EDXS, zeta potential, FTIR, XRD, TGA, and DSC. CNPs biosynthesis was maximized using a mathematical model, face-centered central composite design (CCFCD). The highest yield of CNPs (9.41 mg/mL) was obtained in run no. 27, using an initial pH of 5.5, 1% chitosan, 40 °C, and a 12 h incubation period. Innovatively, the artificial neural network (ANN), was used for validating and predicting CNPs biosynthesis based on the trials data of CCFCD. Despite the high precision degree of both models, ANN was supreme in the prediction of CNPs biosynthesis compared to CCFCD. ANN had a higher prediction efficacy and, lower error values (RMSE, MDA, and SSE). CNPs biosynthesized by Streptomyces microflavus strain NEAE-83 showed in-vitro antibacterial activity against Pectobacterium carotovorum, which causes the potato soft rot. These results suggested its potential application for controlling the destructive potato soft rot diseases. This is the first report on the biosynthesis of CNPs using a newly isolated; Streptomyces microflavus strain NEAE-83 as an eco-friendly approach and optimization of the biosynthesis process by artificial intelligence.
Collapse
Affiliation(s)
- Noura El-Ahmady El-Naggar
- grid.420020.40000 0004 0483 2576Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934 Egypt
| | - Shimaa I. Bashir
- grid.420020.40000 0004 0483 2576Department of Plant Protection and Biomolecular Diagnosis, Arid Land Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934 Egypt
| | - Nashwa H. Rabei
- grid.420020.40000 0004 0483 2576Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934 Egypt
| | - WesamEldin I. A. Saber
- grid.418376.f0000 0004 1800 7673Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, 12619 Egypt
| |
Collapse
|
7
|
Wang SY, Herrera-Balandrano DD, Wang YX, Shi XC, Chen X, Jin Y, Liu FQ, Laborda P. Biocontrol Ability of the Bacillus amyloliquefaciens Group, B. amyloliquefaciens, B. velezensis, B. nakamurai, and B. siamensis, for the Management of Fungal Postharvest Diseases: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6591-6616. [PMID: 35604328 DOI: 10.1021/acs.jafc.2c01745] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Bacillus amyloliquefaciens group, composed of B. amyloliquefaciens, B. velezensis, B. nakamurai, and B. siamensis, has recently emerged as an interesting source of biocontrol agents for the management of pathogenic fungi. In this review, all the reports regarding the ability of these species to control postharvest fungal diseases have been covered for the first time. B. amyloliquefaciens species showed various antifungal mechanisms, including production of antifungal lipopeptides and volatile organic compounds, competition for nutrients, and induction of disease resistance. Most reports discussed their use for the control of fruit diseases. Several strains were studied in combination with additives, improving their inhibitory efficacies. In addition, a few strains have been commercialized. Overall, studies showed that B. amyloliquefaciens species are a suitable environmentally friendly alternative for the control of postharvest diseases. However, there are still crucial knowledge gaps to improve their efficacy and host range.
Collapse
Affiliation(s)
- Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | | | - Yan-Xia Wang
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Xin Chen
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Yan Jin
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Feng-Quan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| |
Collapse
|
8
|
Dagher F, Nickzad A, Zheng J, Hoffmann M, Déziel E. Characterization of the biocontrol activity of three bacterial isolates against the phytopathogen Erwinia amylovora. Microbiologyopen 2021; 10:e1202. [PMID: 34180603 PMCID: PMC8182272 DOI: 10.1002/mbo3.1202] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 01/21/2023] Open
Abstract
Antibiotics are sprayed on apple and pear orchards to control, among other pathogens, the bacterium Erwinia amylovora, the causative agent of fire blight. As with many other pathogens, we observe the emergence of antibiotic-resistant strains of E. amylovora. Consequently, growers are looking for alternative solutions to combat fire blight. To find alternatives to antibiotics against this pathogen, we have previously isolated three bacterial strains with antagonistic and extracellular activity against E. amylovora, both in vitro and in planta, corresponding to three different bacterial genera: Here, we identified the inhibitory mode of action of each of the three isolates against E. amylovora. Isolate Bacillus amyloliquefaciens subsp. plantarum (now B. velezensis) FL50S produces several secondary metabolites including surfactins, iturins, and fengycins. Specifically, we identified oxydifficidin as the most active against E. amylovora S435. Pseudomonas poae FL10F produces an active extracellular compound against E. amylovora S435 that can be attributed to white-line-inducing principle (WLIP), a cyclic lipopeptide belonging to the viscosin subfamily (massetolide E, F, L, or viscosin). Pantoea agglomerans NY60 has a direct cell-to-cell antagonistic effect against E. amylovora S435. By screening mutants of this strain generated by random transposon insertion with decreased antagonist activity against strain S435, we identified several defective transposants. Of particular interest was a mutant in a gene coding for a Major Facilitator Superfamily (MFS) transporter corresponding to a transmembrane protein predicted to be involved in the extracytoplasmic localization of griseoluteic acid, an intermediate in the biosynthesis of the broad-spectrum phenazine antibiotic D-alanylgriseoluteic acid.
Collapse
Affiliation(s)
- Fadi Dagher
- Centre Armand‐Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS)LavalQuébecH7V 1B7Canada
| | - Arvin Nickzad
- Centre Armand‐Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS)LavalQuébecH7V 1B7Canada
| | - Jie Zheng
- US Food and Drug Administration Regulatory Science Center for Food Safety and Applied NutritionCollege ParkMarylandUSA
| | - Maria Hoffmann
- US Food and Drug Administration Regulatory Science Center for Food Safety and Applied NutritionCollege ParkMarylandUSA
| | - Eric Déziel
- Centre Armand‐Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS)LavalQuébecH7V 1B7Canada
| |
Collapse
|
9
|
Abstract
Root rot diseases remain a major global threat to the productivity of agricultural crops. They are usually caused by more than one type of pathogen and are thus often referred to as a root rot complex. Fungal and oomycete species are the predominant participants in the complex, while bacteria and viruses are also known to cause root rot. Incorporating genetic resistance in cultivated crops is considered the most efficient and sustainable solution to counter root rot, however, resistance is often quantitative in nature. Several genetics studies in various crops have identified the quantitative trait loci associated with resistance. With access to whole genome sequences, the identity of the genes within the reported loci is becoming available. Several of the identified genes have been implicated in pathogen responses. However, it is becoming apparent that at the molecular level, each pathogen engages a unique set of proteins to either infest the host successfully or be defeated or contained in attempting so. In this review, a comprehensive summary of the genes and the potential mechanisms underlying resistance or susceptibility against the most investigated root rots of important agricultural crops is presented.
Collapse
|
10
|
Zheng L, Huang S, Hsiang T, Yu G, Guo D, Jiang Z, Li J. Biocontrol Using Bacillus amyloliquefaciens PP19 Against Litchi Downy Blight Caused by Peronophythora litchii. Front Microbiol 2021; 11:619423. [PMID: 33510732 PMCID: PMC7835641 DOI: 10.3389/fmicb.2020.619423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/08/2020] [Indexed: 11/13/2022] Open
Abstract
Bacillus amyloliquefaciens has been widely used in the agriculture, food, and medicine industries. Isolate PP19 was obtained from the litchi fruit carposphere and showed biocontrol efficacy against litchi downy blight (LDB) whether applied preharvest or postharvest. To further understand the underlying regulatory mechanisms, the genome of PP19 was sequenced and analyzed. The genome comprised a 3,847,565 bp circular chromosome containing 3990 protein-coding genes and 121 RNA genes. It has the smallest genome among 36 sequenced strains of B. amyloliquefaciens except for RD7-7. In whole genome phylogenetic analysis, PP19 was clustered into a group with known industrial applications, indicating that it may also produce high-yield metabolites that have yet to be identified. A large chromosome structural variation and large numbers of single nucleotide polymorphisms (SNPs) between PP19 (industrial strain) and UMAF6639 (plant-associated strain) were detected through comparative analysis, which may shed light on their functional differences. Preharvest treatment with PP19 enhanced resistance to LDB, by decreasing the plant H2O2 content and increasing the SOD activity. This is the first report of an industrial strain of B. amyloliquefaciens showing a plant-associated function and with major potential for the biocontrol of LDB.
Collapse
Affiliation(s)
- Li Zheng
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Chinese Academy of Tropical Agricultural Sciences Guangzhou Experimental Station, Guangzhou, China
| | - Shilian Huang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratary of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Guohui Yu
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Dongliang Guo
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratary of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zide Jiang
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Jianguang Li
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratary of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
11
|
Promnuan Y, Promsai S, Meelai S. Antimicrobial activity of Streptomyces spp. isolated from Apis dorsata combs against some phytopathogenic bacteria. PeerJ 2021; 8:e10512. [PMID: 33384897 PMCID: PMC7751431 DOI: 10.7717/peerj.10512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/16/2020] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to investigate the antimicrobial potential of actinomycetes isolated from combs of the giant honey bee, Apis dorsata. In total, 25 isolates were obtained from three different media and were screened for antimicrobial activity against four plant pathogenic bacteria (Ralstonia solanacearum, Xanthomonas campestris pv. campestris, Xanthomonas oryzae pv. oryzae and Pectobacterium carotovorum). Following screening using a cross-streaking method, three isolates showed the potential to inhibit the growth of plant pathogenic bacteria. Based on a 96-well microtiter assay, the crude extract of DSC3-6 had minimum inhibitory concentration (MIC) values against X. oryzae pv. oryzae, X. campestris pv. campestris, R. solanacearum and P. carotovorum of 16, 32, 32 and 64 mg L-1, respectively. The crude extract of DGA3-20 had MIC values against X. oryzae pv. oryzae, X. campestris pv. campestris, R. solanacearum and P. carotovorum of 32, 32, 32 and 64 mg L-1, respectively. The crude extract of DGA8-3 at 32 mgL-1 inhibited the growth of X. oryzae pv. oryzae, X. campestris pv. campestris, R. solanacearum and P. carotovorum. Based on their 16S rRNA gene sequences, all isolates were identified as members of the genus Streptomyces. The analysis of 16S rRNA gene sequence similarity and of the phylogenetic tree based on the maximum likelihood algorithm showed that isolates DSC3-6, DGA3-20 and DGA8-3 were closely related to Streptomyces ramulosus (99.42%), Streptomyces axinellae (99.70%) and Streptomyces drozdowiczii (99.71%), respectively. This was the first report on antibacterial activity against phytopathogenic bacteria from actinomycetes isolated from the giant honey bee.
Collapse
Affiliation(s)
- Yaowanoot Promnuan
- Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University-Kamphaeng Saen campus, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Saran Promsai
- Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University-Kamphaeng Saen campus, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Sujinan Meelai
- Department of Microbiology, Faculty of Science, Silpakorn University-Sanam Chandra Palace campus, Nakhon Pathom, Nakhon Pathom, Thailand
| |
Collapse
|
12
|
Wang B, Bi Y. The role of signal production and transduction in induced resistance of harvested fruits and vegetables. FOOD QUALITY AND SAFETY 2021; 5. [DOI: 10.1093/fqsafe/fyab011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Postharvest diseases are the primary reason causing postharvest loss of fruits and vegetables. Although fungicides show an effective way to control postharvest diseases, the use of fungicides is gradually being restricted due to safety, environmental pollution, and resistance development in the pathogen. Induced resistance is a new strategy to control postharvest diseases by eliciting immune activity in fruits and vegetables with exogenous physical, chemical, and biological elicitors. After being stimulated by elicitors, fruits and vegetables respond immediately against pathogens. This process is actually a continuous signal transduction, including the generation, transduction, and interaction of signal molecules. Each step of response can lead to corresponding physiological functions, and ultimately induce disease resistance by upregulating the expression of disease resistance genes and activating a variety of metabolic pathways. Signal molecules not only mediate defense response alone, but also interact with other signal transduction pathways to regulate the disease resistance response. Among various signal molecules, the second messenger (reactive oxygen species, nitric oxide, calcium ions) and plant hormones (salicylic acid, jasmonic acid, ethylene, and abscisic acid) play an important role in induced resistance. This article summarizes and reviews the research progress of induced resistance in recent years, and expounds the role of the above-mentioned signal molecules in induced resistance of harvested fruits and vegetables, and prospects for future research.
Collapse
|
13
|
Dagher F, Olishevska S, Philion V, Zheng J, Déziel E. Development of a novel biological control agent targeting the phytopathogen Erwinia amylovora. Heliyon 2020; 6:e05222. [PMID: 33102848 PMCID: PMC7578203 DOI: 10.1016/j.heliyon.2020.e05222] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/18/2020] [Accepted: 10/08/2020] [Indexed: 10/27/2022] Open
Abstract
Antibiotics are used extensively to control animal, plant, and human pathogens. They are sprayed on apple and pear orchards to control the bacterium Erwinia amylovora, the causative agent of fire blight. This phytopathogen is developing antibiotic resistance and alternatives either have less efficacy, are phytotoxic, or more management intensive. The objective of our study was to develop an effective biological control agent colonizing the host plant and competing with Erwinia amylovora. It must not be phytotoxic, have a wide spectrum of activity, and be unlikely to induce resistance in the pathogen. To this end, several bacterial isolates from various environmental samples were screened to identify suitable candidates that are antagonistic to E. amylovora. We sampled bacteria from the flowers, leaves, and soil from apple and pear orchards from the springtime bloom period until the summer. The most effective bacteria, including isolates of Pseudomonas poae, Paenibacillus polymyxa, Bacillus amyloliquefaciens and Pantoea agglomerans, were tested in vitro and in vivo and formulated into products containing both the live strains and their metabolites that were stable for at least 9 months. Trees treated with the product based on P. agglomerans NY60 had significantly less fire blight than the untreated control and were statistically not different from streptomycin-treated control trees. With P. agglomerans NY60, fire blight never extended beyond the central vein of the inoculated leaf. The fire blight median disease severity score, 10 days after inoculation, was up to 70% less severe on trees treated with P. agglomerans NY60 as compared to untreated controls.
Collapse
Affiliation(s)
- Fadi Dagher
- INRS-Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | | | | | - Jie Zheng
- US Food and Drug Administration Regulatory Science Center for Food Safety and Applied Nutrition, 5100, Paint Branch Parkway, College Park, MD, USA
| | - Eric Déziel
- INRS-Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| |
Collapse
|
14
|
Abd-El-Khair H. Biological Control of Phyto-pathogenic Bacteria. COTTAGE INDUSTRY OF BIOCONTROL AGENTS AND THEIR APPLICATIONS 2020:299-336. [DOI: 10.1007/978-3-030-33161-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
15
|
Cui W, He P, Munir S, He P, He Y, Li X, Yang L, Wang B, Wu Y, He P. Biocontrol of Soft Rot of Chinese Cabbage Using an Endophytic Bacterial Strain. Front Microbiol 2019; 10:1471. [PMID: 31333608 PMCID: PMC6616379 DOI: 10.3389/fmicb.2019.01471] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/12/2019] [Indexed: 11/25/2022] Open
Abstract
Soft rot caused by Pectobacterium carotovorum subsp. carotovorum (Pcc) is a major constraint in the production of Chinese cabbage. The objective of this study was to demonstrate that the causative agent Pcc may be successfully managed by Bacillus amyloliquefaciens KC-1, both in vitro and in vivo. Chinese cabbage seedlings were cultivated in organic substrate termed bio-organic substrate using a floating-seedling system with B. amyloliquefaciens KC-1. This approach was applied in a greenhouse to evaluate the management of soft rot. The results showed that the extent of soft rot, as well as the transmission of Pcc to the stem progeny and its survival in the rhizosphere, was reduced following inoculation with B. amyloliquefaciens KC-1. In contrast, the population diversity of B. amyloliquefaciens KC-1 persisted in the Chinese cabbage stems after germination. These findings revealed that B. amyloliquefaciens KC-1 was able to survive and suppress the growth of Pcc in Chinese cabbage and its rhizosphere, protecting the host from the pathogen. The use of B. amyloliquefaciens KC-1 throughout the growth period of plants may be an effective strategy for the prevention of soft rot in Chinese cabbage.
Collapse
Affiliation(s)
- Wenyan Cui
- Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Faculty of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Pengjie He
- Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Faculty of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Shahzad Munir
- Faculty of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Pengbo He
- Faculty of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Yueqiu He
- National and Local Joint Engineering Research Center for Screening and Application of Microbial Strains, Kunming, China.,Faculty of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Xingyu Li
- National and Local Joint Engineering Research Center for Screening and Application of Microbial Strains, Kunming, China.,Faculty of Science, Yunnan Agricultural University, Kunming, China
| | - Lijuan Yang
- Faculty of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Biao Wang
- Faculty of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Yixin Wu
- National and Local Joint Engineering Research Center for Screening and Application of Microbial Strains, Kunming, China.,Faculty of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Pengfei He
- Faculty of Plant Protection, Yunnan Agricultural University, Kunming, China.,National and Local Joint Engineering Research Center for Screening and Application of Microbial Strains, Kunming, China
| |
Collapse
|
16
|
Boonpa K, Tantong S, Weerawanich K, Panpetch P, Pringsulaka O, Roytrakul S, Sirikantaramas S. In Silico Analyses of Rice Thionin Genes and the Antimicrobial Activity of OsTHION15 Against Phytopathogens. PHYTOPATHOLOGY 2019; 109:27-35. [PMID: 30028233 DOI: 10.1094/phyto-06-17-0217-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Thionins are a family of antimicrobial peptides. We performed in silico expression analyses of the 44 rice (Oryza sativa) thionins (OsTHIONs). Modulated expression levels of OsTHIONs under different treatments suggest their involvement in many processes, including biotic, abiotic, and nutritional stress responses, and in hormone signaling. OsTHION15 (LOC_Os06g32600) was selected for further characterization based on several in silico analyses. OsTHION15 in O. sativa subsp. indica 'KDML 105' was expressed in all of the tissues and organs examined, including germinating seed, leaves, and roots of seedlings and mature plants, and inflorescences. To investigate the antimicrobial activity of OsTHION15, we produced a recombinant peptide in Escherichia coli Rosetta-gami (DE3). The recombinant OsTHION15 exhibited inhibitory activities toward rice-pathogenic bacteria such as Xanthomonas oryzae pv. oryzae and Pectobacterium carotovorum pv. atroseptica, with minimum inhibitory concentrations of 112.6 and 14.1 µg ml-1, respectively. A significant hyphal growth inhibition was also observed toward Fusarium oxysporum f. sp. cubense and Helminthosporium oryzae. In addition, we demonstrated the in planta antibacterial activity of this peptide in Nicotiana benthamiana against X. campestris pv. glycines. These activities suggest the possible application of OsTHION15 in plant disease control.
Collapse
Affiliation(s)
- Krissana Boonpa
- First author: Biotechnology Program, and second, third, fourth, and seventh authors: Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; fifth author: Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand; sixth author: Genome Technology Research Unit, National Center for Genetic Engineering and Biotechnology, Klong Luang, Pathumthani, 12120, Thailand; and seventh author: Natural Product Biotechnology Research Unit, Chulalongkorn University
| | - Suparuk Tantong
- First author: Biotechnology Program, and second, third, fourth, and seventh authors: Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; fifth author: Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand; sixth author: Genome Technology Research Unit, National Center for Genetic Engineering and Biotechnology, Klong Luang, Pathumthani, 12120, Thailand; and seventh author: Natural Product Biotechnology Research Unit, Chulalongkorn University
| | - Kamonwan Weerawanich
- First author: Biotechnology Program, and second, third, fourth, and seventh authors: Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; fifth author: Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand; sixth author: Genome Technology Research Unit, National Center for Genetic Engineering and Biotechnology, Klong Luang, Pathumthani, 12120, Thailand; and seventh author: Natural Product Biotechnology Research Unit, Chulalongkorn University
| | - Pawinee Panpetch
- First author: Biotechnology Program, and second, third, fourth, and seventh authors: Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; fifth author: Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand; sixth author: Genome Technology Research Unit, National Center for Genetic Engineering and Biotechnology, Klong Luang, Pathumthani, 12120, Thailand; and seventh author: Natural Product Biotechnology Research Unit, Chulalongkorn University
| | - Onanong Pringsulaka
- First author: Biotechnology Program, and second, third, fourth, and seventh authors: Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; fifth author: Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand; sixth author: Genome Technology Research Unit, National Center for Genetic Engineering and Biotechnology, Klong Luang, Pathumthani, 12120, Thailand; and seventh author: Natural Product Biotechnology Research Unit, Chulalongkorn University
| | - Sittiruk Roytrakul
- First author: Biotechnology Program, and second, third, fourth, and seventh authors: Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; fifth author: Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand; sixth author: Genome Technology Research Unit, National Center for Genetic Engineering and Biotechnology, Klong Luang, Pathumthani, 12120, Thailand; and seventh author: Natural Product Biotechnology Research Unit, Chulalongkorn University
| | - Supaart Sirikantaramas
- First author: Biotechnology Program, and second, third, fourth, and seventh authors: Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; fifth author: Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand; sixth author: Genome Technology Research Unit, National Center for Genetic Engineering and Biotechnology, Klong Luang, Pathumthani, 12120, Thailand; and seventh author: Natural Product Biotechnology Research Unit, Chulalongkorn University
| |
Collapse
|
17
|
Chen K, Tian Z, Luo Y, Cheng Y, Long CA. Antagonistic Activity and the Mechanism of Bacillus amyloliquefaciens DH-4 Against Citrus Green Mold. PHYTOPATHOLOGY 2018; 108:1253-1262. [PMID: 29799309 DOI: 10.1094/phyto-01-17-0032-r] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Citrus fruit usually suffer significant losses during the storage and transportation stages. Green mold, a postharvest rot of citrus fruit caused by Penicillium digitatum, is one of the most serious fungal diseases. In this study, the antagonist strain DH-4 was identified as Bacillus amyloliquefaciens according to morphological observation and 16S ribosomal DNA analysis. In addition, it showed broad antifungal activity, especially the suppression of Penicillium spp. The culture filtrate of strain DH-4 exhibited apparent activity against P. digitatum in vitro and in vivo. In storage, the culture filtrate with DH-4 in it showed a better antiseptic effect. The antifungal substances in the culture filtrate, produced by strain DH-4, displayed stable activity in various extreme conditions. In addition, the antifungal substances in the culture filtrate were identified as macrolactin, bacillaene, iturins, fengycin, and surfactin by ultraperformance liquid chromatography (UPLC) electrospray ionization mass spectrometry analysis. The UPLC fractions containing these antifungal compounds were basically heat tolerant and all responsible for the antagonistic activity against P. digitatum. Transmission electron microscope observation indicated that the antifungal substances might cause abnormalities in the P. digitatum cellular ultrastructure, which could be the possible mode of action of B. amyloliquefaciens against P. digitatum. In addition, it was confirmed via scanning electron microscope analysis that the main way it inhibited P. digitatum was by secreting antimicrobial compounds without direct interaction. This study contributes to the understanding of the mechanism of B. amyloliquefaciens against citrus green mold as well as providing a potential application for the biocontrol of postharvest rot diseases in citrus fruit.
Collapse
Affiliation(s)
- Kai Chen
- All authors: Key Laboratory of Horticultural Plant Biology of the Ministry of Education, National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan 430070, P. R. China; and first author: Center of Applied Biotechnology, Wuhan Institute of Bioengineering, Wuhan 430415, P. R. China
| | - Zhonghuan Tian
- All authors: Key Laboratory of Horticultural Plant Biology of the Ministry of Education, National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan 430070, P. R. China; and first author: Center of Applied Biotechnology, Wuhan Institute of Bioengineering, Wuhan 430415, P. R. China
| | - Yuan Luo
- All authors: Key Laboratory of Horticultural Plant Biology of the Ministry of Education, National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan 430070, P. R. China; and first author: Center of Applied Biotechnology, Wuhan Institute of Bioengineering, Wuhan 430415, P. R. China
| | - Yunjiang Cheng
- All authors: Key Laboratory of Horticultural Plant Biology of the Ministry of Education, National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan 430070, P. R. China; and first author: Center of Applied Biotechnology, Wuhan Institute of Bioengineering, Wuhan 430415, P. R. China
| | - Chao-An Long
- All authors: Key Laboratory of Horticultural Plant Biology of the Ministry of Education, National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan 430070, P. R. China; and first author: Center of Applied Biotechnology, Wuhan Institute of Bioengineering, Wuhan 430415, P. R. China
| |
Collapse
|
18
|
Biological control of the soft rot bacterium Pectobacterium carotovorum by Bacillus amyloliquefaciens strain Ar10 producing glycolipid-like compounds. Microbiol Res 2018; 217:23-33. [PMID: 30384906 DOI: 10.1016/j.micres.2018.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/17/2018] [Accepted: 08/28/2018] [Indexed: 11/21/2022]
Abstract
Four hundred and fifty bacteria were evaluated for antagonistic activity against bacterial soft rot of potato caused by Pectobacterium carotovorum sp strain II16. A strain Ar10 exhibiting potent antagonist activity has been identified as Bacillus amyloliquefaciens on the basis of biochemical and molecular characterization. Cell free supernatant showed a broad spectrum of antibacterial activity against human and phytopathogenic bacteria in the range of 10-60 AU/mL. Incubation of P. carotovorum cells with increasing concentrations of the antibacterial compound showed a killing rate of 94.8 and 96% at MIC and 2xMIC respectively. In addition, the antibacterial agent did not exert haemolytic activity at the active concentration and has been preliminary characterized by TLC and GC-MS as a glycolipid compound. Treatment of potato tubers with strain Ar10 for 72 h significantly reduced the severity of disease symptoms (100 and 85.05% reduction of necrosis deep / area and weight loss respectively). The same levels in disease symptoms severity was also recorded following treatment of potato tubers with cell free supernatant for 1 h. Data suggest that protection against potato soft rot disease may be related to glycolipid production by strain Ar10. The present study affords new alternatives for anti-Pectobacterium carotovorum bioactive compounds against the soft rot disease of potato.
Collapse
|
19
|
Tang J, Ding Y, Nan J, Yang X, Sun L, Zhao X, Jiang L. Transcriptome sequencing and ITRAQ reveal the detoxification mechanism of Bacillus GJ1, a potential biocontrol agent for Huanglongbing. PLoS One 2018; 13:e0200427. [PMID: 30091977 PMCID: PMC6084860 DOI: 10.1371/journal.pone.0200427] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/26/2018] [Indexed: 11/18/2022] Open
Abstract
Huanglongbing (HLB) is the most serious disease affecting citrus production worldwide. No HLB-resistant citrus varieties exist. The HLB pathogen Candidatus Liberibacter asiaticus is nonculturable, increasing the difficulty of preventing and curing the disease. We successfully screened the biocontrol agent Bacillus GJ1 for the control of HLB in nursery-grown citrus plants. RNA sequencing (RNA-seq) of the transcriptome and isobaric tags for relative and absolute quantification of the proteome revealed differences in the detoxification responses of Bacillus GJ1-treated and -untreated Ca. L. asiaticus-infected citrus. Phylogenetic tree alignment showed that GJ1 was classified as B. amyloliquefaciens. The effect of eliminating the HLB pathogen was measured using real-time quantitative polymerase chain reaction (qPCR) and PCR. The results indicate that the rate of detoxification reached 50% after seven irrigations, of plants with an OD600nm≈1 Bacillus GJ1 suspension. Most importantly, photosynthesis-antenna proteins, photosynthesis, plant-pathogen interactions, and protein processing in the endoplasmic reticulum were significantly upregulated (padj < 0.05), as shown by the KEGG enrichment analysis of the transcriptomes; nine of the upregulated genes were validated by qPCR. Transcription factor analysis of the transcriptomes was performed, and 10 TFs were validated by qPCR. Cyanoamino acid metabolism, regulation of autophagy, isoflavonoid biosynthesis, starch and sucrose metabolism, protein export, porphyrin and chlorophyll metabolism, and carotenoid biosynthesis were investigated by KEGG enrichment analysis of the proteome, and significant differences were found in the expression of the genes involved in those pathways. Correlation analysis of the proteome and transcriptome showed common entries for the significantly different expression of proteins and the significantly different expression of genes in the GO and KEGG pathways, respectively. The above results reveal important information about the detoxification pathways.
Collapse
Affiliation(s)
- Jizhou Tang
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuanxi Ding
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jing Nan
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiangyu Yang
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Liang Sun
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiuyun Zhao
- College of life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ling Jiang
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, China.,National Indoor Conservation Center of Virus-free Germplasm of Fruit Crops, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
20
|
Chandrasekaran M, Chun SC. Expression of PR-protein genes and induction of defense-related enzymes by Bacillus subtilis CBR05 in tomato (Solanum lycopersicum) plants challenged with Erwinia carotovora subsp. carotovora. Biosci Biotechnol Biochem 2016; 80:2277-2283. [DOI: 10.1080/09168451.2016.1206811] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
The present study was aimed to evaluate the effectiveness of a biocontrol agent Bacillus subtilis CBR05 for control of soft rot disease (Erwinia carotovora subsp. carotovora) in tomato, and the possible mechanisms of its resistance induction have been investigated under pot conditions. Results showed that plants inoculated with B. subtilis CBR05 had lower disease incidence (36%). A significant increase in superoxide dismutase, catalase, peroxidase, and polyphenol oxidase activities was observed in plants inoculated with B. subtilis between 48 and 72 hpi. Also, the transcript profiles of Glu and Phenyl ammonia lyase (PAL) showed a significant up-regulation following inoculation. The most significant up-regulation was observed in transcript profile of PAL that showed 0.49 Fold Expression, at 72 hpi as compared to its expression at 12 hpi. These results suggest that systemic induction of defense-related genes expression and antioxidant enzyme activity by B. subtilis could play a pivotal role in disease resistance against soft rot disease.
Collapse
Affiliation(s)
| | - Se Chul Chun
- Department of Bioresource and Food Science, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Shrestha BK, Karki HS, Groth DE, Jungkhun N, Ham JH. Biological Control Activities of Rice-Associated Bacillus sp. Strains against Sheath Blight and Bacterial Panicle Blight of Rice. PLoS One 2016; 11:e0146764. [PMID: 26765124 PMCID: PMC4713167 DOI: 10.1371/journal.pone.0146764] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 12/22/2015] [Indexed: 11/19/2022] Open
Abstract
Potential biological control agents for two major rice diseases, sheath blight and bacterial panicle blight, were isolated from rice plants in this study. Rice-associated bacteria (RABs) isolated from rice plants grown in the field were tested for their antagonistic activities against the rice pathogens, Rhizoctonia solani and Burkholderia glumae, which cause sheath blight and bacterial panicle blight, respectively. Twenty-nine RABs were initially screened based on their antagonistic activities against both R. solani and B. glumae. In follow-up retests, 26 RABs of the 29 RABs were confirmed to have antimicrobial activities, but the rest three RABs did not reproduce any observable antagonistic activity against R. solani or B. glumae. According to16S rDNA sequence identity, 12 of the 26 antagonistic RABs were closest to Bacillus amyloliquefaciens, while seven RABs were to B. methylotrophicus and B, subtilis, respectively. The 16S rDNA sequences of the three non-antagonistic RABs were closest to Lysinibacillus sphaericus (RAB1 and RAB12) and Lysinibacillus macroides (RAB5). The five selected RABs showing highest antimicrobial activities (RAB6, RAB9, RAB16, RAB17S, and RAB18) were closest to B. amyloliquefaciens in DNA sequence of 16S rDNA and gyrB, but to B. subtilis in that of recA. These RABs were observed to inhibit the sclerotial germination of R. solani on potato dextrose agar and the lesion development on detached rice leaves by artificial inoculation of R. solani. These antagonistic RABs also significantly suppressed the disease development of sheath blight and bacterial panicle blight in a field condition, suggesting that they can be potential biological control agents for these rice diseases. However, these antagonistic RABs showed diminished disease suppression activities in the repeated field trial conducted in the following year probably due to their reduced antagonistic activities to the pathogens during the long-term storage in -70C, suggesting that development of proper storage methods to maintain antagonistic activity is as crucial as identification of new biological control agents.
Collapse
Affiliation(s)
- Bishnu K. Shrestha
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, 70803, United States of America
| | - Hari Sharan Karki
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, 70803, United States of America
| | - Donald E. Groth
- Rice Research Station, Louisiana State University Agricultural Center, Rayne, Louisiana, 70578, United States of America
| | - Nootjarin Jungkhun
- Chiang Rai Rice Research Center, Bureau of Rice Research and Development, Rice Department, 474 Moo 9, Phaholyothin Rd., Muang Phan, Phan, Chiang Rai, 57120, Thailand
| | - Jong Hyun Ham
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, 70803, United States of America
| |
Collapse
|
22
|
Aremu BR, Babalola OO. Classification and Taxonomy of Vegetable Macergens. Front Microbiol 2015; 6:1361. [PMID: 26640465 PMCID: PMC4661320 DOI: 10.3389/fmicb.2015.01361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/16/2015] [Indexed: 11/24/2022] Open
Abstract
Macergens are bacteria capable of releasing pectic enzymes (pectolytic bacteria). These enzymatic actions result in the separation of plant tissues leading to total plant destruction. This can be attributed to soft rot diseases in vegetables. These macergens primarily belong to the genus Erwinia and to a range of opportunistic pathogens namely: the Xanthomonas spp., Pseudomonas spp., Clostridium spp., Cytophaga spp., and Bacillus spp. They consist of taxa that displayed considerable heterogeneity and intermingled with members of other genera belonging to the Enterobacteriaceae. They have been classified based on phenotypic, chemotaxonomic and genotypic which obviously not necessary in the taxonomy of all bacterial genera for defining bacterial species and describing new ones These taxonomic markers have been used traditionally as a simple technique for identification of bacterial isolates. The most important fields of taxonomy are supposed to be based on clear, reliable and worldwide applicable criteria. Hence, this review clarifies the taxonomy of the macergens to the species level and revealed that their taxonomy is beyond complete. For discovery of additional species, further research with the use modern molecular methods like phylogenomics need to be done. This can precisely define classification of macergens resulting in occasional, but significant changes in previous taxonomic schemes of these macergens.
Collapse
Affiliation(s)
- Bukola R. Aremu
- Department of Biological Sciences, Faculty of Agriculture, Science and Technology, North-West University, Mmabatho, South Africa
| | - Olubukola O. Babalola
- Department of Biological Sciences, Faculty of Agriculture, Science and Technology, North-West University, Mmabatho, South Africa
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North-West University, Mmabatho, South Africa
| |
Collapse
|
23
|
Li HY, Luo Y, Zhang XS, Shi WL, Gong ZT, Shi M, Chen LL, Chen XL, Zhang YZ, Song XY. Trichokonins from Trichoderma pseudokoningii SMF2 induce resistance against Gram-negative Pectobacterium carotovorum subsp. carotovorum in Chinese cabbage. FEMS Microbiol Lett 2014; 354:75-82. [PMID: 24655217 DOI: 10.1111/1574-6968.12427] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/26/2014] [Accepted: 03/14/2014] [Indexed: 11/30/2022] Open
Abstract
Peptaibols, mainly produced by Trichoderma, play a pivotal role in controlling plant disease caused by fungi, virus, and Gram-positive bacteria. In the current study, we evaluated the control effect of Trichokonins, antimicrobial peptaibols from Trichoderma pseudokoningii SMF2, on soft rot disease of Chinese cabbage caused by a Gram-negative bacterium Pectobacterium carotovorum subsp. carotovorum and analyzed the mechanism involved. Trichokonins treatment (0.3 mg L(-1) ) enhanced the resistance of Chinese cabbage against Pcc infection. However, Trichokonins could hardly inhibit the growth of Pcc in vitro, even at high concentration (500 mg L(-1) ). Therefore, the direct effect of Trichokonins on Pcc may not the main reason why Trichokonins could control soft rot of Chinese cabbage. Trichokonin treatment led to an obvious increase in the production of reactive oxygen species hydrogen peroxide and superoxide radical, a significant enhance of the activities of pathogenesis-related enzymes catalase, polyphenoloxidase and peroxidase, and upregulation of the expression of salicylic acid - responsive pathogenesis-related protein gene acidic PR-1a in Chinese cabbage. These results indicate that Trichokonins induce resistance in Chinese cabbage against Pcc infection through the activation of salicylic acid signaling pathway, which imply the potential of Trichoderma and peptaibols in controlling plant disease caused by Gram-negative bacteria.
Collapse
Affiliation(s)
- Hai-Yun Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, China; Department of Horticulture, College of Agriculture, Liaocheng University, Liaocheng, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|