1
|
Aminian A, Motamedian E. Investigating ethanol production using the Zymomonas mobilis crude extract. Sci Rep 2023; 13:1165. [PMID: 36670195 PMCID: PMC9860009 DOI: 10.1038/s41598-023-28396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Cell-free systems have become valuable investigating tools for metabolic engineering research due to their easy access to metabolism without the interference of the membrane. Therefore, we applied Zymomonas mobilis cell-free system to investigate whether ethanol production is controlled by the genes of the metabolic pathway or is limited by cofactors. Initially, different glucose concentrations were added to the extract to determine the crude extract's capability to produce ethanol. Then, we investigated the genes of the metabolic pathway to find the limiting step in the ethanol production pathway. Next, to identify the bottleneck gene, a systemic approach was applied based on the integration of gene expression data on a cell-free metabolic model. ZMO1696 was determined as the bottleneck gene and an activator for its enzyme was added to the extract to experimentally assess its effect on ethanol production. Then the effect of NAD+ addition at the high concentration of glucose (1 M) was evaluated, which indicates no improvement in efficiency. Finally, the imbalance ratio of ADP/ATP was found as the controlling factor by measuring ATP levels in the extract. Furthermore, sodium gluconate as a carbon source was utilized to investigate the expansion of substrate consumption by the extract. 100% of the maximum theoretical yield was obtained at 0.01 M of sodium gluconate while it cannot be consumed by Z. mobilis. This research demonstrated the challenges and advantages of using Z. mobilis crude extract for overproduction.
Collapse
Affiliation(s)
- Amirhossein Aminian
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran
| | - Ehsan Motamedian
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran.
| |
Collapse
|
2
|
Zhang W, Kang J, Wang C, Ping W, Ge J. Effects of pyruvate decarboxylase ( pdc1, pdc5) gene knockout on the production of metabolites in two haploid Saccharomyces cerevisiae strains. Prep Biochem Biotechnol 2021; 52:62-69. [PMID: 33881948 DOI: 10.1080/10826068.2021.1910958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Saccharomyces cerevisiae has good reproductive ability in both haploid and diploid forms, a pyruvate decarboxylase plays an important role in S. cerevisiae cell metabolism. In this study, pdc1 and pdc5 double knockout strains of S. cerevisiae H14-02 (MATa type) and S. cerevisiae H5-02 (MATα type) were obtained by the Cre/loxP technique. The effects of the deletion of pdc1 and pdc5 on the metabolites of the two haploid S. cerevisiae strains were consistent. In S. cerevisiae H14-02, the ethanol conversion decreased by 30.19%, the conversion of glycerol increased by 40.005%, the concentration of acetic acid decreased by 43.54%, the concentration of acetoin increased by 12.79 times, and the activity of pyruvate decarboxylase decreased by 40.91% compared to those in the original H14 strain. The original S. cerevisiae haploid strain H14 produced a small amount of acetoin but produced very little 2,3-butanediol. However, S. cerevisiae H14-02 produced 1.420 ± 0.063 g/L 2,3-BD. This study not only provides strain selection for obtaining haploid strains with a high yield of 2,3-BD but also lays a foundation for haploid S. cerevisiae to be used as a new tool for genetic research and breeding programs.
Collapse
Affiliation(s)
- Wen Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Jie Kang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Changli Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Wenxiang Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
3
|
The isc gene cluster expression ethanol tolerance associated improves its ethanol production by organic acids flux redirection in the ethanologenic Escherichia coli KO11 strain. World J Microbiol Biotechnol 2019; 35:189. [PMID: 31748890 DOI: 10.1007/s11274-019-2769-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/13/2019] [Indexed: 02/02/2023]
Abstract
Fossil fuels consumption impacts the greenhouse gas emissions. Biofuels are considered as alternative renewable energy sources to reduce the fossil fuels dependency. Bioethanol produced by recombinant microorganisms is a widely suggested alternative to increase the yield in fermentation processes. However, ethanol and acetate accumulation under the fermentation process had been described as important stressors for the metabolic capabilities of the microorganisms, stopping the fermentation process and affecting the ethanol yield. Ethanol tolerance is a determining factor in the improvement of fermentative properties of microorganisms; however understanding of ethanol tolerance is limited. The engineered Escherichia coli KO11 strain has been studied in detail and used as an ethanologenic bacteria model. The strain is capable of using glucose and xylose for an efficient ethanol yield. In the current work, the effect of the iron-sulfur cluster (ISC) over-expression in the KO11 strain, on its tolerance and ethanol yield, was evaluated. Fatty acids profiles of membrane phospholipids in the E. coli KO11 were modified under ethanol addition, but not due to the hscA mutation. The hscA mutation provoked a decrease in ethanol tolerance in the Kmp strain when was grown with 2% ethanol, in comparison to KO11 parent strain. Ethanol tolerance was improved in the mutant Kmp complemented with the recombinant isc gene cluster (pJC10 plasmid) from LD50 2.16% to LD50 3.8% ethanol. In batch fermentation on 1 L bioreactor using mineral medium with glucose (120 g/L), the KO11 strain showed ethanol production efficiencies of ~ 76.9%, while the hscA mutant (Kmp) ~ 75.4% and the transformed strain Kmp(pJC10) showed ~ 92.4% efficiency. Ethanol amount increase in the engineered Kmp(pJC10) strain was correlated with less organic acids (such as acetate and lactate) production in the fermentation medium (2.3 g/L), compared to that in the KO11 (17.05 g/L) and the Kmp (16.62 g/L). Alcohol dehydrogenase (ADH) activity was increased ~ 350% in the transformed Kmp(pJC10) strain, whereas in the Kmp mutant, the phosphoglycerate kinase (PGK), pyruvate kinase (PYK), and ADH activities were diminished, comparing to KO11. The results suggest that the isc system over-expression in the ethanologenic E. coli KO11 strain, increases ethanol yield mainly by improving ethanol tolerance and ADH activity, and by redirecting the metabolic flux from acetate synthesis to ethanol.
Collapse
|
4
|
Alcover N, Carceller A, Álvaro G, Guillén M. Zymobacter palmae pyruvate decarboxylase production process development: Cloning in Escherichia coli, fed-batch culture and purification. Eng Life Sci 2019; 19:502-512. [PMID: 32625027 DOI: 10.1002/elsc.201900010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/25/2019] [Accepted: 04/24/2019] [Indexed: 11/11/2022] Open
Abstract
Pyruvate decarboxylase (PDC) is responsible for the decarboxylation of pyruvate, producing acetaldehyde and carbon dioxide and is of high interest for industrial applications. PDC is a very powerful tool in the enzymatic synthesis of chiral amines by combining it with transaminases when alanine is used as amine donor. However, one of the main drawback that hampers its use in biocatalysis is its production and the downstream processing on scale. In this paper, a production process of PDC from Zymobacter palmae has been developed. The enzyme has been cloned and overexpressed in Escherichia coli. It is presented, for the first time, the evaluation of the production of recombinant PDC in a bench-scale bioreactor, applying a substrate-limiting fed-batch strategy which led to a volumetric productivity and a final PDC specific activity of 6942 U L-1h-1 and 3677 U gDCW-1 (dry cell weight). Finally, PDC was purified in fast protein liquid chromatography equipment by ion exchange chromatography. The developed purification process resulted in 100% purification yield and a purification factor of 3.8.
Collapse
Affiliation(s)
- Natàlia Alcover
- Bioprocess Engineering and Applied Biocatalysis Group, Department of Chemical Biological and Environmental Engineering Universitat Autònoma de Barcelona Bellaterra Spain
| | - Albert Carceller
- Bioprocess Engineering and Applied Biocatalysis Group, Department of Chemical Biological and Environmental Engineering Universitat Autònoma de Barcelona Bellaterra Spain
| | - Gregorio Álvaro
- Bioprocess Engineering and Applied Biocatalysis Group, Department of Chemical Biological and Environmental Engineering Universitat Autònoma de Barcelona Bellaterra Spain
| | - Marina Guillén
- Bioprocess Engineering and Applied Biocatalysis Group, Department of Chemical Biological and Environmental Engineering Universitat Autònoma de Barcelona Bellaterra Spain
| |
Collapse
|
5
|
Seyfi R, Babaeipour V, Mofid MR, Kahaki FA. Expression and production of recombinant scorpine as a potassium channel blocker protein in Escherichia coli. Biotechnol Appl Biochem 2018; 66:119-129. [DOI: 10.1002/bab.1704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/04/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Roghayyeh Seyfi
- Department of Bioscience and Biotechnology; Malek Ashtar University of Technology; Tehran Iran
| | - Valiollah Babaeipour
- Department of Bioscience and Biotechnology; Malek Ashtar University of Technology; Tehran Iran
| | - Mohammad Reza Mofid
- Department of Biochemistry; Bioinformatics Research Center; School of Pharmacy and Pharmaceutical Sciences; Isfahan University of Medical Sciences; Isfahan Iran
| | - Fatemeh Abarghooi Kahaki
- Department of Biotechnology; School of Advanced Technologies in Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
| |
Collapse
|
6
|
Wang B, Bai Y, Fan T, Zheng X, Cai Y. Characterisation of a thiamine diphosphate-dependent alpha-keto acid decarboxylase from Proteus mirabilis JN458. Food Chem 2017; 232:19-24. [DOI: 10.1016/j.foodchem.2017.03.164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/20/2017] [Accepted: 03/29/2017] [Indexed: 11/16/2022]
|
7
|
Cao QH, Shao HH, Qiu H, Li T, Zhang YZ, Tan XM. Using the CRISPR/Cas9 system to eliminate native plasmids of Zymomonas mobilis ZM4. Biosci Biotechnol Biochem 2017; 81:453-459. [DOI: 10.1080/09168451.2016.1189312] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abstract
The CRISPR/Cas system can be used to simply and efficiently edit the genomes of various species, including animals, plants, and microbes. Zymomonas mobilis ZM4 is a highly efficient, ethanol-producing bacterium that contains five native plasmids. Here, we constructed the pSUZM2a-Cas9 plasmid and a single-guide RNA expression plasmid. The pSUZM2a-Cas9 plasmid was used to express the Cas9 gene cloned from Streptococcus pyogenes CICC 10464. The single-guide RNA expression plasmid pUC-T7sgRNA, with a T7 promoter, can be used for the in vitro synthesis of single-guide RNAs. This system was successfully employed to knockout the upp gene of Escherichia coli and the replicase genes of native Z. mobilis plasmids. This is the first study to apply the CRISPR/Cas9 system of S. pyogenes to eliminate native plasmids in Z. mobilis. It provides a new method for plasmid curing and paves the way for the genomic engineering of Z. mobilis.
Collapse
Affiliation(s)
- Qing-Hua Cao
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, Sichuan University, Chengdu, Sichuan, China
| | - Huan-Huan Shao
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, Sichuan University, Chengdu, Sichuan, China
| | - Hui Qiu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, Sichuan University, Chengdu, Sichuan, China
| | - Tao Li
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, Sichuan University, Chengdu, Sichuan, China
| | - Yi-Zheng Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, Sichuan University, Chengdu, Sichuan, China
| | - Xue-Mei Tan
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Novel integration strategy coupling codon and fermentation optimization for efficiently enhancing sarcosine oxidase (SOX) production in recombinant Escherichia coli. World J Microbiol Biotechnol 2015; 31:707-16. [DOI: 10.1007/s11274-014-1795-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/29/2014] [Indexed: 01/06/2023]
|