1
|
Bugyna L, Kendra S, Bujdáková H. Galleria mellonella-A Model for the Study of aPDT-Prospects and Drawbacks. Microorganisms 2023; 11:1455. [PMID: 37374956 PMCID: PMC10301295 DOI: 10.3390/microorganisms11061455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Galleria mellonella is a promising in vivo model insect used for microbiological, medical, and pharmacological research. It provides a platform for testing the biocompatibility of various compounds and the kinetics of survival after an infection followed by subsequent treatment, and for the evaluation of various parameters during treatment, including the host-pathogen interaction. There are some similarities in the development of pathologies with mammals. However, a limitation is the lack of adaptive immune response. Antimicrobial photodynamic therapy (aPDT) is an alternative approach for combating microbial infections, including biofilm-associated ones. aPDT is effective against Gram-positive and Gram-negative bacteria, viruses, fungi, and parasites, regardless of whether they are resistant to conventional treatment. The main idea of this comprehensive review was to collect information on the use of G. mellonella in aPDT. It provides a collection of references published in the last 10 years from this area of research, complemented by some practical experiences of the authors of this review. Additionally, the review summarizes in brief information on the G. mellonella model, its advantages and methods used in the processing of material from these larvae, as well as basic knowledge of the principles of aPDT.
Collapse
Affiliation(s)
| | | | - Helena Bujdáková
- Faculty of Natural Sciences, Department of Microbiology and Virology, Comenius University in Bratislava, Ilkovicova 6, 84215 Bratislava, Slovakia; (L.B.); (S.K.)
| |
Collapse
|
2
|
Liao C, Huang R, Yang Y, Huang Y, Zhang K, Ma L, Li T, Wang L, Zhang H, Li B. Effects of insecticidal proteins of Enterobacter cloacae NK on cellular immunity of Galleria mellonella larvae. Front Microbiol 2023; 14:1154811. [PMID: 37228380 PMCID: PMC10203167 DOI: 10.3389/fmicb.2023.1154811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
Enterobacter cloacae produces insecticidal proteins capable of causing toxicity in pests, but the insecticidal mechanisms of these proteins for insect control remain unclear. To elucidate the mechanisms, the purified insecticidal protein from E. cloacae NK was administered to Galleria mellonella larvae either by intraperitoneal injection or by feeding. The number of hemocytes, apoptosis in immune cells, and polyphenol oxidase (PO) activity of G. mellonella larvae were detected by hemocytometer, Annexin V-FITC/PI, and UV-vis spectrophotometer, respectively. With the extension of the invasion time of NK insecticidal protein, the number of hemocytes in G. mellonella larvae decreased significantly (p < 0.05), whereas the apoptosis rate of hemocytes increased. The activity of PO showed a trend of rising-peak-sharp decline and the melanization reaction was deepened simultaneously. Moreover, the phagocytosis and coating capabilities of hemocytes decreased, and the intraperitoneal injection method was more effective than the feeding method. Taking together, the insecticidal protein of E. cloacae NK inhibits and destroys the cellular immune response of G. mellonella larvae, which suggests an important role in killing the host insect.
Collapse
Affiliation(s)
- Chunli Liao
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China
- Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, Henan, China
- Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Ran Huang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Yi Yang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Yapeng Huang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Kai Zhang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Liang Ma
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Taotao Li
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China
- Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, Henan, China
- Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Lianzhe Wang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China
- Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, Henan, China
- Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Huamin Zhang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China
- Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, Henan, China
- Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Bingbing Li
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China
- Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, Henan, China
- Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, Henan, China
| |
Collapse
|
3
|
Abd-Elgawad MMM. Xenorhabdus spp.: An Overview of the Useful Facets of Mutualistic Bacteria of Entomopathogenic Nematodes. Life (Basel) 2022; 12:1360. [PMID: 36143397 PMCID: PMC9503066 DOI: 10.3390/life12091360] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 12/17/2022] Open
Abstract
Mounting concern over the misuse of chemical pesticides has sparked broad interest for safe and effective alternatives to control plant pests and pathogens. Xenorhabdus bacteria, as pesticidal symbionts of the entomopathogenic nematodes Steinernema species, can contribute to this solution with a treasure trove of insecticidal compounds and an ability to suppress a variety of plant pathogens. As many challenges face sound exploitation of plant-phytonematode interactions, a full useful spectrum of such interactions should address nematicidal activity of Xenorhabdus. Steinernema-Xenorhabdus complex or Xenorhabdus individually should be involved in mechanisms underlying the favorable side of plant-nematode interactions in emerging cropping systems. Using Xenorhabdus bacteria should earnestly be harnessed to control not only phytonematodes, but also other plant pests and pathogens within integrated pest management plans. This review highlights the significance of fitting Xenorhabdus-obtained insecticidal, nematicidal, fungicidal, acaricidal, pharmaceutical, antimicrobial, and toxic compounds into existing, or arising, holistic strategies, for controlling many pests/pathogens. The widespread utilization of Xenorhabdus bacteria, however, has been slow-going, due to costs and some issues with their commercial processing. Yet, advances have been ongoing via further mastering of genome sequencing, discovering more of the beneficial Xenorhabdus species/strains, and their successful experimentations for pest control. Their documented pathogenicity to a broad range of arthropods and pathogens and versatility bode well for useful industrial products. The numerous beneficial traits of Xenorhabdus bacteria can facilitate their integration with other tactics for better pest/disease management programs.
Collapse
Affiliation(s)
- Mahfouz M M Abd-Elgawad
- Plant Pathology Department, Agricultural and Biological Research Division, National Research Centre, El-Behooth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
4
|
Natural products from Photorhabdus and Xenorhabdus: mechanisms and impacts. Appl Microbiol Biotechnol 2022; 106:4387-4399. [PMID: 35723692 DOI: 10.1007/s00253-022-12023-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/21/2022]
Abstract
Insects and fungal pathogens pose constant problems to public health and agriculture, especially in resource-limited parts of the world; and the use of chemical pesticides continues to be the main methods for the control of these organisms. Photorhabdus spp. and Xenorhabdus spp., (Fam; Morganellaceae), enteric symbionts of Steinernema, and Heterorhabditis nematodes are naturally found in soil on all continents, except Antarctic, and on many islands throughout the world. These bacteria produce diverse secondary metabolites that have important biological and ecological functions. Secondary metabolites include non-ribosomal peptides, polyketides, and/or hybrid natural products that are synthesized using polyketide synthetase (PRS), non-ribosomal peptide synthetase (NRPS), or similar enzymes and are sources of new pesticide/drug compounds and/or can serve as lead molecules for the design and synthesize of new alternatives that could replace current ones. This review addresses the effects of these bacterial symbionts on insect pests, fungal phytopathogens, and animal pathogens and discusses the substances, mechanisms, and impacts on agriculture and public health. KEY POINTS: • Insects and fungi are a constant menace to agricultural and public health. • Chemical-based control results in resistance development. • Photorhabdus and Xenorhabdus are compelling sources of biopesticides.
Collapse
|
5
|
Wang H, Peng H, Li W, Cheng P, Gong M. The Toxins of Beauveria bassiana and the Strategies to Improve Their Virulence to Insects. Front Microbiol 2021; 12:705343. [PMID: 34512581 PMCID: PMC8430825 DOI: 10.3389/fmicb.2021.705343] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/27/2021] [Indexed: 01/18/2023] Open
Abstract
The long-term and excessive usage of pesticides is an enormous burden on the environment, which also increases pest resistance. To overcome this problem, research and application of entomopathogenic fungi, which are both environmentally friendly and cause lower resistance, have gained great momentum. Entomopathogenic fungi have a wide range of prospects. Apart from Bacillus thuringiensis, Beauveria bassiana is the most studied biopesticide. After invading insect hosts, B. bassiana produces a variety of toxins, which are secondary metabolites such as beauvericin, bassianin, bassianolide, beauverolides, tenellin, oosporein, and oxalic acid. These toxins help B. bassiana to parasitize and kill the hosts. This review unequivocally considers beauveria toxins highly promising and summarizes their attack mechanism(s) on the host insect immune system. Genetic engineering strategies to improve toxin principles, genes, or virulent molecules of B. bassiana have also been discussed. Lastly, we discuss the future perspective of Beauveria toxin research, including newly discovered toxins.
Collapse
Affiliation(s)
- Haiyang Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China.,College of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Hui Peng
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Wenjuan Li
- College of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Peng Cheng
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Maoqing Gong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| |
Collapse
|
6
|
Fourie KR, Wilson HL. Understanding GroEL and DnaK Stress Response Proteins as Antigens for Bacterial Diseases. Vaccines (Basel) 2020; 8:E773. [PMID: 33348708 PMCID: PMC7767184 DOI: 10.3390/vaccines8040773] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 01/16/2023] Open
Abstract
Bacteria do not simply express a constitutive panel of proteins but they instead undergo dynamic changes in their protein repertoire in response to changes in nutritional status and when exposed to different environments. These differentially expressed proteins may be suitable to use for vaccine antigens if they are virulence factors. Immediately upon entry into the host organism, bacteria are exposed to a different environment, which includes changes in temperature, osmotic pressure, pH, etc. Even when an organism has already penetrated the blood or lymphatics and it then enters another organ or a cell, it can respond to these new conditions by increasing the expression of virulence factors to aid in bacterial adherence, invasion, or immune evasion. Stress response proteins such as heat shock proteins and chaperones are some of the proteins that undergo changes in levels of expression and/or changes in cellular localization from the cytosol to the cell surface or the secretome, making them potential immunogens for vaccine development. Herein we highlight literature showing that intracellular chaperone proteins GroEL and DnaK, which were originally identified as playing a role in protein folding, are relocated to the cell surface or are secreted during invasion and therefore may be recognized by the host immune system as antigens. In addition, we highlight literature showcasing the immunomodulation effects these proteins can have on the immune system, also making them potential adjuvants or immunotherapeutics.
Collapse
Affiliation(s)
- Kezia R. Fourie
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada;
- Vaccine and Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), Saskatoon, SK S7N 5E3, Canada
| | - Heather L. Wilson
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada;
- Vaccine and Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), Saskatoon, SK S7N 5E3, Canada
| |
Collapse
|
7
|
Pereira MF, Rossi CC. Overview of rearing and testing conditions and a guide for optimizing Galleria mellonella breeding and use in the laboratory for scientific purposes. APMIS 2020; 128:607-620. [PMID: 32970339 DOI: 10.1111/apm.13082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The greater wax moth Galleria mellonella is an increasingly popular and consolidated alternative infection model to assess microbial virulence and the effectiveness of antimicrobial compounds. The lack of G. mellonella suppliers aiming at scientific purposes and a lack of well-established protocols for raising and testing these animals may impact results and reproducibility between different laboratories. In this review, we discuss the state of the art of rearing the larvae in situ, providing an overview of breeding and testing conditions commonly used and their influence on larval health and experiments results, from setting up the environment, providing the ideal diet, understanding the effects of pretreatments, choosing the best testing conditions, to exploring the most from the results obtained. Meanwhile, we guide the reader through the most practical ways of dealing with G. mellonella to achieve successful experiments.
Collapse
Affiliation(s)
- Monalessa Fábia Pereira
- Laboratório de Bioquímica e Microbiologia, Departamento de Ciências Biológicas, Universidade do Estado de Minas Gerais, Carangola, MG, Brazil
| | - Ciro César Rossi
- Laboratório de Microbiologia Molecular, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
8
|
da Silva WJ, Pilz-Júnior HL, Heermann R, da Silva OS. The great potential of entomopathogenic bacteria Xenorhabdus and Photorhabdus for mosquito control: a review. Parasit Vectors 2020; 13:376. [PMID: 32727530 PMCID: PMC7391577 DOI: 10.1186/s13071-020-04236-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
The control of insects of medical importance, such as Aedes aegypti and Aedes albopictus are still the only effective way to prevent the transmission of diseases, such as dengue, chikungunya and Zika. Their control is performed mainly using chemical products; however, they often have low specificity to non-target organisms, including humans. Also, studies have reported resistance to the most commonly used insecticides, such as the organophosphate and pyrethroids. Biological control is an ecological and sustainable method since it has a slow rate of insect resistance development. Bacterial species of the genera Xenorhabdus and Photorhabdus have been the target of several research groups worldwide, aiming at their use in agricultural, pharmaceutical and industrial products. This review highlights articles referring to the use of Xenorhabdus and Photorhabdus for insects and especially for mosquito control proposing future ways for their biotechnological applicability. Approximately 24 species of Xenorhabdus and five species of Photorhabdus have been described to have insecticidal properties. These studies have shown genes that are capable of encoding low molecular weight proteins, secondary toxin complexes and metabolites with insecticide activities, as well as antibiotic, fungicidal and antiparasitic molecules. In addition, several species of Xenorhabdus and Photorhabdus showed insecticidal properties against mosquitoes. Therefore, these biological agents can be used in new control methods, and must be, urgently considered in short term, in studies and applications, especially in mosquito control.![]()
Collapse
Affiliation(s)
- Wellington Junior da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, 90050-170, Brazil
| | - Harry Luiz Pilz-Júnior
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, 90050-170, Brazil
| | - Ralf Heermann
- Institut für Molekulare Physiologie, Mikrobiologie und Weinforschung, Johannes-Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 13, 55128, Mainz, Germany.
| | - Onilda Santos da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
9
|
Harith Fadzilah N, Abdul-Ghani I, Hassan M. Proteomics as a tool for tapping potential of entomopathogens as microbial insecticides. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 100:e21520. [PMID: 30426561 DOI: 10.1002/arch.21520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biopesticides are collective pest control harnessing the knowledge of the target pest and its natural enemies that minimize the risks of synthetic pesticides. A subset of biopesticides; bioinsecticides, are specifically used in controlling insect pests. Entomopathogens (EPMs) are micro-organisms sought after as subject for bioinsecticide development. However, lack of understanding of EPM mechanism of toxicity and pathogenicity slowed the progress of bioinsecticide development. Proteomics is a useful tool in elucidating the interaction of entomopathogenic fungi, entomopathogenic bacteria, and entomopathogenic virus with their target host. Collectively, proteomics shed light onto insect host response to EPM infection, mechanism of action of EPM's toxic proteins and secondary metabolites besides characterizing secreted and membrane-bound proteins of EPM that more precisely describe relevant proteins for host recognition and mediating pathogenesis. However, proteomics requires optimized protein extraction methods to maximize the number of proteins for analysis and availability of organism's genome for a more precise protein identification.
Collapse
Affiliation(s)
| | - Idris Abdul-Ghani
- Centre for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Maizom Hassan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| |
Collapse
|
10
|
Fukruksa C, Yimthin T, Suwannaroj M, Muangpat P, Tandhavanant S, Thanwisai A, Vitta A. Isolation and identification of Xenorhabdus and Photorhabdus bacteria associated with entomopathogenic nematodes and their larvicidal activity against Aedes aegypti. Parasit Vectors 2017; 10:440. [PMID: 28934970 PMCID: PMC5609025 DOI: 10.1186/s13071-017-2383-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 09/17/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aedes aegypti is a potential vector of West Nile, Japanese encephalitis, chikungunya, dengue and Zika viruses. Alternative control measurements of the vector are needed to overcome the problems of environmental contamination and chemical resistance. Xenorhabdus and Photorhabdus are symbionts in the intestine of entomopathogenic nematodes (EPNs) Steinernema spp. and Heterorhabditis spp. These bacteria are able to produce a broad range of bioactive compounds including antimicrobial, antiparasitic, cytotoxic and insecticidal compounds. The objectives of this study were to identify Xenorhabdus and Photorhabdus isolated from EPNs in upper northern Thailand and to study their larvicidal activity against Ae. aegypti larvae. RESULTS A total of 60 isolates of symbiotic bacteria isolated from EPNs consisted of Xenorhabdus (32 isolates) and Photorhabdus (28 isolates). Based on recA gene sequencing, BLASTN and phylogenetic analysis, 27 isolates of Xenorhabdus were identical and closely related to X. stockiae, 4 isolates were identical to X. miraniensis, and one isolate was identical to X. ehlersii. Twenty-seven isolates of Photorhabdus were closely related to P. luminescens akhurstii and P. luminescens hainanensis, and only one isolate was identical and closely related to P. luminescens laumondii. Xenorhabdus and Photorhabdus were lethal to Ae aegypti larvae. Xenorhabdus ehlersii bMH9.2_TH showed 100% efficiency for killing larvae of both fed and unfed conditions, the highest for control of Ae. aegypti larvae and X. stockiae (bLPA18.4_TH) was likely to be effective in killing Ae. aegypti larvae given the mortality rates above 60% at 72 h and 96 h. CONCLUSIONS The common species in the study area are X. stockiae, P. luminescens akhurstii, and P. luminescens hainanensis. Three symbiotic associations identified included P. luminescens akhurstii-H. gerrardi, P. luminescens hainanensis-H. gerrardi and X. ehlersii-S. Scarabaei which are new observations of importance to our knowledge of the biodiversity of, and relationships between, EPNs and their symbiotic bacteria. Based on the biological assay, X. ehlersii bMH9.2_TH begins to kill Ae. aegypti larvae within 48 h and has the most potential as a pathogen to the larvae. These data indicate that X. ehlersii may be an alternative biological control agent for Ae. aegypti and other mosquitoes.
Collapse
Affiliation(s)
- Chamaiporn Fukruksa
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Thatcha Yimthin
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.,Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Manawat Suwannaroj
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Paramaporn Muangpat
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Sarunporn Tandhavanant
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Aunchalee Thanwisai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.,Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.,Center of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Apichat Vitta
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand. .,Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand. .,Center of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
11
|
Insect Immunity to Entomopathogenic Nematodes and Their Mutualistic Bacteria. Curr Top Microbiol Immunol 2016; 402:123-156. [PMID: 27995342 DOI: 10.1007/82_2016_52] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Entomopathogenic nematodes are important organisms for the biological control of insect pests and excellent models for dissecting the molecular basis of the insect immune response against both the nematode parasites and their mutualistic bacteria. Previous research involving the use of various insects has found distinct differences in the number and nature of immune mechanisms that are activated in response to entomopathogenic nematode parasites containing or lacking their associated bacteria. Recent studies using model insects have started to reveal the identity of certain molecules with potential anti-nematode or antibacterial activity as well as the molecular components that nematodes and their bacteria employ to evade or defeat the insect immune system. Identification and characterization of the genes that regulate the insect immune response to nematode-bacteria complexes will contribute significantly to the development of improved practices to control insects of agricultural and medical importance, and potentially nematode parasites that infect mammals, perhaps even humans.
Collapse
|
12
|
Effects of an entomopathogen nematode on the immune response of the insect pest red palm weevil: Focus on the host antimicrobial response. J Invertebr Pathol 2016; 133:110-9. [DOI: 10.1016/j.jip.2015.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 01/26/2023]
|
13
|
Khan S, Nadir S, Lihua G, Xu J, Holmes KA, Dewen Q. Identification and characterization of an insect toxin protein, Bb70p, from the entomopathogenic fungus, Beauveria bassiana, using Galleria mellonella as a model system. J Invertebr Pathol 2015; 133:87-94. [PMID: 26592942 DOI: 10.1016/j.jip.2015.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 11/29/2022]
Abstract
An insect-toxic protein, Bb70p, was purified from Beauveria bassiana 70 using ammonium sulfate precipitation, ion exchange chromatography, and gel filtration. Bb70p has a high affinity for anion exchangers and 2D electrophoresis results revealed a single spot with a molecular weight of 35.5 kDa and an iso-electric point of ∼4.5. Bb70p remains active from 4 to 60°C, within a pH range of 4-10, but is more active in slightly acidic pH. A pure protein, Bb70p does not have any carbohydrate side chains. The protein caused high mortality by intra-haemocelic injection into Galleria mellonella with LD50 of 334.4 μg/g body weight and activates the phenol oxidase cascade. With a partial amino acid sequence comparison using the NCBI database, we showed no homology to known toxin proteins of entomopathogenic fungi. Thus, Bb70p appears to be an insect toxin protein, demonstrating novelty. Identification of this insect-toxic protein presents potential to enhance the virulence of B. bassiana through genetic manipulation.
Collapse
Affiliation(s)
- Sehroon Khan
- The World Agroforestry Centre, East and Central Asia, 132 Lanhei Rd, Heilongtan, Kunming 650201, Yunnan, China; Centre for Mountain Ecosystem Studies, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guancun South Street, Beijing 100081, People's Republic of China
| | - Sadia Nadir
- Rice Research Institute, Yunnan Agriculture University, Heilongtan, Kunming 650201, Yunnan, China; Department of Chemistry, Faculty of Sciences, University of Science and Technology Bannu, Khyber Pakhtunkhwa, 28100 Bannu, Pakistan
| | - Guo Lihua
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guancun South Street, Beijing 100081, People's Republic of China
| | - Jianchu Xu
- The World Agroforestry Centre, East and Central Asia, 132 Lanhei Rd, Heilongtan, Kunming 650201, Yunnan, China; Centre for Mountain Ecosystem Studies, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - Qiu Dewen
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guancun South Street, Beijing 100081, People's Republic of China.
| |
Collapse
|
14
|
Xu YJ, Luo F, Gao Q, Shang Y, Wang C. Metabolomics reveals insect metabolic responses associated with fungal infection. Anal Bioanal Chem 2015; 407:4815-21. [PMID: 25895944 DOI: 10.1007/s00216-015-8648-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/09/2015] [Accepted: 03/17/2015] [Indexed: 12/19/2022]
Abstract
The interactions between insects and pathogenic fungi are complex. We employed metabolomic techniques to profile insect metabolic dynamics upon infection by the pathogenic fungus Beauveria bassiana. Silkworm larvae were infected with fungal spores and microscopic observations demonstrated that the exhaustion of insect hemocytes was coupled with fungal propagation in the insect body cavity. Metabolomic analyses revealed that fungal infection could significantly alter insect energy and nutrient metabolisms as well as the immune defense responses, including the upregulation of carbohydrates, amino acids, fatty acids, and lipids, but the downregulation of eicosanoids and amines. The insect antifeedant effect of the fungal infection was evident with the reduced level of maclurin (a component of mulberry leaves) in infected insects but elevated accumulations in control insects. Insecticidal and cytotoxic mycotoxins like oosporein and beauveriolides were also detected in insects at the later stages of infection. Taken together, the metabolomics data suggest that insect immune responses are energy-cost reactions and the strategies of nutrient deprivation, inhibition of host immune responses, and toxin production would be jointly employed by the fungus to kill insects. The data obtained in this study will facilitate future functional studies of genes and pathways associated with insect-fungus interactions.
Collapse
Affiliation(s)
- Yong-Jiang Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | | | | | | | | |
Collapse
|