1
|
Lyu XH, Yang YS, Pan ZQ, Ning SK, Suo F, Du LL. An improved tetracycline-inducible expression system for fission yeast. J Cell Sci 2024; 137:jcs263404. [PMID: 39318285 DOI: 10.1242/jcs.263404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024] Open
Abstract
The ability to manipulate gene expression is valuable for elucidating gene function. In the fission yeast Schizosaccharomyces pombe, the most widely used regulatable expression system is the nmt1 promoter and its two attenuated variants. However, these promoters have limitations, including a long lag, incompatibility with rich media and unsuitability for non-dividing cells. Here, we present a tetracycline-inducible system free of these shortcomings. Our system features the enotetS promoter, which achieves a similar induced level and a higher induction ratio compared to the nmt1 promoter, without exhibiting a lag. Additionally, our system includes four weakened enotetS variants, offering an expression range similar to that of the nmt1 series promoters but with more intermediate levels. To enhance usability, each promoter is combined with a Tet-repressor-expressing cassette in an integration plasmid. Importantly, our system can be used in non-dividing cells, enabling the development of a synchronous meiosis induction method with high spore viability. Moreover, our system allows for the shutdown of gene expression and the generation of conditional loss-of-function mutants. This system provides a versatile and powerful tool for manipulating gene expression in fission yeast.
Collapse
Affiliation(s)
- Xiao-Hui Lyu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yu-Sheng Yang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhao-Qian Pan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Shao-Kai Ning
- National Institute of Biological Sciences, Beijing 102206, China
| | - Fang Suo
- National Institute of Biological Sciences, Beijing 102206, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research , Tsinghua University, Beijing 102206, China
| |
Collapse
|
2
|
Sajeevan A, Pandian R, Mishra SK. Vectors with a flexible multiple cloning site and modular epitope tags for gene expression studies in Schizosaccharomyces pombe. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
3
|
Multiplexed proteome profiling of carbon source perturbations in two yeast species with SL-SP3-TMT. J Proteomics 2019; 210:103531. [PMID: 31626996 DOI: 10.1016/j.jprot.2019.103531] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
Abstract
Saccharomyces cerevisiae and Schizosaccharomyces pombe are the most commonly studied yeast model systems, yet comparisons of global proteome remodeling between these yeast species are scarce. Here, we profile the proteomes of S. cerevisiae and S. pombe cultured with either glucose or pyruvate as the sole carbon source to define common and distinctive alterations in the protein landscape across species. In addition, we develop an updated streamlined-tandem mass tag (SL-TMT) strategy that substitutes chemical-based precipitation with more versatile bead-based protein aggregation method (SP3) prior to enzymatic digestion and TMT labeling. Our new workflow, SL-SP3-TMT, allow for near-complete proteome profiles in a single experiment for each species. The data reveal expected alterations in protein abundance and differences between species, highlighted complete canonical biochemical pathways, and provided insight into previously uncharacterized proteins. The techniques used herein, namely SL-SP3-TMT, can be applied to virtually any experiment aiming to study remodeling of the proteome using a high-throughput, comprehensive, yet streamlined mass spectrometry-based strategy. SIGNIFICANCE: Saccharomyces cerevisiae and Schizosaccharomyces pombe are single-celled eukaryotes that diverged from a common ancestor over a period of 100 million years, such that evolution has driven fundamental differences between the two species. Cellular metabolism and the regulation thereof are vital for living organisms. Here, we hypothesize that large scale proteomic alterations are prevalent upon the substitution of glucose with another carbon source, in this case pyruvate. To efficiently process our samples, we developed an updated streamlined-tandem mass tag (SL-TMT) strategy with more versatile bead-based protein aggregation. The data revealed expected alterations in protein abundance and illustrated differences between species. We highlighted complete canonical biochemical pathways and provided insight into previously uncharacterized proteins.
Collapse
|
4
|
Patterson JO, Rees P, Nurse P. Noisy Cell-Size-Correlated Expression of Cyclin B Drives Probabilistic Cell-Size Homeostasis in Fission Yeast. Curr Biol 2019; 29:1379-1386.e4. [PMID: 30955932 PMCID: PMC6488275 DOI: 10.1016/j.cub.2019.03.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/07/2019] [Accepted: 03/11/2019] [Indexed: 02/08/2023]
Abstract
How cells correct deviations from a mean cell size at mitosis remains uncertain. Classical cell-size homeostasis models are the sizer, timer, and adder [1]. Sizers postulate that cells divide at some threshold size; timers, that cells grow for a set time; and adders, that cells add a constant volume before division. Here, we show that a size-based probabilistic model of cell-size control at the G2/M transition (P(Div)) can generate realistic cell-size homeostasis in silico. In fission yeast cells, Cyclin BCdc13 scales with size, and we propose that this increases the likelihood of mitotic entry, while molecular noise in its expression adds a probabilistic component to the model. Varying Cdc13 expression levels exogenously using a newly developed tetracycline inducible promoter shows that both the level and variability of its expression influence cell size at division. Our results demonstrate that as cells grow larger, their probability of dividing increases, and this is sufficient to generate cell-size homeostasis. Size-correlated Cdc13 expression forms part of the molecular circuitry of this system. A size-correlated division probability can generate cell-size homeostasis Cyclin B concentration scales noisily with size in fission yeast Cells with stochastically suprathreshold cyclin B are the ones that divide A new tetracycline inducible promoter with linear dose response is developed
Collapse
Affiliation(s)
- James O Patterson
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1ST, UK; College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, UK.
| | - Paul Rees
- College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, UK; Imaging Platform, Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Paul Nurse
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1ST, UK; Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| |
Collapse
|
5
|
Zou LG, Chen JW, Zheng DL, Balamurugan S, Li DW, Yang WD, Liu JS, Li HY. High-efficiency promoter-driven coordinated regulation of multiple metabolic nodes elevates lipid accumulation in the model microalga Phaeodactylum tricornutum. Microb Cell Fact 2018; 17:54. [PMID: 29618383 PMCID: PMC5885374 DOI: 10.1186/s12934-018-0906-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/31/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Microalgal metabolic engineering holds great promise for the overproduction of a wide range of commercial bioproducts. It demands simultaneous manipulation of multiple metabolic nodes. However, high-efficiency promoters have been lacking. RESULTS Here we report a strong constitutive promoter Pt211 in expressing multiple target genes in oleaginous microalga Phaeodactylum tricornutum. Pt211 was revealed to contain significant cis-acting elements. GUS reporter and principal genes glycerol-3-phosphate acyltransferase (GPAT) and diacylglycerol acyltransferase 2 (DGAT2) involved in triacylglycerol biosynthesis were tested under driven of Pt211 in P. tricornutum. GUS staining and qPCR analysis showed strong GUS expression. DGAT2 and GPAT linked with a designed 2A sequence exhibited higher transcript abundances than WT, while algal growth and photosynthesis were not impaired. CONCLUSION The total lipid content increased notably by 2.6-fold compared to WT and reached up to 57.5% (dry cell weight). Overall, our findings report a strong promoter and a strategy for coordinated manipulation of complex metabolic pathways.
Collapse
Affiliation(s)
- Li-Gong Zou
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jia-Wen Chen
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Dan-Lin Zheng
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Srinivasan Balamurugan
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Da-Wei Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jie-Sheng Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
6
|
A novel riboregulator switch system of gene expression for enhanced microbial production of succinic acid. J Ind Microbiol Biotechnol 2018; 45:253-269. [PMID: 29399712 DOI: 10.1007/s10295-018-2019-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/29/2018] [Indexed: 12/21/2022]
Abstract
In this paper, a novel riboregulator Switch System of Gene Expression including an OFF-TO-ON switch and an ON-TO-OFF switch was designed to regulate the expression state of target genes between "ON" and "OFF" by switching the identifiability of ribosome recognition site (RBS) based on the thermodynamic stability of different RNA-RNA hybridizations between RBS and small noncoding RNAs. The proposed riboregulator switch system was employed for the fermentative production of succinic acid using an engineered strain of E. coli JW1021, during which the expression of mgtC gene was controlled at "ON" state and that of pepc and ecaA genes were controlled at the "OFF" state in the lag phase and switched to the "OFF" and "ON" state once the strain enters the logarithmic phase. The results showed that using the strain of JW1021, the yield and productivity of succinic acid can reach 0.91 g g-1 and 3.25 g L-1 h-1, respectively, much higher than those using the strains without harboring the riboregulator switch system.
Collapse
|
7
|
Převorovský M. pREPORT: a multi-readout transcription reporter vector for fission yeast. Yeast 2014; 32:327-34. [PMID: 25395321 DOI: 10.1002/yea.3055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/08/2014] [Accepted: 11/10/2014] [Indexed: 11/08/2022] Open
Abstract
Transcription factors are prominent regulators of gene expression that execute responses to various intracellular and extracellular stimuli. Recombinant transcription reporter systems can be conveniently used to study the DNA binding preferences and regulatory activity of a transcription factor under a range of conditions. Several reporter genes have been used to study transcription regulation in the fission yeast Schizosaccharomyces pombe. Each of these reporters has distinct advantages, such as high sensitivity or ease of use, and limitations, such as prohibitive costs or use of hazardous substances. To combine the strengths and mitigate the weaknesses of individual reporter genes, we have created pREPORT, a flexible multi-readout transcription reporter vector for fission yeast that employs an enhanced GFP-lacZ fusion and a customizable minimal promoter. With pREPORT, gene expression driven by the transcription factor of interest can be quantified in a number of ways, both in live cells and in vitro, using a single reporter construct.
Collapse
Affiliation(s)
- Martin Převorovský
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|