1
|
Barbosa Rodrigues JD, Moreira RO, de Souza JAM, Desidério JA. Interaction of insecticidal proteins from Pseudomonas spp. and Bacillus thuringiensis for boll weevil management. PLoS One 2023; 18:e0294654. [PMID: 38033128 PMCID: PMC10688866 DOI: 10.1371/journal.pone.0294654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Cotton crop yields are largely affected by infestations of Anthonomus grandis, which is its main pest. Although Bacillus thuringiensis (Bt) derived proteins can limit insect pest infestations, the diverse use of control methods becomes a viable alternative in order to prolong the use of technology in the field. One of the alternative methods to Bt technology has been the utilization of certain Pseudomonas species highly efficient in controlling coleopteran insects have been used to produce highly toxic insecticidal proteins. This study aimed to evaluate the toxicity of IPD072Aa and PIP-47Aa proteins, isolated from Pseudomonas spp., in interaction with Cry1Ia10, Cry3Aa, and Cry8B proteins isolated from B. thuringiensis, to control A. grandis in cotton crops. The genes IPD072Aa and PIP-47Aa were synthesized and cloned into a pET-SUMO expression vector. Moreover, Cry1Ia10, Cry3Aa, and Cry8B proteins were obtained by inducing recombinant E. coli clones, which were previously acquired by our research group from the Laboratory of Bacteria Genetics and Applied Biotechnology (LGBBA). These proteins were visualized in SDS-PAGE, quantified, and incorporated into an artificial diet to estimate their lethal concentrations (LC) through individual or combined bioassays. The results of individual toxicity revealed that IPD072Aa, PIP-47Aa, Cry1Ia10, Cry3Aa, and Cry8B were efficient in controlling A. grandis, with the latter being the most toxic. Regarding interaction assays, a high synergistic interaction was observed between Cry1Ia10 and Cry3Aa. All interactions involving Cry3Aa and PIP-47Aa, when combined with other proteins, showed a clear synergistic effect. Our findings highlighted that the tested proteins in combination, for the most part, increase toxicity against A. grandis neonate larvae, suggesting possible constructions for pyramiding cotton plants to the manage and the control boll weevils.
Collapse
Affiliation(s)
- Jardel Diego Barbosa Rodrigues
- Biology Department, Faculty of Agrarian and Veterinary Sciences (Jaboticabal Campus), São Paulo State University (UNESP), São Paulo, Brazil
| | - Raquel Oliveira Moreira
- Biology Department, Faculty of Agrarian and Veterinary Sciences (Jaboticabal Campus), São Paulo State University (UNESP), São Paulo, Brazil
| | - Jackson Antônio Marcondes de Souza
- Biology Department, Faculty of Agrarian and Veterinary Sciences (Jaboticabal Campus), São Paulo State University (UNESP), São Paulo, Brazil
| | - Janete Apparecida Desidério
- Biology Department, Faculty of Agrarian and Veterinary Sciences (Jaboticabal Campus), São Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|
2
|
M N, G S S, J S, K H, C S, P M, R N, C P S, N C, Ram B, C A, B S. Whole genome analysis and functional characterization of a novel Bacillus thuringiensis (Bt 62) isolate against sugarcane white grub Holotrichia serrata (F). Genomics 2021; 114:185-195. [PMID: 34933070 DOI: 10.1016/j.ygeno.2021.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/18/2021] [Accepted: 12/15/2021] [Indexed: 11/19/2022]
Abstract
In this study, we report the whole genome assembly of Bt 62, a novel isolate harbouring cry8 holotype gene identified by us earlier. Sequencing was carried out using a combination of Illumina NextSeq 500 and Oxford Nanopore sequencing Technologies (ONT). The final assembled genome was 6.13 Mb comprising a circular chromosome and four plasmids. The bioassay studies against Holotrichia serrata (F.) (Coleoptera: Scarabaeidae), a polyphagous pest infesting sugarcane and other crops, indicated significant toxicity to first instar grubs over untreated larvae achieving a highest mean mortality of 91.11% for various doses tested. In vitro proteolytic assay and histopathological studies of the midgut of infected white grubs revealed proteolytic processing of the protoxin and extensive degeneration of larval midgut epithelial cells. The results demonstrate that this novel isolate could be used as a biopesticide or its crystal toxin genes could be expressed in sugarcane and other crops for resistance against H. serrata.
Collapse
Affiliation(s)
- Naveenarani M
- ICAR- Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007, India
| | - Suresha G S
- ICAR- Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007, India
| | - Srikanth J
- ICAR- Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007, India
| | - Hari K
- ICAR- Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007, India
| | - Sankaranarayanan C
- ICAR- Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007, India
| | - Mahesh P
- ICAR- Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007, India
| | - Nirmala R
- ICAR- Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007, India
| | - Swathik C P
- ICAR- Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007, India
| | - Crickmore N
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Bakshi Ram
- ICAR- Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007, India
| | - Appunu C
- ICAR- Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007, India
| | - Singaravelu B
- ICAR- Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007, India.
| |
Collapse
|
3
|
Wang K, Liu Q, Liu C, Geng L, Wang G, Zhang J, Shu C. Dominant egg surface bacteria of Holotrichia oblita (Coleoptera: Scarabaeidae) inhibit the multiplication of Bacillus thuringiensis and Beauveria bassiana. Sci Rep 2021; 11:9499. [PMID: 33947948 PMCID: PMC8096819 DOI: 10.1038/s41598-021-89009-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/13/2021] [Indexed: 02/01/2023] Open
Abstract
Holotrichia oblita (Coleoptera: Scarabaeidae) and some other scarab beetles are the main soil-dwelling pests in China. Bacillus thuringiensis (Bt) and Beauveria bassiana (Bb) are entomopathogens that have been used as biocontrol agents of various pests. However, scarab larvae especially H. oblita exhibited strong adaptability to these pathogens. Compared to other scarabs, H. oblita could form a specific soil egg case (SEC) structure surrounding its eggs, and young larvae complete the initial development process inside this structure. In this study, we investigated the role of SEC structure and microorganisms from SEC and egg surface in pathogen adaptability. 16S rRNA gene analysis revealed low bacterial richness and high community unevenness in egg surface, with Proteobacteria, Firmicutes, Bacteroidetes and Fusobacteria dominating. In terms of OTUs composition analysis, the data show that the egg surface contains a large number of unique bacteria, indicating that the egg bacterial community may be derived from maternal transmission. Furthermore, we found that all culturable bacteria isolated from egg surface possessed antimicrobial activity against both Bt and Bb. The Pseudomonas bacteria with a significantly higher abundance in egg surface showed strong Bt- and Bb antagonistic ability. In conclusion, this study demonstrated a unique and antimicrobial bacterial community of H. oblita egg surface, which may contribute to its adaptability. Furthermore, the specific SEC structure surrounding the H. oblita eggs will provide a stable microenvironment for the eggs and egg surface bacteria, which probably provides more advantages for H. oblita adaptation ability.
Collapse
Affiliation(s)
- Kui Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qi Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chunqin Liu
- Cangzhou Academy of Agricultural and Forestry Sciences, Cangzhou, 061001, China
| | - Lili Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guirong Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
4
|
Characterization of Two Novel Bacillus thuringiensis Cry8 Toxins Reveal Differential Specificity of Protoxins or Activated Toxins against Chrysomeloidea Coleopteran Superfamily. Toxins (Basel) 2020; 12:toxins12100642. [PMID: 33027918 PMCID: PMC7599620 DOI: 10.3390/toxins12100642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 01/13/2023] Open
Abstract
Scarabaeoidea and Chrysomeloidea insects are agriculture-destructive coleopteran pests. Few effective Bacillus thuringiensis (Bt) insecticidal proteins against these species have been described. Bt isolate BtSU4 was found to be active against coleopteran insects. Genome sequencing revealed two new cry8 genes in BtSU4, designated as cry8Ha1 and cry8Ia1. Both genes expressed a 135 kDa protoxin forming irregular shape crystals. Bioassays performed with Cry8Ha1 protoxin showed that it was toxic to both larvae and adult stages of Holotrichia parallela, also to Holotrichia oblita adults and to Anoplophora glabripennis larvae, but was not toxic to larval stages of H. oblita or Colaphellus bowringi. The Cry8Ia1 protoxin only showed toxicity against H. parallela larvae. After activation with chymotrypsin, the Cry8Ha1 activated toxin lost its insecticidal activity against H. oblita adults and reduced its activity on H. parallela adults, but gained toxicity against C. bowringi larvae, a Chrysomeloidea insect pest that feeds on crucifer crops. The chymotrypsin activated Cry8Ia1 toxin did not show toxicity to any one of these insects. These data show that Cry8Ha1 and Cry8Ia1 protoxin and activated toxin proteins have differential toxicity to diverse coleopteran species, and that protoxin is a more robust protein for the control of coleopteran insects.
Collapse
|
5
|
Insecticidal Activity of Bacillus thuringiensis Proteins Against Coleopteran Pests. Toxins (Basel) 2020; 12:toxins12070430. [PMID: 32610662 PMCID: PMC7404982 DOI: 10.3390/toxins12070430] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/17/2022] Open
Abstract
Bacillus thuringiensis is the most successful microbial insecticide agent and its proteins have been studied for many years due to its toxicity against insects mainly belonging to the orders Lepidoptera, Diptera and Coleoptera, which are pests of agro-forestry and medical-veterinary interest. However, studies on the interactions between this bacterium and the insect species classified in the order Coleoptera are more limited when compared to other insect orders. To date, 45 Cry proteins, 2 Cyt proteins, 11 Vip proteins, and 2 Sip proteins have been reported with activity against coleopteran species. A number of these proteins have been successfully used in some insecticidal formulations and in the construction of transgenic crops to provide protection against main beetle pests. In this review, we provide an update on the activity of Bt toxins against coleopteran insects, as well as specific information about the structure and mode of action of coleopteran Bt proteins.
Collapse
|
6
|
Wang K, Shu C, Zhang J. Effective bacterial insecticidal proteins against coleopteran pests: A review. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21558. [PMID: 31094011 DOI: 10.1002/arch.21558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/02/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
Coleoptera, the order of insects commonly referred to as beetles, are able to survive in various environments, and thus, comprise the largest order in the animal kingdom. Coleopterans mainly include coprophagous and phytophagous lineages, and many species of the latter lineage are serious pests. In addition to traditional chemical methods, biocontrol measures using various bacterial insecticidal proteins have also gradually been developed to control these insect pests. In this review, we summarized the possible coleopteran-pest-specific bacteria and insecticidal proteins that have been reported in the literature thus far and have provided a comprehensive overview and long-term guidance for the control of coleopteran pests in the future.
Collapse
Affiliation(s)
- Kui Wang
- College of Life Sciences, Northeast Agricultural University, Harbin, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Use of Redundant Exclusion PCR To Identify a Novel Bacillus thuringiensis Cry8 Toxin Gene from Pooled Genomic DNA. Appl Environ Microbiol 2016; 82:3808-3815. [PMID: 27084017 DOI: 10.1128/aem.00862-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/12/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED With the aim of optimizing the cloning of novel genes from a genomic pool containing many previously identified homologous genes, we designed a redundant exclusion PCR (RE-PCR) technique. In RE-PCR, a pair of generic amplification primers are combined with additional primers that are designed to specifically bind to redundant, unwanted genes that are a subset of those copied by the amplification primers. During RE-PCR, the specific primer blocks amplification of the full-length redundant gene. Using this method, we managed to clone a number of cry8 or cry9 toxin genes from a pool of Bacillus thuringiensis genomic DNA while excluding amplicons for cry9Da, cry9Ea, and cry9Eb The method proved to be very efficient at increasing the number of rare genes in the resulting library. One such rare (and novel) cry8-like gene was expressed, and the encoded toxin was shown to be toxic to Anomala corpulenta IMPORTANCE Protein toxins from the bacterium Bacillus thuringiensis are being increasingly used as biopesticides against a wide range of insect pests, yet the search for new or improved toxins is becoming more difficult, as traditional methods for gene discovery routinely isolate previously identified clones. This paper describes an approach that we have developed to increase the success rate for novel toxin gene identification through reducing or eliminating the cloning of previously characterized genes.
Collapse
|
8
|
Shu C, Tan S, Yin J, Soberón M, Bravo A, Liu C, Geng L, Song F, Li K, Zhang J. Assembling of Holotrichia parallela (dark black chafer) midgut tissue transcriptome and identification of midgut proteins that bind to Cry8Ea toxin from Bacillus thuringiensis. Appl Microbiol Biotechnol 2015; 99:7209-18. [PMID: 26135984 DOI: 10.1007/s00253-015-6755-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/31/2015] [Accepted: 06/04/2015] [Indexed: 12/21/2022]
Abstract
Holotrichia parallela is one of the most severe crop pests in China, affecting peanut, soybean, and sweet potato crops. Previous work showed that Cry8Ea toxin is highly effective against this insect. In order to identify Cry8Ea-binding proteins in the midgut cells of H. parallela larvae, we assembled a midgut tissue transcriptome by high-throughput sequencing and used this assembled transcriptome to identify Cry8Ea-binding proteins by liquid chromatography-tandem mass spectrometry (LC-MS/MS). First, we obtained de novo sequences of cDNAs from midgut tissue of H. parallela larvae and used available cDNA data in the GenBank. In a parallel assay, we obtained 11 Cry8Ea-binding proteins by pull-down assays performed with midgut brush border membrane vesicles. Peptide sequences from these proteins were matched to the H. parallela newly assembled midgut transcriptome, and 10 proteins were identified. Some of the proteins were shown to be intracellular proteins forming part of the cell cytoskeleton and/or vesicle transport such as actin, myosin, clathrin, dynein, and tubulin among others. In addition, an apolipophorin, which is a protein involved in lipid metabolism, and a novel membrane-bound alanyl aminopeptidase were identified. Our results suggest that Cry8Ea-binding proteins could be different from those characterized for Cry1A toxins in lepidopteran insects.
Collapse
Affiliation(s)
- Changlong Shu
- State Key Laboratory of Biology for Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|