1
|
El-Gendy MMAA, Yahya SMM, Hamed AR, El-Bondkly AMA. Assessment of the phylogenetic analysis and antimicrobial, antiviral, and anticancer activities of marine endophytic Streptomyces species of the soft coral Sarcophyton convolutum. Int Microbiol 2021; 25:133-152. [PMID: 34427819 DOI: 10.1007/s10123-021-00204-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
In the present work, the extensive biological activities of marine endophytic Streptomyces strains isolated from marine soft coral Sarcophyton convolutum have been demonstrated. Within fifty-one Streptomyces isolates evaluated for their hydrolytic enzymes and enzyme inhibitors productivities, six isolates showed the hyperactivities. Pharmaceutical metabolites productivities evaluated include enzymes (alkaline protease, L-asparaginase, L-glutaminase, tyrosinase, and L-methioninase) and enzyme inhibitors (inhibitors of α-amylase, hyaluronidase, β-lactamase, α-glucosidase, and β-glucosidase). These isolates were identified based on their morphological, biochemical, and genetic characteristics as Streptomyces sp. MORSY 17, Streptomyces sp. MORSY 22, Streptomyces sp. MORSY 25, Streptomyces sp. MORSY 36, Streptomyces sp. MORSY 45, and Streptomyces sp. MORSY 50. Moreover, in further evaluation, these strains exhibited wide spectrum of antimicrobial (against bacteria and fungi), antiviral (against hepatitis C virus), antibiofilm against biofilm-forming bacteria (methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas species), and anti-proliferative activities (against liver and colon carcinoma cell lines). The GC-MS analysis of the hyperactive strains MORSY 17 and MORSY 22 revealed the presence of different bioactive agents in the ethyl acetate extract of both strains.
Collapse
Affiliation(s)
| | - Shaymaa M M Yahya
- Hormones Department, Medical Research Division, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Ahmed R Hamed
- Chemistry of Medicinal Plants Department and Biology Unit, Central Lab for the Pharmaceutical and Drug Industries Research Division, National Research Centre, 33 El-Bohouth St, Dokki, 12622, Giza, Egypt
| | | |
Collapse
|
2
|
Musiol-Kroll EM, Tocchetti A, Sosio M, Stegmann E. Challenges and advances in genetic manipulation of filamentous actinomycetes - the remarkable producers of specialized metabolites. Nat Prod Rep 2019; 36:1351-1369. [PMID: 31517370 DOI: 10.1039/c9np00029a] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to February 2019Actinomycetes are Gram positive bacteria of the phylum Actinobacteria. These organisms are one of the most important sources of structurally diverse, clinically used antibiotics and other valuable bioactive products, as well as biotechnologically relevant enzymes. Most strains were discovered by their ability to produce a given molecule and were often poorly characterized, physiologically and genetically. The development of genetic methods for Streptomyces and related filamentous actinomycetes has led to the successful manipulation of antibiotic biosynthesis to attain structural modification of microbial metabolites that would have been inaccessible by chemical means and improved production yields. Moreover, genome mining reveals that actinomycete genomes contain multiple biosynthetic gene clusters (BGCs), however only a few of them are expressed under standard laboratory conditions, leading to the production of the respective compound(s). Thus, to access and activate the so-called "silent" BGCs, to improve their biosynthetic potential and to discover novel natural products methodologies for genetic manipulation are required. Although different methods have been applied for many actinomycete strains, genetic engineering is still remaining very challenging for some "underexplored" and poorly characterized actinomycetes. This review summarizes the strategies developed to overcome the obstacles to genetic manipulation of actinomycetes and allowing thereby rational genetic engineering of this industrially relevant group of microorganisms. At the end of this review we give some tips to researchers with limited or no previous experience in genetic manipulation of actinomycetes. The article covers the most relevant literature published until February 2019.
Collapse
Affiliation(s)
- Ewa M Musiol-Kroll
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, Auf der Morgenstelle 28, Tübingen, 72076, Germany.
| | | | | | - Evi Stegmann
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, Auf der Morgenstelle 28, Tübingen, 72076, Germany.
| |
Collapse
|
3
|
Vidmar B, Vodovnik M. Microbial Keratinases: Enzymes with Promising Biotechnological Applications. Food Technol Biotechnol 2018; 56:312-328. [PMID: 30510475 PMCID: PMC6233012 DOI: 10.17113/ftb.56.03.18.5658] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Keratin is a complex and structurally stable protein found in human and animal hard tissues, such as feathers, wool, hair, hoof and nails. Some of these, like feathers and wool, represent one of the main sources of protein-rich waste with significant potential to be transformed into value-added products such as feed, fertilizers or bioenergy. A major limitation impeding valorization of keratinous substrates is their recalcitrant structure and resistance to hydrolysis by common proteases. However, specialized keratinolytic enzymes produced by some microorganisms can efficiently degrade these substrates. Keratinases have already found a purpose in pharmaceutical, textile and leather industries. However, their wider implementation in other processes, such as cost-effective (pre)treatment of poultry waste, still requires optimization of production and performance of the available enzymes. Here we present a comprehensive review covering molecular properties and characteristics of keratinases, their classification, traditional and novel approaches in discovery of novel enzymes, production, characterization, improvement and biotechnological applications.
Collapse
Affiliation(s)
- Beti Vidmar
- Chair of Microbiology and Microbial Biotechnology, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3,
SI-1230 Domžale, Slovenia
| | - Maša Vodovnik
- Chair of Microbiology and Microbial Biotechnology, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3,
SI-1230 Domžale, Slovenia
| |
Collapse
|
4
|
Latha S, Sivaranjani G, Dhanasekaran D. Response surface methodology: A non-conventional statistical tool to maximize the throughput of Streptomyces species biomass and their bioactive metabolites. Crit Rev Microbiol 2017; 43:567-582. [PMID: 28129718 DOI: 10.1080/1040841x.2016.1271308] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Among diverse actinobacteria, Streptomyces is a renowned ongoing source for the production of a large number of secondary metabolites, furnishing immeasurable pharmacological and biological activities. Hence, to meet the demand of new lead compounds for human and animal use, research is constantly targeting the bioprospecting of Streptomyces. Optimization of media components and physicochemical parameters is a plausible approach for the exploration of intensified production of novel as well as existing bioactive metabolites from various microbes, which is usually achieved by a range of classical techniques including one factor at a time (OFAT). However, the major drawbacks of conventional optimization methods have directed the use of statistical optimization approaches in fermentation process development. Response surface methodology (RSM) is one of the empirical techniques extensively used for modeling, optimization and analysis of fermentation processes. To date, several researchers have implemented RSM in different bioprocess optimization accountable for the production of assorted natural substances from Streptomyces in which the results are very promising. This review summarizes some of the recent RSM adopted studies for the enhanced production of antibiotics, enzymes and probiotics using Streptomyces with the intention to highlight the significance of Streptomyces as well as RSM to the research community and industries.
Collapse
Affiliation(s)
- Selvanathan Latha
- a Bioprocess Technology Laboratory, Department of Microbiology , School of Life Sciences, Bharathidasan University , Tiruchirappalli , Tamil Nadu , India
| | - Govindhan Sivaranjani
- a Bioprocess Technology Laboratory, Department of Microbiology , School of Life Sciences, Bharathidasan University , Tiruchirappalli , Tamil Nadu , India
| | - Dharumadurai Dhanasekaran
- a Bioprocess Technology Laboratory, Department of Microbiology , School of Life Sciences, Bharathidasan University , Tiruchirappalli , Tamil Nadu , India.,b Department of Molecular, Cellular and Biomedical Sciences , University of New Hampshire , Durham , USA
| |
Collapse
|
5
|
Chuprom J, Bovornreungroj P, Ahmad M, Kantachote D, Enomoto T. Statistical optimization for the improved production of an extracellular alkaline nuclease by halotolerant Allobacillus halotolerans MSP69: Scale-up approach and its potential as flavor enhancer of fish sauce. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Hameş EE, Demir T. Microbial ribonucleases (RNases): production and application potential. World J Microbiol Biotechnol 2015; 31:1853-62. [PMID: 26433394 DOI: 10.1007/s11274-015-1945-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/07/2015] [Indexed: 01/15/2023]
Abstract
Ribonuclease (RNase) is hydrolytic enzyme that catalyzes the cleavage of phosphodiester bonds in RNA. RNases play an important role in the metabolism of cellular RNAs, such as mRNA and rRNA or tRNA maturation. Besides their cellular roles, RNases possess biological activity, cell stimulating properties, cytotoxicity and genotoxicity. Cytotoxic effect of particular microbial RNases was comparable to that of animal derived counterparts. In this respect, microbial RNases have a therapeutic potential as anti-tumor drugs. The significant development of DNA vaccines and the progress of gene therapy trials increased the need for RNases in downstream processes. In addition, RNases are used in different fields, such as food industry for single cell protein preparations, and in some molecular biological studies for the synthesis of specific nucleotides, identifying RNA metabolism and the relationship between protein structure and function. In some cases, the use of bovine or other animal-derived RNases have increased the difficulties due to the safety and regulatory issues. Microbial RNases have promising potential mainly for pharmaceutical purposes as well as downstream processing. Therefore, an effort has been given to determination of optimum fermentation conditions to maximize RNase production from different bacterial and fungal producers. Also immobilization or strain development experiments have been carried out.
Collapse
Affiliation(s)
- E Esin Hameş
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Bornova, Izmir, Turkey.
| | - Tuğçe Demir
- Department of Chemical Engineering, Kocaeli University, Umut Tepe Yerleşkesi, 41380, Kocaeli, Turkey
| |
Collapse
|
7
|
Shivlata L, Satyanarayana T. Thermophilic and alkaliphilic Actinobacteria: biology and potential applications. Front Microbiol 2015; 6:1014. [PMID: 26441937 PMCID: PMC4585250 DOI: 10.3389/fmicb.2015.01014] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/07/2015] [Indexed: 11/13/2022] Open
Abstract
Microbes belonging to the phylum Actinobacteria are prolific sources of antibiotics, clinically useful bioactive compounds and industrially important enzymes. The focus of the current review is on the diversity and potential applications of thermophilic and alkaliphilic actinobacteria, which are highly diverse in their taxonomy and morphology with a variety of adaptations for surviving and thriving in hostile environments. The specific metabolic pathways in these actinobacteria are activated for elaborating pharmaceutically, agriculturally, and biotechnologically relevant biomolecules/bioactive compounds, which find multifarious applications.
Collapse
|
8
|
Li RF, Wang B, Liu S, Chen SH, Yu GH, Yang SY, Huang L, Yin YL, Lu ZF. Optimization of the Expression Conditions of CGA-N46 in Bacillus subtilis DB1342(p-3N46) by Response Surface Methodology. Interdiscip Sci 2015; 8:277-83. [PMID: 26341498 PMCID: PMC4982894 DOI: 10.1007/s12539-015-0115-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/04/2015] [Accepted: 01/30/2015] [Indexed: 12/12/2022]
Abstract
CGA-N46 is a small antifungal-derived peptide and consists of the 31st–76th amino acids of the N-terminus of human chromogranin A. Polycistronic expression of recombinant CGA-N46 in Bacillus subtilis DB1342 was used to improve its production, but the yield of CGA-N46 was still low. In the present study, response surface methodology (RSM) was used to optimize culture medium composition and growth conditions of the engineered strain B. subtilis DB1342(p-3N46) for the further increase in CGA-N46 yield. The results of two-level factorial experiments indicated that dextrin and tryptone were significant factors affecting CGA-N46 expression. Central composite design (CCD) was used to determine the ideal conditions of each significant factors. From the results of CCD, the optimal medium composition was predicted to be dextrin 16.6 g/L, tryptone 19.2 g/L, KH2PO4·H2O 6 g/L, pH 6.5. And the optimal culture process indicated inoculation of B. subtilis DB1342(p-3N46) seed culture into fresh culture medium at 5 % (v/v), followed by expression of CGA-N46 for 56 hours at 30 °C induced by 2 % (v/v) sucrose after one hour of shaking culture. To test optimal CGA-N46 peptide expression, the yeast growth inhibition assay was employed and it was found that under optimal culture conditions, CGA-N46 inhibited the growth of Candida albican by 42.17, 30.86 % more than that in the pre-optimization conditions. In summary, RSM can be used to optimize expression conditions of CGA-N46 in engineered strains B. subtilis DB1342(p-3N46).
Collapse
Affiliation(s)
- Rui-Fang Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| | - Bin Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Shuai Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Shi-Hua Chen
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Guang-Hai Yu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Shuo-Ye Yang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Liang Huang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yan-Li Yin
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Zhi-Fang Lu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| |
Collapse
|
9
|
Li RF, Wang B, Liu S, Chen SH, Yu GH, Yang SY, Huang L, Yin YL, Lu ZF. Optimization of the expression conditions of CGA-N46 in Bacillus subtilis DB1342(p-3N46) by response surface methodology. Interdiscip Sci 2015. [PMID: 25682381 DOI: 10.1007/s12539-014-0250-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/04/2015] [Accepted: 01/30/2015] [Indexed: 09/29/2022]
Abstract
CGA-N46 is a small antifungal derived peptide and consists of the 31st to 76th amino acids of the N-terminus of human chromogranin A. Polycistronic expression of recombinant CGA-N46 in Bacillus subtilis DB1342 was used to improve its production, but the yield of CGA-N46 was still low. In the present study, response surface methodology (RSM) was used to optimize culture medium composition and growth conditions of the engineered strain B. subtilis DB1342(p-3N46) for the further increase of CGA-N46 yield. The results of two-level factorial experiments indicated that dextrin and tryptone were significant factors affecting CGA-N46 expression. Central composite design (CCD) was used to determine the ideal conditions of each significant factors. From the results of CCD, the optimal medium composition was predicted to be dextrin 16.6 g/L, tryptone 19.2 g/L, KH2PO4·3H2O 6 g/L, pH 6.5. And the optimal culture process was indicated that B. subtilis DB1342(p-3N46) seed culture was inoculated into fresh culture medium at 5% (v/v), followed by expression of CGA-N46 for 56 hours at 30°C induced by 2% (v/v) sucrose after one hour of shaking culture. To test optimal CGA-N46 peptide expression, the yeast growth inhibition assay was employed and it was found that under optimal culture conditions, CGA-N46 inhibited the growth of C. albican by 42.17%, 30.86% more than that in the pre-optimization conditions. In summary, RSM can be used to optimize expression conditions of CGA-N46 in engineered strains B. subtilis DB1342(p-3N46).
Collapse
Affiliation(s)
- Rui-Fang Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Li W, Ng KY, Heng PWS. Development and evaluation of optimized sucrose ester stabilized oleanolic acid nanosuspensions prepared by wet ball milling with design of experiments. Biol Pharm Bull 2015; 37:926-37. [PMID: 24882406 DOI: 10.1248/bpb.b13-00864] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to develop optimized sucrose ester (SE) stabilized oleanolic acid (OA) nanosuspensions (NS) for enhanced delivery via wet ball milling by design of experiments (DOE). In this study, SEOA NS batches were prepared by wet ball milling method. Mean particle sizes and polydispersity indices were determined using a nanosizer. The percent encapsulation efficiency, saturation solubility and in vitro dissolution rate were obtained with analyses using HPLC. Preparation methods were optimized by DOE using the Minitab software. The in vitro bioefficacy was obtained by methyl thiazolyl tetrazolium (MTT) measurements in A549 human non small cell lung cancer cell line. The in vivo pharmacokinetics profile was determined using LC-electrospray ionization (ESI)-MS/MS. The study produced spherical SEOA NS particles (ca. 100 nm in diameter) which were found to be able to increase OA saturation solubility considerably. Optimized SEOA-GBD NS (milled at 600 rpm for 3 h, sucrose monolaurate (SEL) : sucrose monopalmitate (SEP) at 9 : 1, w/w; SE : OA at 1 : 1, w/w) was found to be physically stable over 14 d at 4°C. The NS showed much higher dissolution rate, cytotoxicity and bioavailability when compared with the free drug. Thus, the prepared OA as SE stabilized NS particles by wet ball milling enhanced the saturation solubility, in vitro dissolution rate, bioefficacy and in vivo bioavailability of OA. The use of sugar esters may also be potentially applied to other hydrophobic drugs.
Collapse
Affiliation(s)
- Wenji Li
- Department of Pharmacy, National University of Singapore
| | | | | |
Collapse
|