1
|
Zouagui R, Zouagui H, Aurag J, Ibrahimi A, Sbabou L. Functional analysis and comparative genomics of Rahnella perminowiae S11P1 and Variovorax sp. S12S4, two plant growth-promoting rhizobacteria isolated from Crocus sativus L. (saffron) rhizosphere. BMC Genomics 2024; 25:289. [PMID: 38500021 PMCID: PMC10946135 DOI: 10.1186/s12864-024-10088-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/03/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Rahnella perminowiae S11P1 and Variovorax sp. S12S4 are two plant growth-promoting rhizobacteria that were previously isolated from the rhizosphere of Crocus sativus L. (saffron), and have demonstrated interesting PGP activities and promising results when used as inoculants in field trials. To further elucidate the molecular mechanisms underlying their beneficial effects on plant growth, comprehensive genome mining of S11P1 and S12S4 and comparative genomic analysis with closely related strains were conducted. RESULTS Functional annotation of the two strains predicted a large number of genes involved in auxin and siderophore production, nitrogen fixation, sulfur metabolism, organic acid biosynthesis, pyrroloquinoline quinone production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, volatile organic compounds production, and polyamine biosynthesis. In addition, numerous genes implicated in plant-bacteria interactions, such as those involved in chemotaxis and quorum sensing, were predicted. Moreover, the two strains carried genes involved in bacterial fitness under abiotic stress conditions. Comparative genomic analysis revealed an open pan-genomic structure for the two strains. COG annotation showed that higher fractions of core and accessory genes were involved in the metabolism and transport of carbohydrates and amino acids, suggesting the metabolic versatility of the two strains as effective rhizosphere colonizers. Furthermore, this study reports the first comparison of Multilocus sequence analysis (MLSA) and core-based phylogenies of the Rahnella and Variovorax genera. CONCLUSIONS The present study unveils the molecular mechanisms underlying plant growth promotion and biocontrol activity of S11P1 and S12S4, and provides a basis for their further biotechnological application in agriculture.
Collapse
Affiliation(s)
- Rahma Zouagui
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Houda Zouagui
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Jamal Aurag
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Azeddine Ibrahimi
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Laila Sbabou
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
| |
Collapse
|
2
|
Hajialigol M, Falahi Charkhabi N, Shahryari F, Sarikhani S. Association of Rahnella victoriana, Enterobacter hormaechei subsp. hoffmannii and Citrobacter braakii with walnut decline. Sci Rep 2023; 13:11286. [PMID: 37438442 DOI: 10.1038/s41598-023-38427-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 07/07/2023] [Indexed: 07/14/2023] Open
Abstract
Persian walnut (Juglans regia) has a considerable economic importance worldwide. However, the vigor and vitality of walnut trees were heavily affected by bark canker during the last few years. Irregular longitudinal cankers in the outer bark, stem tissue necrosis, and bleeding with black-colored exudates walnut trees were observed in Kermanshah, Hamedan, Markazi, Alborz, Isfahan, Qom, Semnan, and Razavi Khorasan provinces in western, central and eastern Iran during 2018 and 2019. A total of 150 symptomatic samples were collected from affected walnut trees in order to identify bacteria associated with walnut decline. Two-hundred sixty strains with a metallic green sheen were isolated on EMB-agar medium. The pathogenicity of all strains was proved by inoculating a suspension of the bacterial strains under the bark of immature walnut fruits cv. 'Hartley'. Ninety-five strains caused necrosis and a dark-colored region in the mesocarp around the inoculation site 14 days post-inoculation. Moreover, 12 representative strains induced necrotic and black-colored tissues in the bark of young green twigs of two-year old walnut seedling cv. 'Chandler'. The strains were classified into four categories based on conventional phenotypic characters confirmed with the 16S rRNA gene sequences. A phylogenetic tree based on the concatenated sequences of two housekeeping gene fragments, gyrB and infB, indicated that strains including I1, Q6, and S6 were grouped in a cluster with Gibbsiella quercinecans FBR97T as well as strains I2, I5, and KE6 were clustered with Rahnella victoriana FRB 225T. Moreover, strains MR1, MR3, and MR5 were grouped with the Enterobacter hormaechei subsp. hoffmannii DSM 14563T. The phylogenetic analyses based on the partial sequencing of housekeeping genes including fusA, pyrG, and leuS revealed that strains KH1, KH3, and KH7 belong to Citrobacter braakii species. To the best of our knowledge, this is the first report of C. braakii and E. hormaechei as plant pathogens and R. victoriana associated with walnut decline.
Collapse
Affiliation(s)
- Mohammadreza Hajialigol
- Department of Entomology and Plant Pathology, College of Agricultural Technology, University College of Agriculture & Natural Resources, University of Tehran, Tehran, Iran
| | - Nargues Falahi Charkhabi
- Department of Entomology and Plant Pathology, College of Agricultural Technology, University College of Agriculture & Natural Resources, University of Tehran, Tehran, Iran.
| | - Fatemeh Shahryari
- Department of Plant Protection, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Saadat Sarikhani
- Department of Horticulture, College of Agricultural Technology, University College of Agriculture & Natural Resources, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Kong WL, Chen X, Sun H, Sun XR, Wu XQ. Identification of Two Fungal Pathogens Responsible for Liriodendron chinense × tulipifera Black Spot and Screening of Trichoderma sp. for Disease Control. PLANT DISEASE 2022; 106:2172-2181. [PMID: 35077229 DOI: 10.1094/pdis-06-21-1266-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Liriodendron chinense × tulipifera black spot is a newly discovered disease that causes yellowing and early shedding of leaves, affecting the growth of Liriodendron trees, and significantly reducing their ornamental value as a garden species. The pathogen responsible for this disease, and how it can be prevented and controlled, are not clear. In this study, the occurrence of this disease was first investigated according to Koch's postulates, and the primary pathogens causing Liriodendron black spot were determined to be Colletotrichum gloeosporioides and Alternaria alternata. Biocontrol strains antagonistic to these two pathogens were then screened from the leaf microorganisms of L. chinense × tulipifera, and a preliminary investigation of the biological control of Liriodendron black spot was performed. Through the screening of antagonistic microorganisms on the leaf surface of L. chinense × tulipifera, the strain Trichoderma koningiopsis T2, which displayed strong antagonism against C. gloeosporioides and A. alternata, was obtained. The T2 strain could inhibit the growth of the two pathogens via three mechanisms: hyperparasitism, volatile and nonvolatile metabolite production, and environmental acidification. The biocontrol experiments in the greenhouse and field showed that initial spraying with a T. koningiopsis T2 spore suspension followed by the two pathogens resulted in the lowest disease incidence. These results confirmed the black spot pathogens of L. chinense × tulipifera, clarified the antagonistic mechanism of T. koningiopsis T2 against the two pathogens, and provided a theoretical basis and technical support for the biological control of the disease.
Collapse
Affiliation(s)
- Wei-Liang Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xi Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hui Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiao-Rui Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
4
|
Kong WL, Wang WY, Zuo SH, Wu XQ. Genome Sequencing of Rahnella victoriana JZ-GX1 Provides New Insights Into Molecular and Genetic Mechanisms of Plant Growth Promotion. Front Microbiol 2022; 13:828990. [PMID: 35464970 PMCID: PMC9020876 DOI: 10.3389/fmicb.2022.828990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/07/2022] [Indexed: 12/02/2022] Open
Abstract
Genomic information for bacteria within the genus Rahnella remains limited. Rahnella sp. JZ-GX1 was previously isolated from the Pinus massoniana rhizosphere in China and shows potential as a plant growth-promoting (PGP) bacterium. In the present work, we combined the GridION Nanopore ONT and Illumina sequencing platforms to obtain the complete genome sequence of strain JZ-GX1, and the application effects of the strain in natural field environment was assessed. The whole genome of Rahnella sp. JZ-GX1 comprised a single circular chromosome (5,472,828 bp, G + C content of 53.53%) with 4,483 protein-coding sequences, 22 rRNAs, and 77 tRNAs. Based on whole genome phylogenetic and average nucleotide identity (ANI) analysis, the JZ-GX1 strain was reidentified as R. victoriana. Genes related to indole-3-acetic acid (IAA), phosphorus solubilization, nitrogen fixation, siderophores, acetoin, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, gamma-aminobutyric acid (GABA) production, spermidine and volatile organic compounds (VOCs) biosynthesis were present in the genome of strain JZ-GX1. In addition, these functions were also confirmed by in vitro experiments. Importantly, compared to uninoculated control plants, Pyrus serotina, Malus spectabilis, Populus euramericana (Dode) Guinier cv. “San Martino” (I-72 poplar) and Pinus elliottii plants inoculated with strain JZ-GX1 showed increased heights and ground diameters. These findings improve our understanding of R. victoriana JZ-GX1 as a potential biofertilizer in agriculture.
Collapse
Affiliation(s)
- Wei-Liang Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Wei-Yu Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Sheng-Han Zuo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
5
|
Xu S, Zhao Y, Peng Y, Shi Y, Xie X, Chai A, Li B, Li L. Comparative Genomics Assisted Functional Characterization of Rahnella aceris ZF458 as a Novel Plant Growth Promoting Rhizobacterium. Front Microbiol 2022; 13:850084. [PMID: 35444623 PMCID: PMC9015054 DOI: 10.3389/fmicb.2022.850084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/24/2022] [Indexed: 11/25/2022] Open
Abstract
Many Rahnella strains have been widely described as plant growth-promoting rhizobacteria with the potential to benefit plant growth and protect plants from pathogens. R. aceris ZF458 is a beneficial plant bacterium isolated from swamp soil with the potential for biocontrol. Strain ZF458 has shown broad-spectrum antagonistic activities against a variety of plant pathogens and exhibited a dramatic effect on controlling Agrobacterium tumefaciens in sunflowers. The R. aceris ZF458 genome sequence contained a 4,861,340-bp circular chromosome and two plasmids, with an average G + C content of 52.20%. Phylogenetic analysis demonstrated that R. aceris ZF458 was closely related to R. aceris SAP-19. Genome annotation and comparative genomics identified the conservation and specificity of large numbers of genes associated with nitrogen fixation, plant growth hormone production, organic acid biosynthesis and pyrroloquinoline quinone production that specific to benefiting plants in strain ZF458. In addition, numerous conserved genes associated with environmental adaption, including the bacterial secretion system, selenium metabolism, two-component system, flagella biosynthesis, chemotaxis, and acid resistance, were also identified in the ZF458 genome. Overall, this was the first study to systematically analyze the genes linked with plant growth promotion and environmental adaption in R. aceris. The aim of this study was to derive genomic information that would provide an in-depth insight of the mechanisms of plant growth-promoting rhizobacteria, and could be further exploited to improve the application of R. aceris ZF458 in the agriculture field.
Collapse
Affiliation(s)
- Shuai Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yurong Zhao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yue Peng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanxia Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuewen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ali Chai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Baoju Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Phytase-Producing Rahnella aquatilis JZ-GX1 Promotes Seed Germination and Growth in Corn ( Zea mays L.). Microorganisms 2021; 9:microorganisms9081647. [PMID: 34442724 PMCID: PMC8400716 DOI: 10.3390/microorganisms9081647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 11/30/2022] Open
Abstract
Phytase plays an important role in crop seed germination and plant growth. In order to fully understand the plant growth-promoting mechanism by Rahnella aquatilis JZ-GX1, the effect of this strain on germination of maize seeds was determined in vitro, and the colonization of maize root by R. aquatilis JZ-GX1 was observed by scanning electron microscope. Different inoculum concentrations and Phytate-related soil properties were applied to investigate the effect of R. aquatilis JZ-GX1 on the growth of maize seedlings. The results showed that R. aquatilis JZ-GX1 could effectively secrete indole acetic acid and had significantly promoted seed germination and root length of maize. A large number of R. aquatilis JZ-GX1 cells colonized on the root surface, root hair and the root interior of maize. When the inoculation concentration was 107 cfu/mL and the insoluble organophosphorus compound phytate existed in the soil, the net photosynthetic rate, chlorophyll content, phytase activity secreted by roots, total phosphorus concentration and biomass accumulation of maize seedlings were the highest. In contrast, no significant effect of inoculation was found when the total P content was low or when inorganic P was sufficient in the soil. R. aquatilis JZ-GX1 promotes the growth of maize directly by secreting IAA and indirectly by secreting phytase. This work provides beneficial information for the development and application of R. aquatilis JZ-GX1 as a microbial fertilizer in the future.
Collapse
|
7
|
Gomez-Ramirez LF, Uribe-Velez D. Phosphorus Solubilizing and Mineralizing Bacillus spp. Contribute to Rice Growth Promotion Using Soil Amended with Rice Straw. Curr Microbiol 2021; 78:932-943. [PMID: 33580332 DOI: 10.1007/s00284-021-02354-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 01/10/2021] [Indexed: 11/26/2022]
Abstract
Rice (Oryza sativa L.) is a staple food for more than two billion people worldwide. Its cultivation demands large amounts of nutrients, particularly nitrogen and phosphorus (P). Consequently, low availability of these nutrients in the soil has led to the use of chemical fertilizers, generating increases in production costs and environmental damage. Soil host microorganisms known as plant growth-promoting rhizobacteria (PGPR) colonize the rhizosphere and facilitate the uptake of nutrients by the plants. In this study, rice seeds inoculated with PGPR were grown for 30 days in an inert substrate and fertilized with modified Hoagland nutrient solution with phosphate rock as a source of P. Treatments were repeated over time, obtaining five isolates which significantly increased plant length by up to 56% and dry weight of stems and roots up to 45% and 169% respectively relative to an uninoculated control. Selected strains showed in vitro tri-calcium phosphate solubilizing activity, mineralizing phytate activity, and phosphate release from rice straw (RS). Based on the above criteria, three isolates (IBUN-02755, -02,704 and -02,724) that contained β propeller phytase (BPP) genes, were selected to evaluate their effect as PGPR in rice seedlings. These were planted in a soil amended with RS under greenhouse conditions. The results showed that selected Bacillus spp. strains significantly increased plant length and dry weight or increased plant phosphate uptake up to two times compared to an un-inoculated control. This suggests that selected strains may have a capacity as PGPR using RS as carbon and a P amendment.
Collapse
Affiliation(s)
- Luis F Gomez-Ramirez
- Universidad Nacional de Colombia, Instituto de Biotecnologia, Cundinamarca, Bogota D.C, Colombia
| | - Daniel Uribe-Velez
- Universidad Nacional de Colombia, Instituto de Biotecnologia, Cundinamarca, Bogota D.C, Colombia.
| |
Collapse
|
8
|
Belimov AA, Shaposhnikov AI, Syrova DS, Kichko AA, Guro PV, Yuzikhin OS, Azarova TS, Sazanova AL, Sekste EA, Litvinskiy VA, Nosikov VV, Zavalin AA, Andronov EE, Safronova VI. The Role of Symbiotic Microorganisms, Nutrient Uptake and Rhizosphere Bacterial Community in Response of Pea ( Pisum sativum L.) Genotypes to Elevated Al Concentrations in Soil. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1801. [PMID: 33353122 PMCID: PMC7766424 DOI: 10.3390/plants9121801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 01/04/2023]
Abstract
Aluminium being one of the most abundant elements is very toxic for plants causing inhibition of nutrient uptake and productivity. The aim of this study was to evaluate the potential of microbial consortium consisting of arbuscular mycorrhizal fungus (AMF), rhizobia and PGPR for counteracting negative effects of Al toxicity on four pea genotypes differing in Al tolerance. Pea plants were grown in acid soil supplemented with AlCl3 (pHKCl = 4.5) or neutralized with CaCO3 (pHKCl = 6.2). Inoculation increased shoot and/or seed biomass of plants grown in Al-supplemented soil. Nodule number and biomass were about twice on roots of Al-treated genotypes after inoculation. Inoculation decreased concentrations of water-soluble Al in the rhizosphere of all genotypes grown in Al-supplemented soil by about 30%, improved N2 fixation and uptake of fertilizer 15N and nutrients from soil, and increased concentrations of water-soluble nutrients in the rhizosphere. The structure of rhizospheric microbial communities varied to a greater extent depending on the plant genotype, as compared to soil conditions and inoculation. Thus, this study highlights the important role of symbiotic microorganisms and the plant genotype in complex interactions between the components of the soil-microorganism-plant continuum subjected to Al toxicity.
Collapse
Affiliation(s)
- Andrey A. Belimov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia; (A.I.S.); (D.S.S.); (A.A.K.); (P.V.G.); (O.S.Y.); (T.S.A.); (A.L.S.); (E.A.S.); (E.E.A.); (V.I.S.)
| | - Alexander I. Shaposhnikov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia; (A.I.S.); (D.S.S.); (A.A.K.); (P.V.G.); (O.S.Y.); (T.S.A.); (A.L.S.); (E.A.S.); (E.E.A.); (V.I.S.)
| | - Darya S. Syrova
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia; (A.I.S.); (D.S.S.); (A.A.K.); (P.V.G.); (O.S.Y.); (T.S.A.); (A.L.S.); (E.A.S.); (E.E.A.); (V.I.S.)
| | - Arina A. Kichko
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia; (A.I.S.); (D.S.S.); (A.A.K.); (P.V.G.); (O.S.Y.); (T.S.A.); (A.L.S.); (E.A.S.); (E.E.A.); (V.I.S.)
| | - Polina V. Guro
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia; (A.I.S.); (D.S.S.); (A.A.K.); (P.V.G.); (O.S.Y.); (T.S.A.); (A.L.S.); (E.A.S.); (E.E.A.); (V.I.S.)
| | - Oleg S. Yuzikhin
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia; (A.I.S.); (D.S.S.); (A.A.K.); (P.V.G.); (O.S.Y.); (T.S.A.); (A.L.S.); (E.A.S.); (E.E.A.); (V.I.S.)
| | - Tatiana S. Azarova
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia; (A.I.S.); (D.S.S.); (A.A.K.); (P.V.G.); (O.S.Y.); (T.S.A.); (A.L.S.); (E.A.S.); (E.E.A.); (V.I.S.)
| | - Anna L. Sazanova
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia; (A.I.S.); (D.S.S.); (A.A.K.); (P.V.G.); (O.S.Y.); (T.S.A.); (A.L.S.); (E.A.S.); (E.E.A.); (V.I.S.)
| | - Edgar A. Sekste
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia; (A.I.S.); (D.S.S.); (A.A.K.); (P.V.G.); (O.S.Y.); (T.S.A.); (A.L.S.); (E.A.S.); (E.E.A.); (V.I.S.)
| | - Vladimir A. Litvinskiy
- Pryanishnikov Institute of Agrochemisty, Pryanishnikova str. 31A, 127434 Moscow, Russia; (V.A.L.); (V.V.N.); (A.A.Z.)
| | - Vladimir V. Nosikov
- Pryanishnikov Institute of Agrochemisty, Pryanishnikova str. 31A, 127434 Moscow, Russia; (V.A.L.); (V.V.N.); (A.A.Z.)
| | - Aleksey A. Zavalin
- Pryanishnikov Institute of Agrochemisty, Pryanishnikova str. 31A, 127434 Moscow, Russia; (V.A.L.); (V.V.N.); (A.A.Z.)
| | - Evgeny E. Andronov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia; (A.I.S.); (D.S.S.); (A.A.K.); (P.V.G.); (O.S.Y.); (T.S.A.); (A.L.S.); (E.A.S.); (E.E.A.); (V.I.S.)
- Department of Biology, Saint-Petersburg State University, University Embankment, 199034 Saint-Petersburg, Russia
| | - Vera I. Safronova
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia; (A.I.S.); (D.S.S.); (A.A.K.); (P.V.G.); (O.S.Y.); (T.S.A.); (A.L.S.); (E.A.S.); (E.E.A.); (V.I.S.)
| |
Collapse
|
9
|
Kalkan SO, Bozcal E, Hames Tuna EE, Uzel A. Characterisation of a thermostable and proteolysis resistant phytase from Penicillium polonicum MF82 associated with the marine sponge Phorbas sp. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1785434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Saban Orcun Kalkan
- Faculty of Science, Department of Biology, Basic and Industrial Microbiology Section, Ege University, İzmir, Turkey
| | - Elif Bozcal
- Faculty of Science, Department of Biology, Basic and Industrial Microbiology Section, Ege University, İzmir, Turkey
- Faculty of Science, Department of Biology, Basic and Industrial Microbiology Section, Istanbul University, İstanbul, Turkey
| | - Elif Esin Hames Tuna
- Department of Bioengineering, Faculty of Engineering, Ege University, İzmir, Turkey
| | - Atac Uzel
- Faculty of Science, Department of Biology, Basic and Industrial Microbiology Section, Ege University, İzmir, Turkey
| |
Collapse
|
10
|
Kong WL, Rui L, Ni H, Wu XQ. Antifungal Effects of Volatile Organic Compounds Produced by Rahnella aquatilis JZ-GX1 Against Colletotrichum gloeosporioides in Liriodendron chinense × tulipifera. Front Microbiol 2020; 11:1114. [PMID: 32547526 PMCID: PMC7271530 DOI: 10.3389/fmicb.2020.01114] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
The use of volatile organic compounds (VOCs) produced by microorganisms for the biological control of plant diseases has attracted much attention in recent years. In this study, the antifungal activity and identity of VOCs produced by Rahnella aquatilis JZ-GX1 isolated from the rhizosphere soil of pine were determined and analyzed. The effect of the VOCs on the mycelial growth of Colletotrichum gloeosporioides, the pathogen of Liriodendron chinense × tulipifera black spot, was determined by a joined-petri dish fumigation method. An in vitro leaf inoculation method was used to determine the fumigation effect of the VOCs on Liriodendron black spot. VOCs with antifungal activity were collected by headspace solid-phase microextraction (SPME), and their components were analyzed by gas chromatography-mass spectrometry (GC-MS). The results showed that the VOCs secreted by JZ-GX1 inhibited the mycelial growth of the tested pathogen. The VOCs destroyed the morphology of the mycelium, significantly increased the permeability of the cell membrane and downregulated the expression of pathogenicity-related genes during mycelial infection, thus inhibiting the expansion of anthracnose disease spots in leaves. In the volatile compound profile, 3-methyl-1-butanol and 2-phenylethyl methyl ether significantly inhibited the mycelial growth and spore germination of C. gloeosporioides. This work provides a new strategy for the research and application of microorganisms and bioactive compounds to control plant anthracnose.
Collapse
Affiliation(s)
- Wei-Liang Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Lin Rui
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Hang Ni
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
11
|
Salt Tolerance Mechanism and Species Identification of the Plant Rhizosphere Bacterium JYZ-SD2. Curr Microbiol 2019; 77:388-395. [DOI: 10.1007/s00284-019-01835-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022]
|
12
|
Identification of Major Rhizobacterial Taxa Affected by a Glyphosate-Tolerant Soybean Line via Shotgun Metagenomic Approach. Genes (Basel) 2018; 9:genes9040214. [PMID: 29659545 PMCID: PMC5924556 DOI: 10.3390/genes9040214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/19/2018] [Accepted: 04/13/2018] [Indexed: 01/08/2023] Open
Abstract
The worldwide commercial cultivation of transgenic crops, including glyphosate-tolerant (GT) soybeans, has increased widely during the past 20 years. However, it is accompanied with a growing concern about potential effects of transgenic crops on the soil microbial communities, especially on rhizosphere bacterial communities. Our previous study found that the GT soybean line NZL06-698 (N698) significantly affected rhizosphere bacteria, including some unidentified taxa, through 16S rRNA gene (16S rDNA) V4 region amplicon deep sequencing via Illumina MiSeq. In this study, we performed 16S rDNA V5–V7 region amplicon deep sequencing via Illumina MiSeq and shotgun metagenomic approaches to identify those major taxa. Results of these processes revealed that the species richness and evenness increased in the rhizosphere bacterial communities of N698, the beta diversity of the rhizosphere bacterial communities of N698 was affected, and that certain dominant bacterial phyla and genera were related to N698 compared with its control cultivar Mengdou12. Consistent with our previous findings, this study showed that N698 affects the rhizosphere bacterial communities. In specific, N698 negatively affects Rahnella, Janthinobacterium, Stenotrophomonas, Sphingomonas and Luteibacter while positively affecting Arthrobacter, Bradyrhizobium, Ramlibacter and Nitrospira.
Collapse
|
13
|
The current status on the taxonomy of Pseudomonas revisited: An update. INFECTION GENETICS AND EVOLUTION 2017; 57:106-116. [PMID: 29104095 DOI: 10.1016/j.meegid.2017.10.026] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022]
Abstract
The genus Pseudomonas described in 1894 is one of the most diverse and ubiquitous bacterial genera which encompass species isolated worldwide. In the last years more than 70 new species have been described, which were isolated from different environments, including soil, water, sediments, air, animals, plants, fungi, algae, compost, human and animal related sources. Some of these species have been isolated in extreme environments, such as Antarctica or Atacama desert, and from contaminated water or soil. Also, some species recently described are plant or animal pathogens. In this review, we revised the current status of the taxonomy of genus Pseudomonas and the methodologies currently used for the description of novel species which includes, in addition to the classic ones, new methodologies such as MALDI-TOF MS, MLSA and genome analyses. The novel Pseudomonas species described in the last years are listed, together with the available genome sequences of the type strains of Pseudomonas species present in different databases.
Collapse
|
14
|
Identification and characterization of the rhizosphere phosphate-solubilizing bacterium Pseudomonas frederiksbergensis JW-SD2 and its plant growth-promoting effects on poplar seedlings. ANN MICROBIOL 2016. [DOI: 10.1007/s13213-016-1237-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
15
|
Regulation of Soluble Phosphate on the Ability of Phytate Mineralization and β-Propeller Phytase Gene Expression of Pseudomonas fluorescens JZ-DZ1, a Phytate-Mineralizing Rhizobacterium. Curr Microbiol 2016; 73:915-923. [DOI: 10.1007/s00284-016-1139-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 09/13/2016] [Indexed: 10/21/2022]
|
16
|
Tláskal V, Voříšková J, Baldrian P. Bacterial succession on decomposing leaf litter exhibits a specific occurrence pattern of cellulolytic taxa and potential decomposers of fungal mycelia. FEMS Microbiol Ecol 2016; 92:fiw177. [DOI: 10.1093/femsec/fiw177] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2016] [Indexed: 11/13/2022] Open
|
17
|
Zeng Q, Wu X, Wen X. Identification and characterization of the rhizosphere phosphate-solubilizing bacterium Pseudomonas frederiksbergensis JW-SD2, and its plant growth-promoting effects on poplar seedlings. ANN MICROBIOL 2016. [DOI: 10.1007/s13213-016-1220-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|