1
|
Chi G, Cao X, Li Q, Yao C, Lu F, Liu Y, Cao M, He N. Computationally Guided Enzymatic Studies on Schizochytrium-Sourced Malonyl-CoA:ACP Transacylase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13922-13934. [PMID: 36264009 DOI: 10.1021/acs.jafc.2c05447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The malonyl-CoA:ACP transacylase (MAT) domain is responsible for the selection and incorporation of malonyl building blocks in the biosynthesis of polyunsaturated fatty acids (PUFAs) in eukaryotic microalgae (Schizochytrium) and marine bacteria (Moritella marina, Photobacterium profundum, and Shewanella). Elucidation of the structural basis underlying the substrate specificity and catalytic mechanism of the MAT will help to improve the yield and quality of PUFAs. Here, a methodology guided by molecular dynamics simulations was carried out to identify and mutate specificity-conferring residues within the MAT domain of Schizochytrium. Combining mutagenesis, cell-free protein synthesis, and in vitro biochemical assay, we dissected nearby interactions and molecular mechanisms relevant for binding and catalysis and found that the reorientation of the Ser154 Cβ-Oγ bond establishes distinctive proton-transfer chains (His153-Ser154 and Asn235-His153-Ser154) for catalysis. Gln66 can be replaced by tyrosine to shorten the distance between His153 (Nε2) and Ser154 (Oγ), which facilitates a faster proton-transfer rate, allowing better use of acyl substrates than the wild type. Furthermore, we screened a mutant that displayed an 18.4% increase in PUFA accumulation. These findings provide important insights into the study of MAT through protein engineering and will benefit dissecting the molecular mechanisms of other PUFA-related catalytic domains.
Collapse
Affiliation(s)
- Guoxiang Chi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Xingyu Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Qi Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Chuanyi Yao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Chi G, Xu Y, Cao X, Li Z, Cao M, Chisti Y, He N. Production of polyunsaturated fatty acids by Schizochytrium (Aurantiochytrium) spp. Biotechnol Adv 2021; 55:107897. [PMID: 34974158 DOI: 10.1016/j.biotechadv.2021.107897] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/05/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
Diverse health benefits are associated with dietary consumption of omega-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFA), particularly docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Traditionally, these fatty acids have been obtained from fish oil, but limited supply, variably quality, and an inability to sustainably increase production for a rapidly growing market, are driving the quest for alternative sources. DHA derived from certain marine protists (heterotrophic thraustochytrids) already has an established history of commercial production for high-value dietary use, but is too expensive for use in aquaculture feeds, a much larger potential market for ω-3 LC-PUFA. Sustainable expansion of aquaculture is prevented by its current dependence on wild-caught fish oil as the source of ω-3 LC-PUFA nutrients required in the diet of aquacultured animals. Although several thraustochytrids have been shown to produce DHA and EPA, there is a particular interest in Schizochytrium spp. (now Aurantiochytrium spp.), as some of the better producers. The need for larger scale production has resulted in development of many strategies for improving productivity and production economics of ω-3 PUFA in Schizochytrium spp. Developments in fermentation technology and metabolic engineering for enhancing LC-PUFA production in Schizochytrium spp. are reviewed.
Collapse
Affiliation(s)
- Guoxiang Chi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Yiyuan Xu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Xingyu Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Zhipeng Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361000, China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| | - Yusuf Chisti
- School of Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
3
|
Li J, Zhou H, Pan X, Li Z, Lu Y, He N, Meng T, Yao C, Chen C, Ling X. The role of fluconazole in the regulation of fatty acid and unsaponifiable matter biosynthesis in Schizochytrium sp. MYA 1381. BMC Microbiol 2019; 19:256. [PMID: 31729956 PMCID: PMC6858700 DOI: 10.1186/s12866-019-1622-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 10/23/2019] [Indexed: 12/01/2022] Open
Abstract
Background Schizochytrium has been widely used in industry for synthesizing polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA). However, unclear biosynthesis pathway of PUFAs inhibits further production of the Schizochytrium. Unsaponifiable matter (UM) from mevalonate pathway is crucial to cell growth and intracellular metabolism in all higher eukaryotes and microalgae. Therefore, regulation of UM biosynthesis in Schizochytrium may have important effects on fatty acids synthesis. Moreover, it is well known that UMs, such as squalene and β-carotene, are of great commercial value. Thus, regulating UM biosynthesis may also allow for an increased valuation of Schizochytrium. Results To investigate the correlation of UM biosynthesis with fatty acids accumulation in Schizochytrium, fluconazole was used to block the sterols pathway. The addition of 60 mg/L fluconazole at 48 h increased the total lipids (TLs) at 96 h by 16% without affecting cell growth, which was accompanied by remarkable changes in UMs and NADPH. Cholesterol content was reduced by 8%, and the squalene content improved by 45% at 72 h, which demonstrated fluconazole’s role in inhibiting squalene flow to cholesterol. As another typical UM with antioxidant capacity, the β-carotene production was increased by 53% at 96 h. The increase of squalene and β-carotene could boost intracellular oxidation resistance to protect fatty acids from oxidation. The NADPH was found to be 33% higher than that of the control at 96 h, which meant that the cells had more reducing power for fatty acid synthesis. Metabolic analysis further confirmed that regulation of sterols was closely related to glucose absorption, pigment biosynthesis and fatty acid production in Schizochytrium. Conclusion This work first reported the effect of UM biosynthesis on fatty acid accumulation in Schizochytrium. The UM was found to affect fatty acid biosynthesis by changing cell membrane function, intracellular antioxidation and reducing power. We believe that this work provides valuable insights in improving PUFA and other valuable matters in microalgae.
Collapse
Affiliation(s)
- Jun Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Hao Zhou
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Xueshan Pan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Zhipeng Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.,Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, Fujian, People's Republic of China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.,The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Tong Meng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Chuanyi Yao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.,The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Cuixue Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Xueping Ling
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China. .,The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
4
|
Ramos-Vega A, Rosales-Mendoza S, Bañuelos-Hernández B, Angulo C. Prospects on the Use of Schizochytrium sp. to Develop Oral Vaccines. Front Microbiol 2018; 9:2506. [PMID: 30410471 PMCID: PMC6209683 DOI: 10.3389/fmicb.2018.02506] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022] Open
Abstract
Although oral subunit vaccines are highly relevant in the fight against widespread diseases, their high cost, safety and proper immunogenicity are attributes that have yet to be addressed in many cases and thus these limitations should be considered in the development of new oral vaccines. Prominent examples of new platforms proposed to address these limitations are plant cells and microalgae. Schizochytrium sp. constitutes an attractive expression host for vaccine production because of its high biosynthetic capacity, fast growth in low cost culture media, and the availability of processes for industrial scale production. In addition, whole Schizochytrium sp. cells may serve as delivery vectors; especially for oral vaccines since Schizochytrium sp. is safe for oral consumption, produces immunomodulatory compounds, and may provide bioencapsulation to the antigen, thus increasing its bioavailability. Remarkably, Schizochytrium sp. was recently used for the production of a highly immunoprotective influenza vaccine. Moreover, an efficient method for transient expression of antigens based on viral vectors and Schizochytrium sp. as host has been recently developed. In this review, the potential of Schizochytrium sp. in vaccinology is placed in perspective, with emphasis on its use as an attractive oral vaccination vehicle.
Collapse
Affiliation(s)
- Abel Ramos-Vega
- Grupo de Inmunología and Vacunología, Centro de Investigaciones Biológicas del Noroeste, La Paz, Mexico
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.,Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | - Carlos Angulo
- Grupo de Inmunología and Vacunología, Centro de Investigaciones Biológicas del Noroeste, La Paz, Mexico
| |
Collapse
|
5
|
Li Z, Meng T, Ling X, Li J, Zheng C, Shi Y, Chen Z, Li Z, Li Q, Lu Y, He N. Overexpression of Malonyl-CoA: ACP Transacylase in Schizochytrium sp. to Improve Polyunsaturated Fatty Acid Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5382-5391. [PMID: 29722541 DOI: 10.1021/acs.jafc.8b01026] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) have been widely applied in the food and medical industry. In this study, malonyl-CoA: ACP transacylase (MAT) was overexpressed through homologous recombination to improve PUFA production in Schizochytrium. The results showed that the lipid and PUFA concentration were increased by 10.1 and 24.5% with MAT overexpression, respectively. Metabolomics analysis revealed that the intracellular tricarboxylic acid cycle was weakened and glucose absorption was accelerated in the engineered strain. In the mevalonate pathway, intracellular carotene content was decreased, and the carbon flux was then redirected toward PUFA synthesis. Furthermore, a glucose fed-batch fermentation was finally performed with the engineered Schizochytrium. The total lipid yield was further increased to 110.5 g/L, 39.6% higher than the wild strain. Docosahexaenoic acid and eicosapentaenoic acid yield were enhanced to 47.39 g/L and 1.65 g/L with an increase of 81.5 and 172.5%, respectively. This study provided an effective metabolic engineering strategy for industrial PUFA production.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Tong Meng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Xueping Ling
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Jun Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Chuqiang Zheng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Yanyan Shi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Zhen Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Zhenqi Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- College of Food and Biological Engineering , Jimei University , Xiamen , P. R. China
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| |
Collapse
|
6
|
Chen JW, Liu WJ, Hu DX, Wang X, Balamurugan S, Alimujiang A, Yang WD, Liu JS, Li HY. Identification of a malonyl CoA-acyl carrier protein transacylase and its regulatory role in fatty acid biosynthesis in oleaginous microalga Nannochloropsis oceanica. Biotechnol Appl Biochem 2017; 64:620-626. [DOI: 10.1002/bab.1531] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/25/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Jia-Wen Chen
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes; College of Life Science; Jinan University; Guangzhou People's Republic of China
| | - Wan-Jun Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes; College of Life Science; Jinan University; Guangzhou People's Republic of China
| | - Dong-Xiong Hu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes; College of Life Science; Jinan University; Guangzhou People's Republic of China
| | - Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes; College of Life Science; Jinan University; Guangzhou People's Republic of China
| | - Srinivasan Balamurugan
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes; College of Life Science; Jinan University; Guangzhou People's Republic of China
| | - Adili Alimujiang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes; College of Life Science; Jinan University; Guangzhou People's Republic of China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes; College of Life Science; Jinan University; Guangzhou People's Republic of China
| | - Jie-Sheng Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes; College of Life Science; Jinan University; Guangzhou People's Republic of China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes; College of Life Science; Jinan University; Guangzhou People's Republic of China
| |
Collapse
|
7
|
Wang Z, Lou S, Hu F, Wu P, Yang L, Li H, He L, Lin X. Complete mitochondrial genome of a DHA-rich protist Schizochytrium sp. TIO1101. MITOCHONDRIAL DNA PART B-RESOURCES 2016; 1:126-127. [PMID: 33473432 PMCID: PMC7799850 DOI: 10.1080/23802359.2016.1144090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Schizochytrium sp. TIO1101 is a crucial commercial alga used to produce docosahexaenoic acid (DHA), a long-chain polyunsaturated fatty acid that is beneficial for human health. In this study, we sequenced the mitochondrial genome (mitogenome) of Schizochytrium sp. TIO1101 for the first time using an Illumina HiSeq 2500 system (Illumina Inc., San Deigo, CA). The assembled mitogenome was 31 494 bp long with 33.92% GC content. The mitogenome contains 56 genes, including 33 protein-coding genes, 21 transfer RNA genes and two ribosomal RNA genes. Maximum-likelihood phylogenetic analysis of Schizochytrium sp. TIO1101 showed that it was most closely related to Thraustochytrium aureum among the examined species.
Collapse
Affiliation(s)
- Zhaokai Wang
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Sulin Lou
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Fan Hu
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Peng Wu
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Longhe Yang
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Huanqin Li
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Lijuan He
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Xiangzhi Lin
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| |
Collapse
|
8
|
Mechanisms of fatty acid synthesis in marine fungus-like protists. Appl Microbiol Biotechnol 2015; 99:8363-75. [DOI: 10.1007/s00253-015-6920-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/30/2015] [Accepted: 08/04/2015] [Indexed: 01/10/2023]
|
9
|
Sun H, Chen H, Zang X, Hou P, Zhou B, Liu Y, Wu F, Cao X, Zhang X. Application of the Cre/loxP Site-Specific Recombination System for Gene Transformation in Aurantiochytrium limacinum. Molecules 2015; 20:10110-21. [PMID: 26039334 PMCID: PMC6272215 DOI: 10.3390/molecules200610110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/08/2015] [Accepted: 05/21/2015] [Indexed: 12/14/2022] Open
Abstract
The Cre/loxP site-specific recombination system was applied to Aurantiochytrium limacinum to obtain a transformant without the antibiotic resistance marker gene. First, the enhanced green fluorescent protein gene (egfp) and chloramphenicol resistance gene (Cmr), along with the two loxP loci, were integrated into the genome of A. limacinum OUC88 using 18S rDNA sequences as the homologous recombination sites. Then plasmid pSH65, containing a zeocin resistance gene (Bler) was transferred into A. limacinum OUC_CG. After induction with galactose, repeated passage in culture and PCR-based assessment, the pSH65 plasmid was lost and A. limacinum OUC_EG host was shown to no longer have resistance to 100 mg chloramphenicol/L or 5 mg zeocin/L. Through southern blotting and fluorescence detection, egfp was found to be integrated into the genome of A. limacinum OUC_EG, and EGFP was successfully expressed in the cells. The successful application of the Cre/loxP system demonstrates an experimental basis for genetic modification of A. limacinum so as to obtain transformed strains with no antibiotic resistance marker genes.
Collapse
Affiliation(s)
- Hengyi Sun
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Hao Chen
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Xiaonan Zang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Pan Hou
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Bingbing Zhou
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Yuantao Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Fei Wu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Xiaofei Cao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Xuecheng Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
10
|
Beld J, Lee DJ, Burkart MD. Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering. MOLECULAR BIOSYSTEMS 2015; 11:38-59. [PMID: 25360565 PMCID: PMC4276719 DOI: 10.1039/c4mb00443d] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field.
Collapse
Affiliation(s)
- Joris Beld
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| | | | | |
Collapse
|
11
|
Tian J, Zheng M, Yang G, Zheng L, Chen J, Yang B. Cloning and stress-responding expression analysis of malonyl CoA-acyl carrier protein transacylase gene of Nannochloropsis gaditana. Gene 2013; 530:33-8. [DOI: 10.1016/j.gene.2013.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/11/2013] [Accepted: 08/02/2013] [Indexed: 11/25/2022]
|