1
|
Bacterial chitinases: genetics, engineering and applications. World J Microbiol Biotechnol 2022; 38:252. [DOI: 10.1007/s11274-022-03444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
|
2
|
Molecular and Functional Characterization of Beneficial Bacteria Associated with AMF Spores. METHODS IN RHIZOSPHERE BIOLOGY RESEARCH 2019. [DOI: 10.1007/978-981-13-5767-1_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
3
|
Rapid screening of starter cultures for maari based on antifungal properties. Microbiol Res 2018; 207:66-74. [DOI: 10.1016/j.micres.2017.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 08/17/2017] [Accepted: 11/07/2017] [Indexed: 11/20/2022]
|
4
|
Shali A, Rigi G, Pornour M, Ahmadian G. Expression and Secretion of Cyan Fluorescent Protein (CFP) in B. subtilis using the Chitinase Promoter from Bacillus pumilus SG2. IRANIAN BIOMEDICAL JOURNAL 2017; 21:240-8. [PMID: 28088132 PMCID: PMC5459939 DOI: 10.18869/acadpub.ibj.21.4.240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Improved cyan fluorescent protein (ICFP) is a monochromic, green fluorescent protein (GFP) derivative produced by Aequorea macrodactyla in a process similar to GFP. This protein has strong absorption spectra at wavelengths 426-446 nm. ICFP can be used in cell, organelle or intracellular protein labeling, investigating the protein-protein interactions as well as assessing the promoter activities. Methods: In our previous study, the promoters of two chitinases (ChiS and ChiL) from Bacillus pumilus SG2 were assessed in B. subtilis and their regulatory elements were characterized. In the present study, icfp was cloned downstream of several truncated promoters obtained in the former study, and ICFP expression was evaluated in B. subtilis. Results: Extracellular expression and secretion of ICFP were analyzed under the control of different truncated versions of ChiSL promoters grown on different media. Results from SDS-PAGE and fluorimetric analyses showed that there were different expression rates of CFP; however, the UPChi-ICFP3 construct exhibited a higher level of expression and secretion in the culture medium. Conclusion: Our presented results revealed that inserting this truncated form of Chi promoter upstream of the ICFP, as a reporter gene, in B. subtilis led to an approximately ten fold increase in ICFP expression.
Collapse
Affiliation(s)
- Abbas Shali
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB) , P.O. Box 14155-6343 , Tehran, Iran
| | - Garshasb Rigi
- Department of Biology, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Khuzestan, Iran
| | - Majid Pornour
- Medical Laser Research Center, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB) , P.O. Box 14155-6343 , Tehran, Iran
| |
Collapse
|
5
|
Matobole RM, van Zyl LJ, Parker-Nance S, Davies-Coleman MT, Trindade M. Antibacterial Activities of Bacteria Isolated from the Marine Sponges Isodictya compressa and Higginsia bidentifera Collected from Algoa Bay, South Africa. Mar Drugs 2017; 15:E47. [PMID: 28218694 PMCID: PMC5334627 DOI: 10.3390/md15020047] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/30/2017] [Indexed: 11/16/2022] Open
Abstract
Due to the rise in multi-drug resistant pathogens and other diseases, there is renewed interest in marine sponge endosymbionts as a rich source of natural products (NPs). The South African marine environment is rich in marine biota that remains largely unexplored and may represent an important source for the discovery of novel NPs. We first investigated the bacterial diversity associated with five South African marine sponges, whose microbial populations had not previously been investigated, and select the two sponges (Isodictya compressa and Higginsia bidentifera) with highest species richness to culture bacteria. By employing 33 different growth conditions 415 sponge-associated bacterial isolates were cultured and screened for antibacterial activity. Thirty-five isolates showed antibacterial activity, twelve of which exhibited activity against the multi-drug resistant Escherichia coli 1699, implying that some of the bioactive compounds could be novel. Genome sequencing of two of these isolates confirmed that they harbour uncharacterized biosynthetic pathways that may encode novel chemical structures.
Collapse
Affiliation(s)
- Relebohile Matthew Matobole
- Institute for Microbial Biotechnology and Metagenomics (IMBM), Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, Cape Town, South Africa.
| | - Leonardo Joaquim van Zyl
- Institute for Microbial Biotechnology and Metagenomics (IMBM), Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, Cape Town, South Africa.
| | - Shirley Parker-Nance
- Department of Zoology, Nelson Mandela Metropolitan University, University Way, Port Elizabeth 6031, South Africa.
- South African Institute for Aquatic Biodiversity (SAIAB), Somerset Street, Grahamstown 6139, South Africa.
| | - Michael T Davies-Coleman
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, Cape Town, South Africa.
| | - Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics (IMBM), Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, Cape Town, South Africa.
| |
Collapse
|
6
|
Battini F, Cristani C, Giovannetti M, Agnolucci M. Multifunctionality and diversity of culturable bacterial communities strictly associated with spores of the plant beneficial symbiont Rhizophagus intraradices. Microbiol Res 2015; 183:68-79. [PMID: 26805620 DOI: 10.1016/j.micres.2015.11.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/28/2015] [Accepted: 11/29/2015] [Indexed: 10/22/2022]
Abstract
Arbuscular Mycorrhizal Fungi (AMF) live in symbiosis with most crop plants and represent essential elements of soil fertility and plant nutrition and productivity, facilitating soil mineral nutrient uptake and protecting plants from biotic and abiotic stresses. These beneficial services may be mediated by the dense and active spore-associated bacterial communities, which sustain diverse functions, such as the promotion of mycorrhizal activity, biological control of soilborne diseases, nitrogen fixation, and the supply of nutrients and growth factors. In this work, we utilised culture-dependent methods to isolate and functionally characterize the microbiota strictly associated to Rhizophagus intraradices spores, and molecularly identified the strains with best potential plant growth promoting (PGP) activities by 16S rDNA sequence analysis. We isolated in pure culture 374 bacterial strains belonging to different functional groups-actinobacteria, spore-forming, chitinolytic and N2-fixing bacteria-and screened 122 strains for their potential PGP activities. The most common PGP trait was represented by P solubilization from phytate (69.7%), followed by siderophore production (65.6%), mineral P solubilization (49.2%) and IAA production (42.6%). About 76% of actinobacteria and 65% of chitinolytic bacteria displayed multiple PGP activities. Nineteen strains with best potential PGP activities, assigned to Sinorhizobium meliloti, Streptomyces spp., Arthrobacter phenanthrenivorans, Nocardiodes albus, Bacillus sp. pumilus group, Fictibacillus barbaricus and Lysinibacillus fusiformis, showed the ability to produce IAA and siderophores and to solubilize P from mineral phosphate and phytate, representing suitable candidates as biocontrol agents, biofertilisers and bioenhancers, in the perspective of targeted management of beneficial symbionts and their associated bacteria in sustainable food production systems.
Collapse
Affiliation(s)
- Fabio Battini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Caterina Cristani
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Monica Agnolucci
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| |
Collapse
|
7
|
Morabbi Heravi K, Rigi G, Rezaei Arjomand M, Rostami A, Ahmadian G. An Alternative Bacterial Expression System Using Bacillus pumilus SG2 Chitinase Promoter. IRANIAN JOURNAL OF BIOTECHNOLOGY 2015; 13:17-24. [PMID: 28959305 DOI: 10.15171/ijb.1175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Chitin is an abundant natural polysaccharide found in fungi, algae, and exoskeleton of insects. Several bacterial species are capable of utilizing chitin as their carbon source. These bacteria produce chitinases for degradation of chitin into N-acetyl-D-glucosamine. So far, regulation of the chitinase encoding genes has been studied in different bacterial species. Among Bacillus species, B. pumilus strain SG2 encodes two chitinases, ChiS and ChiL. The promoter region of chiSL genes (P chiS ) is mainly regulated by the general carbon catabolite repression (CCR) system in B. subtilis due to the presence of a catabolite responsive element (cre). OBJECTIVES Use of P chiS in constructing an inducible expression system in B. subtilis was investigated. MATERIALS AND METHODS In the first step, complete and shortened versions of P chiS were inserted upstream of the lacZ on a pBS72/pUC18 shuttle plasmid. The β-galactosidase activity of B. subtilis carrying one of the relevant plasmids was measured in the presence of different carbon sources. RESULTS An expression system based on the chitinase promoter of B. pumilus SG2 was established. Modification of P chiS and the culture medium resulted in production of β-galactosidase in B. subtilis up to 1,800 Miller unit (MU) activity. CONCLUSIONS The chitinase promoter developed in this study, has potential to be used in an expression vector that could be induced by chitin. In addition, compared to the other inducers like IPTG and lactose, chitin is definitely cheaper and more available as an inducer.
Collapse
Affiliation(s)
- Kambiz Morabbi Heravi
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Garshasb Rigi
- Department of Biology, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Maryam Rezaei Arjomand
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Amin Rostami
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
8
|
YvoA and CcpA Repress the Expression of chiB in Bacillus thuringiensis. Appl Environ Microbiol 2015; 81:6548-57. [PMID: 26162881 DOI: 10.1128/aem.01549-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/07/2015] [Indexed: 12/15/2022] Open
Abstract
Bacillus thuringiensis produces chitinases, which are involved in its antifungal activity and facilitate its insecticidal activity. In our recent work, we found that a 16-bp sequence, drechiB (AGACTTCGTGATGTCT), downstream of the minimal promoter region of the chitinase B gene (chiB) was a critical site for the inducible expression of chiB in B. thuringiensis Bti75. In this work, we show that a GntR family transcriptional regulator (named YvoABt), which is homologous to YvoA of Bacillus subtilis, can specifically bind to the drechiB oligonucleotide sequences in vitro by using electrophoretic mobility shift assays (EMSAs) and isothermal titration calorimetry (ITC) assays. The results of quantitative real-time reverse transcription-PCR (qRT-PCR) and Western blotting indicated that deletion of yvoA caused an ∼7.5-fold increase in the expression level of chiB. Furthermore, binding of purified YvoABt to its target DNA could be abolished by glucosamine-6-phosphate (GlcN-6-P). We also confirmed, in the presence of the phosphoprotein Hpr-Ser₄₅-P, that purified CcpABt bound specifically to the promoter of chiB, which contains the "crechiB" sequence (ATAAAGCGTTTACA). According to the results of qRT-PCR and Western blotting, deletion of ccpA resulted in a 39-fold increase in the chiB expression level, and glucose no longer influenced the expression of chiB. We confirm that chiB is negatively controlled by both CcpABt and YvoABt in Bti75.
Collapse
|
9
|
Xie CC, Shi J, Jia HY, Li PF, Luo Y, Cai J, Chen YH. Characterization of regulatory regions involved in the inducible expression of chiB in Bacillus thuringiensis. Arch Microbiol 2014; 197:53-63. [PMID: 25362505 DOI: 10.1007/s00203-014-1054-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 10/13/2014] [Accepted: 10/23/2014] [Indexed: 11/25/2022]
Abstract
Expression of the chiB gene from Bacillus thuringiensis Bti75 was defined as inducible by the use of transcriptional fusions with the bgaB reporter gene. The transcription start site of the chiB gene was identified as the C base located 132 base pairs upstream of the start codon. Analysis of 5' and 3' deletions of the chiB promoter region revealed that the sequence from position -192 to +36 with respect to the transcription start site was necessary for wild-type levels of inducible expression of the chiB gene. The minimal promoter region for the expression of chiB gene was identified as the sequence from position -100 to +12. Furthermore, a 16-bp sequence (designated dre) downstream of the minimal promoter region of chiB was shown to be required for chitin induction. To confirm the function of this 16-bp sequence, 25 base substitutions were introduced into the dre site. Most of the mutations resulted in constitutive expression, or the efficiency of induction decreased. All mutations identified the dre sequence as a critical site for the inducible expression of chiB. In addition, the dre site was shown to interact with a sequence-specific DNA binding factor of strain Bti75 cultured in the absence of the inducer.
Collapse
Affiliation(s)
- Chi-Chu Xie
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|