1
|
Pradal I, Weckx S, De Vuyst L. The production of esters by specific sourdough lactic acid bacteria species is limited by the precursor concentrations. Appl Environ Microbiol 2025; 91:e0221624. [PMID: 40013785 PMCID: PMC11921326 DOI: 10.1128/aem.02216-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/01/2025] [Indexed: 02/28/2025] Open
Abstract
The production of fruity esters by sourdough lactic acid bacteria (LAB) and yeasts has not been explored in detail. Moreover, the biosynthesis of esters by LAB species under conditions similar to those occurring during sourdough production is still questionable. Concerning yeasts, a genome mining of 75 genomes revealed a strain dependency of the presence of seven specific ester biosynthesis genes. Accordingly, PCR assays to detect these acetate (ATF1 and ATF2) and ethyl ester (EHT1 and EEB1) biosynthesis genes were developed and used to screen 91 strains of yeast species. Concerning LAB, a genome mining of 401 genomes revealed a species dependency of the presence of three esterase-encoding genes (estA, estB, and estC). A phenotypic analysis carried out with a selection of 10 strains of the LAB species Companilactobacillus crustorum, Companilactobacillus nantensis, Companilactobacillus paralimentarius, Fructilactobacillus sanfranciscensis, Lactiplantibacillus xiangfangensis, Levilactobacillus zymae, and Limosilactobacillus fermentum in a wheat sourdough simulation medium (WSSM) supplemented with ester precursor molecules ([higher] alcohols and fatty acids) revealed that their ester biosynthesis capacity was limited by the precursor concentrations. Ethyl acetate and ethyl lactate were produced by all strains, except for those of Frul. sanfranciscensis. These results suggested that one of the esterase-encoding genes considered could be implicated in the ethyl acetate and/or ethyl lactate biosynthesis. Overall, the ester biosynthesis capacity by LAB is of great interest in view of fruity flavor formation during sourdough and sourdough bread productions. IMPORTANCE The present study gave insights into the production of esters, which impart fruity flavors to fermented foods, by not only sourdough yeasts but also lactic acid bacteria. It showed that some lactic acid bacteria species can synthesize the esters ethyl acetate (sweet notes) and ethyl lactate (creamy notes) under specific conditions. The information gathered during the present study will enable sourdough bakers and companies from the bakery sector to get more information on how to produce sourdoughs that can add fruity notes to the final products after a rational screening and selection of potential starter culture strains.
Collapse
Affiliation(s)
- Inés Pradal
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
2
|
Zheng Y, Oellig C, Zhang Y, Liu Y, Chen Y, Zhang Y. Characterization of the key odorants in goji wines in three levels of sweetness by applications of sensomics approach. Food Chem 2024; 461:140803. [PMID: 39154457 DOI: 10.1016/j.foodchem.2024.140803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
The correlations and differences of the key odorants were systematically conducted among three sweetness of goji wines by the sensomics approach. After aroma (extract) dilution analysis, 67, 67, and 66 odorants were screened in sweet goji wine, semi-dry goji wine, and dry goji wine, in which, 63 odorants were identified in all goji wines. Determination of 53 odorants revealed a total of 30 odorants with the concentrations surpassing their olfactory thresholds. Overall, the odor activity values (OAVs) of ketones decreased, while esters, alcohols, phenols, and aldehydes increased with the decrease in sweetness in goji wine samples. Nevertheless, (E)-β-damascenone, trans- and cis-whisky lactones, and 3-methyl-2,4-nonanedione, evoked cooked apple-like, coconut-like, and hay-like odor impressions in goji wines and showed the highest OAVs. A reliable evaluation of the aroma contributions was executed as aroma recombinations and suggested a successful evaluation of key odorants in goji wines.
Collapse
Affiliation(s)
- Yan Zheng
- University of Hohenheim, Department of Food Chemistry and Analytical Chemistry (170a), Garbenstraße 28, 70599 Stuttgart, Germany.
| | - Claudia Oellig
- University of Hohenheim, Department of Food Chemistry and Analytical Chemistry (170a), Garbenstraße 28, 70599 Stuttgart, Germany.
| | - Youfeng Zhang
- University of Hohenheim, Department of Flavor Chemistry (150h), Fruwirthstraße 12, 70599 Stuttgart, Germany.
| | - Yuan Liu
- Ningxia University, School of Food Science and Engineering, 750021 Yinchuan, PR China; Shanghai Jiao Tong University, School of Agriculture & Biology, Department of Food Science & Technology, Dongchuan Road 800, 200240 Shanghai, PR China.
| | - Yanping Chen
- Shanghai Jiao Tong University, School of Agriculture & Biology, Department of Food Science & Technology, Dongchuan Road 800, 200240 Shanghai, PR China.
| | - Yanyan Zhang
- University of Hohenheim, Department of Flavor Chemistry (150h), Fruwirthstraße 12, 70599 Stuttgart, Germany.
| |
Collapse
|
3
|
Martínez A, Molina F, Hernández LM, Ramírez M. Improving wine fermentation efficiency of Torulaspora delbrueckii by increasing the ploidy of yeast inocula. Int J Food Microbiol 2024; 425:110894. [PMID: 39216361 DOI: 10.1016/j.ijfoodmicro.2024.110894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The life cycle of most non-conventional yeasts, such as Torulaspora delbrueckii (Td), is not as well-understood as that of Saccharomyces cerevisiae (Sc). Td is generally assumed to be haploid, which detracts from some biotechnological properties compared to diploid Sc strains. We analyzed the life cycle of several Td wine strains and found that they were mainly diploid during exponential growth in rich medium. However, most cells became haploid in stationary phase, as observed for Sc haploid heterothallic strains. When transferred and incubated in nutrient-deficient media, these haploid cells became polymorphic, enlarged, and transitioned to diploid or polyploid states. The increased ploidy, that mainly results from supernumerary mitosis without cytokinesis, was followed by sporulation. A similar response was observed in yeasts that remained alive during the second fermentation of base wine for sparkling wine making, or during growth in ethanol-supplemented medium. This response was not observed in the Sc yeast populations under any of the experimental conditions assayed, which suggests that it is a specific adaptation of Td to the stressful fermentation conditions. This response allows Td yeasts to remain alive and metabolically active longer during wine fermentation. Consequently, we designed procedures to increase the cell size and ploidy of haploid Td strains. Td inocula with increased ploidy showed enhanced fermentation efficiency compared to haploid inocula of the same strains.
Collapse
Affiliation(s)
- Alberto Martínez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, 06006 Badajoz, Spain
| | - Felipe Molina
- Departamento de Bioquímica, Biología Molecular y Genética (Área de Genética), Universidad de Extremadura, Avda. de Elvas s/n., 06006 Badajoz, Spain
| | - Luis M Hernández
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, 06006 Badajoz, Spain
| | - Manuel Ramírez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, 06006 Badajoz, Spain.
| |
Collapse
|
4
|
Yaqoob S, Imtiaz A, Khalifa I, Maqsood S, Ullah R, Shahat AA, Al-Asmari F, Murtaza MS, Qian JY, Ma Y. Multi-frequency sono-fermentation with mono and co-cultures of LAB synergistically enhance mulberry juice: Evidence from metabolic, micromorphological, sensorial, and computational approaches. ULTRASONICS SONOCHEMISTRY 2024; 111:107117. [PMID: 39454510 PMCID: PMC11541811 DOI: 10.1016/j.ultsonch.2024.107117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
The effect of multi-frequency ultrasound-assisted (20/28/40 KHz) lactic acid bacteria (LAB- Lacticaseibacillus casei, Lactiplantibacillus plantarum, Lacticaseibacillus paracasei, Lactobacillus acidophilus, and Lactobacillus helveticus) fermentation (mono and co-cultures) on the metabolic, structural, micromorphological, and sensorial properties of mulberry juice were evaluated. Results indicated that multi-frequency ultrasound-assisted fermentation significantly modified the microstructure of mulberry juice powder, resulting in more porous and rougher surfaces with irregular indentations. Total phenolic content in the best-performing sample (S10) increased to 365.36 mg GAE/mL, while total flavonoid content rose to 139.20 mg RE/mL (p < 0.05). Antioxidant activity, as measured by DPPH and FRAP assays, also showed considerable improvement, with DPPH scavenging activity increasing to 87.45 % and FRAP-value to 3.27 mM TE/mL (p < 0.05). Additionally, HPLC-UV analysis revealed that the amendment in the concentrations of cyanidin-3-rutinoside (47.47 mg/L) and peonidin-3-O-glucoside (66.86 mg/L) in the S2-based sample. E-nose analysis demonstrated intense flavor profiles in fermented samples, particularly in sample S15. Sensory evaluation also highlighted that the fruity and floral aromas in co-culture fermented samples were enhanced, notably in S10, S7, and S14. Thus, combining multifrequency ultrasonication and fermentation significantly enhances the antioxidants capacity, flavor profile, micro-morphology, and overall quality of mulberry juice.
Collapse
Affiliation(s)
- Sanabil Yaqoob
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China; Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Aysha Imtiaz
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Ibrahim Khalifa
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China; Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt; Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdelaaty A Shahat
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahad Al-Asmari
- Department of Food and Nutrition Sciences, College of Agriculture and Food Sciences, King Saud University, Saudi Arabia
| | - Mian Shamas Murtaza
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jian-Ya Qian
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China.
| | - Yongkun Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
5
|
Zeng C, Mu Y, Yuan J, Zhang H, Song J, Kang S. Effects of Torulaspora delbrueckii and Saccharomyces cerevisiae Co-Fermentation on the Physicochemical and Flavor Compounds of Huaniu Apple Cider. Molecules 2024; 29:1750. [PMID: 38675570 PMCID: PMC11052012 DOI: 10.3390/molecules29081750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The effects of different fermentation methods utilizing Torulaspora delbrueckii 1004 and Saccharomyces cerevisiae 32169 on the physicochemical properties, organic acid content, polyphenol and flavonoid concentrations, antioxidant activity, and volatile aroma compounds of Huaniu apple cider were investigated in this study. Employing methods of single inoculation, co-inoculation, and sequential inoculation, it was found that sequential fermentation exhibited strong fermentative power in the initial stages, effectively reducing the content of soluble solids and achieving a balanced composition of malic, succinic, and citric acids while maintaining a lower titratable acidity. Sequential inoculation was observed to significantly enhance the total polyphenols and flavonoids, as well as the antioxidant capacity (p < 0.05). Specifically, in the synthesis of volatile aroma compounds, sequential inoculation significantly enhanced the richness and diversity of the Huaniu apple cider's aromas, particularly in terms of the concentration of ester compounds (p < 0.05). Principal component analysis further confirmed the superiority of sequential inoculation in terms of aroma component diversity and richness. The findings of this study suggest that sequential inoculation of fermentation with non-Saccharomyces and S. cerevisiae is an effective strategy for optimizing the flavor characteristics of Huaniu apple cider, offering valuable theoretical support and practical guidance for enhancing cider quality and fostering the development of new products.
Collapse
Affiliation(s)
| | | | | | | | | | - Sanjiang Kang
- Agricultural Product Storge and Processing Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; (C.Z.); (Y.M.); (J.Y.); (H.Z.); (J.S.)
| |
Collapse
|
6
|
Hickert LR, Cattani A, Manfroi L, Wagner R, Furlan JM, Sant'Anna V. Strategies on aroma formation in Chardonnay sparkling base wine: Different Saccharomyces cerevisiae strains, co-inoculation with Torulaspora delbrueckii and utilization of bentonite. Biotechnol Appl Biochem 2024; 71:96-109. [PMID: 37846152 DOI: 10.1002/bab.2524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
The worldwide production of sparkling wines has been growing annually, driven by a market demand for high quality and more complex products. The present study aimed to evaluate the fermentation of Chardonnay must using two different Saccharomyces cerevisiae yeasts, either alone (from commercial brands A and B) or in combination with Torulaspora delbrueckii (ScA + Td and ScB + Td, respectively), as well as the addition of bentonite to the fermentation with ScA (ScA + Ben), to investigate their impact on aroma formation in sparkling base wine. Enological parameters, volatile composition, and sensory profile were evaluated. The results showed notable differences in total sulfur dioxide and volatile acidity among the S. cerevisiae strains. Moreover, the esters ethyl acetate, isoamyl acetate, hexyl acetate, and phenethyl acetate showed significant differences among treatments. Esters are recognized for their contribution to fruity and floral aromas, making them an essential part of the aromatic profile of wines. The descriptive analysis revealed that ScB + Td had the highest intensity of floral and tropical fruit notes, as well as aromatic clarity. The use of bentonite did not affect the aromatic composition or sensory profile of the wine. Therefore, the co-inoculation of S. cerevisiae with T. delbrueckii can lead to a base wine with a higher intensity of important volatile compounds and sensory attributes, providing an important alternative to produce winery products with a more complex aroma profile.
Collapse
Affiliation(s)
- Lilian Raquel Hickert
- Life and Environmental Area, State University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andressa Cattani
- Life and Environmental Area, State University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luciano Manfroi
- Federal Institute of Education, Science and Technology of Rio Grande do Sul, Bento Gonçalves, Rio Grande do Sul, Brazil
| | - Roger Wagner
- Department of Food Technology and Science, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | | | - Voltaire Sant'Anna
- Life and Environmental Area, State University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
7
|
Silva-Sousa F, Oliveira B, Franco-Duarte R, Camarasa C, João Sousa M. Bridging the gap: linking Torulaspora delbrueckii genotypes to fermentation phenotypes and wine aroma. FEMS Yeast Res 2024; 24:foae034. [PMID: 39509285 PMCID: PMC11600337 DOI: 10.1093/femsyr/foae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024] Open
Abstract
Climate change and consumer preferences are driving innovation in winemaking, with a growing interest in non-Saccharomyces species. Among these, Torulaspora delbrueckii (Td) has gained recognition for its ability to reduce volatile acidity and enhance aromatic complexity in wine. However, knowledge regarding its phenotypic and genomic diversity impacting alcoholic fermentation remains limited. Aiming to elucidate the metabolic differences between Td and Saccharomyces cerevisiae (Sc) and the Td intraspecies diversity, we conducted a comprehensive metabolic characterization of 15 Td strains. This analysis delved beyond standard fermentation parameters (kinetics and major metabolites production) to explore non-conventional aromas and establish genotype-phenotype links. Our findings confirmed that most Td strains produce less acetic acid and more succinate and glycerol than Sc. The overall aromatic profiles of Td strains differed from Sc, exhibiting higher levels of monoterpenes and higher alcohols, while producing less acetate esters, fatty acids, their corresponding ethyl esters, and lactones. Moreover, we identified the absence of genes responsible for specific aroma profiles, such as decreased ethyl esters production, as well as the absence of cell wall genes, which might negatively affect Td performance when compared to Sc. This work highlights the significant diversity within Td and underscores potential links between its genotype and phenotype.
Collapse
Affiliation(s)
- Flávia Silva-Sousa
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Bruna Oliveira
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Ricardo Franco-Duarte
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Carole Camarasa
- UMR SPO, Université de Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| | - Maria João Sousa
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
8
|
Balmaseda A, Rozès N, Bordons A, Reguant C. The use of Torulaspora delbrueckii to improve malolactic fermentation. Microb Biotechnol 2024; 17:e14302. [PMID: 37387409 PMCID: PMC10832531 DOI: 10.1111/1751-7915.14302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
The potential use of Torulaspora delbrueckii as a starter culture for wine alcoholic fermentation has become a subject of interest in oenological research. The use of this non-Saccharomyces yeast can modulate different wine attributes, such as aromatic substances, organic acids and phenolic compound compositions. Thus, the obtained wines are different from those fermented with Saccharomyces cerevisiae as the sole starter. Nevertheless, information about the possible effects of T. delbrueckii chemical modulation on subsequent malolactic fermentation is still not fully explained. In general, T. delbrueckii is related to a decrease in toxic compounds that negatively affect Oenococcus oeni and an increase in others that are described as stimulating compounds. In this work, we aimed to compile the changes described in studies using T. delbrueckii in wine that can have a potential effect on O. oeni and highlight those works that directly evaluated O. oeni performance in T. delbrueckii fermented wines.
Collapse
Affiliation(s)
- Aitor Balmaseda
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d'EnologiaUniversitat Rovira i VirgiliTarragonaCataloniaSpain
| | - Nicolas Rozès
- Grup de Biotecnologia Microbiana dels Aliments, Departament de Bioquímica i Biotecnologia, Facultat d'EnologiaUniversitat Rovira i VirgiliTarragonaCataloniaSpain
| | - Albert Bordons
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d'EnologiaUniversitat Rovira i VirgiliTarragonaCataloniaSpain
| | - Cristina Reguant
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d'EnologiaUniversitat Rovira i VirgiliTarragonaCataloniaSpain
| |
Collapse
|
9
|
Ruiz-de-Villa C, Poblet M, Bordons A, Reguant C, Rozès N. Comparative study of inoculation strategies of Torulaspora delbrueckii and Saccharomyces cerevisiae on the performance of alcoholic and malolactic fermentations in an optimized synthetic grape must. Int J Food Microbiol 2023; 404:110367. [PMID: 37597274 DOI: 10.1016/j.ijfoodmicro.2023.110367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/25/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
Progress in oenological biotechnology now makes it possible to control alcoholic (AF) and malolactic (MLF) fermentation processes for the production of wines. Key factors in controlling these processes and enhancing wine quality include the use of selected strains of non-Saccharomyces species, Saccharomyces cerevisiae, and Oenococcus oeni, as well as the method of inoculation (co-inoculation or sequential) and the timing of inoculation. In the present work, we investigated the effects of different inoculation strategies of two Torulaspora delbrueckii (Td-V and Td-P) strains followed by S. cerevisiae. Times (two, four, and six days) and types (co-inoculation and sequential) of inoculation were evaluated on the AF of a synthetic grape must. Furthermore, this synthetic medium was optimized by adding linoleic acid and β-sitosterol to simulate the natural grape must and facilitate reproducible results in potential assays. Subsequently, the wines obtained were inoculated with two strains of Oenococcus oeni to carry out MLF. Parameters after AF were analysed to observe the impact of wine composition on the MLF performance. The results showed that the optimization of the must through the addition of linoleic acid and β-sitosterol significantly enhanced MLF performance. This suggests that these lipids can positively impact the metabolism of O. oeni, leading to improved MLF efficiency. Furthermore, we observed that a 4-day contact period with T. delbrueckii leads to the most efficient MLF process and contributed to the modification of certain AF metabolites, such as the reduction of ethanol and acetic acid, as well as an increase in available nitrogen. The combination of Td-P with Oo-VP41 for 4 or 6 days during MLF showed that it could be the optimal option in terms of efficiency. By evaluating different T. delbrueckii inoculation strategies, optimizing the synthetic medium and studying the effects on wine composition, we aimed to gain insights into the relationship between AF conditions and subsequent MLF performance. Through this study, we aim to provide valuable insights for winemakers and researchers in the field of wine production and will contribute to a better understanding of the complex interactions between these species in the fermentation process.
Collapse
Affiliation(s)
- Candela Ruiz-de-Villa
- Grup de Biotecnologia Microbiana dels Aliments, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo s/n, 43007 Tarragona, Catalonia, Spain
| | - Montse Poblet
- Grup de Biotecnologia Microbiana dels Aliments, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo s/n, 43007 Tarragona, Catalonia, Spain
| | - Albert Bordons
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo s/n, 43007 Tarragona, Catalonia, Spain
| | - Cristina Reguant
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo s/n, 43007 Tarragona, Catalonia, Spain
| | - Nicolas Rozès
- Grup de Biotecnologia Microbiana dels Aliments, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo s/n, 43007 Tarragona, Catalonia, Spain.
| |
Collapse
|
10
|
Canonico L, Agarbati A, Galli E, Comitini F, Ciani M. Biocontrol Using Torulaspora delbrueckii in Sequential Fermentation: New Insights into Low-Sulfite Verdicchio Wines. Foods 2023; 12:2899. [PMID: 37569169 PMCID: PMC10417703 DOI: 10.3390/foods12152899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Torulaspora delbrueckii has attracted renewed interest in recent years, for its biotechnological potential linked to its ability to enhance the flavor and aroma complexity of wine. Sequential fermentations with a selected native strain of T. delbrueckii (DiSVA 130) and low-sulfite native strain of Saccharomyces cerevisiae (DiSVA 709) were carried out to establish their contribution in biocontrol and the aroma profile. A first set of trials were conducted to evaluate the effect of the sulfur dioxide addition on pure and T. debrueckii/S. cerevisiae sequential fermentations. A second set of sequential fermentations without SO2 addition were conducted to evaluate the biocontrol and aromatic effectiveness of T. delbrueckii. Native T. delbrueckii showed a biocontrol action in the first two days of fermentation (wild yeasts reduced by c.a. 1 log at the second day). Finally, trials with the combination of both native and commercial T. delbrueckii/S. cerevisiae led to distinctive aromatic profiles of wines, with a significant enhancement in isoamyl acetate, phenyl ethyl acetate, supported by positive appreciations from the tasters, for ripe and tropical fruits, citrus, and balance. The whole results indicate that native T. delbrueckii could be a potential biocontrol tool against wild yeasts in the first phase of fermentation, contributing to improving the final wine aroma.
Collapse
Affiliation(s)
| | | | | | | | - Maurizio Ciani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (L.C.); (A.A.); (E.G.); (F.C.)
| |
Collapse
|
11
|
Avîrvarei AC, Pop CR, Mudura E, Ranga F, Hegheș SC, Gal E, Zhao H, Fărcaș AC, Chiș MS, Coldea TE. Contribution of Saccharomyces and Non- Saccharomyces Yeasts on the Volatile and Phenolic Profiles of Rosehip Mead. Antioxidants (Basel) 2023; 12:1457. [PMID: 37507995 PMCID: PMC10376122 DOI: 10.3390/antiox12071457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/08/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The resurgence of mead, a honey-based fermented beverage, is attributed to the increasing consumption of fermented foods and beverages, driven by its distinct flavors and perceived health benefits. This study investigates the influence of different yeast strains, namely Saccharomyces cerevisiae var. bayanus, and Torulaspora delbrueckii, on the volatile and phenolic compounds of these beverages. Analytical techniques, including HPLC-DAD and GS/MS, were employed to analyze the chemical composition of the beverages. ANOVA analysis of variance was conducted to assess differences in the volatile and phenolic compounds. The findings reveal that yeast selection significantly impacts the chemical profiles of the beverages. Saccharomyces cerevisiae fermentation preserves rosehip-specific flavonoids and phenolic acids. Sequential fermentation with Torulaspora delbrueckii demonstrated proficiency in generating esters, contributing to fruity and floral aromas in the beverages. This study investigates the importance of yeast selection in shaping the chemical composition of rosehip mead, providing insights into the distinct characteristics conferred by different yeast strains. By optimizing yeast selection and fermentation techniques, the overall quality and diversity of these beverages can be enhanced.
Collapse
Affiliation(s)
- Alexandra-Costina Avîrvarei
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-C.A.); (E.M.); (M.S.C.)
| | - Carmen Rodica Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (C.R.P.); (F.R.); (A.C.F.)
| | - Elena Mudura
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-C.A.); (E.M.); (M.S.C.)
| | - Floricuța Ranga
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (C.R.P.); (F.R.); (A.C.F.)
| | - Simona-Codruța Hegheș
- Department of Drug Analysis, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy 6, Louis Pasteur Cluj-Napoca, 400349 Cluj-Napoca, Romania;
| | - Emese Gal
- Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania;
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;
- Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China
| | - Anca Corina Fărcaș
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (C.R.P.); (F.R.); (A.C.F.)
| | - Maria Simona Chiș
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-C.A.); (E.M.); (M.S.C.)
| | - Teodora Emilia Coldea
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-C.A.); (E.M.); (M.S.C.)
| |
Collapse
|
12
|
Van Mullem JJ, Zhang J, Dias DR, Schwan RF. Using wild yeasts to modulate the aroma profile of low-alcoholic meads. Braz J Microbiol 2022; 53:2173-2184. [PMID: 36269554 PMCID: PMC9679090 DOI: 10.1007/s42770-022-00840-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/02/2022] [Indexed: 01/13/2023] Open
Abstract
In recent years, ample research has focused on applying wild (especially non-Saccharomyces) yeasts in producing alcoholic beverages. Common characteristics of wild yeast strains include simultaneous high production of fruity and floral aroma compounds and low ethanol production. In this study, mead starter cultures were selected based on preliminary screening of wild yeast strains from a Brazilian culture collection (n = 63) for their ability to produce aroma-active compounds. The selected strains included one strain of Saccharomyces cerevisiae and three non-Saccharomyces strains (Pichia jadinii, Torulaspora delbrueckii, and Kluyveromyces lactis). These strains were used to ferment honey must prepared with Aroeira honey, adjusted to 24°Brix, which took 36 days to complete. Single culture fermentations and co-fermentations with S. cerevisiae and non-Saccharomyces strains were carried out. The quality of the produced beverages was evaluated by sugar consumption and production of alcohols and organic acids, analyzed with high-performance liquid chromatography. The volatile organic compound composition was analyzed with gas chromatography-mass spectrometry. Meads with various ethanol amounts (4.7-11.0% v/v) and residual sugar contents (70.81-160.25 g l-1) were produced. In addition, in both single-strain fermentation and co-fermentation with S. cerevisiae, meads produced with either Torulaspora delbrueckii or Kluyveromyces lactis had a roughly three-fold higher content of honey-aroma compound phenethyl acetate and a higher hedonic impression score than meads produced with only S. cerevisiae. These results demonstrated non-Saccharomyces yeasts' ability to increase aroma complexity and improve the sensory quality of low-alcoholic meads.
Collapse
Affiliation(s)
- Joshua Johannes Van Mullem
- Biology Department, Federal University of Lavras, Lavras, MG CEP 37200-000 Brazil
- Present Address: Nature Journey, Zhuhai, 519000 China
| | - Jing Zhang
- Biology Department, Federal University of Lavras, Lavras, MG CEP 37200-000 Brazil
- Present Address: Nature Journey, Zhuhai, 519000 China
| | - Disney Ribeiro Dias
- Food Science Department, Federal University of Lavras, Lavras, MG CEP 37200-000 Brazil
| | | |
Collapse
|
13
|
Roca-Mesa H, Delgado-Yuste E, Mas A, Torija MJ, Beltran G. Importance of micronutrients and organic nitrogen in fermentations with Torulaspora delbrueckii and Saccharomyces cerevisiae. Int J Food Microbiol 2022; 381:109915. [PMID: 36084391 DOI: 10.1016/j.ijfoodmicro.2022.109915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/20/2022] [Accepted: 09/02/2022] [Indexed: 11/19/2022]
Abstract
The current use of non-Saccharomyces yeasts in mixed fermentations increases the relevance of the interactions between yeast species. In this work, the interactions between Saccharomyces cerevisiae and Torulaspora delbrueckii were analyzed. For this purpose, fermentations with and without contact between strains of those yeast species were performed in synthetic must. Fermentation kinetics, yeast growth and dynamics were measured over time. Additionally, the effects of nitrogen and other nutrient supplementations on the mixed fermentations were determined. Our results showed that S. cerevisiae did not always dominate the sequential fermentations, and experiments without yeast contact (in which T. delbrueckii cells were removed from the medium before inoculating S. cerevisiae at 48 h) resulted in stuck fermentations except when the inoculum size was increased (from 2 × 106 to 108 cells/mL) or there was a supplementation of thiamine, zinc and amino acids at the same concentration as initially found in the synthetic must. Our findings highlight the importance of inoculum size and ensuring the availability of enough micronutrients for all yeast species, especially in sequential fermentations.
Collapse
Affiliation(s)
- Helena Roca-Mesa
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Grup de Biotecnologia Enològica, Facultat d'Enologia, c/ Marcel·lí Domingo, 1, 43007 Tarragona, Catalonia, Spain
| | - Ester Delgado-Yuste
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Grup de Biotecnologia Enològica, Facultat d'Enologia, c/ Marcel·lí Domingo, 1, 43007 Tarragona, Catalonia, Spain
| | - Albert Mas
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Grup de Biotecnologia Enològica, Facultat d'Enologia, c/ Marcel·lí Domingo, 1, 43007 Tarragona, Catalonia, Spain
| | - María-Jesús Torija
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Grup de Biotecnologia Enològica, Facultat d'Enologia, c/ Marcel·lí Domingo, 1, 43007 Tarragona, Catalonia, Spain.
| | - Gemma Beltran
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Grup de Biotecnologia Enològica, Facultat d'Enologia, c/ Marcel·lí Domingo, 1, 43007 Tarragona, Catalonia, Spain
| |
Collapse
|
14
|
Diversity of Volatile Aroma Compound Composition Produced by Non-Saccharomyces Yeasts in the Early Phase of Grape Must Fermentation. Foods 2022; 11:foods11193088. [PMID: 36230163 PMCID: PMC9563004 DOI: 10.3390/foods11193088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/25/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022] Open
Abstract
There is a lack of studies evaluating the metabolic contribution of non-Saccharomyces yeasts in early fermentation phases. This study aimed to investigate the volatile aroma profiles produced by various non-Saccharomyces yeasts just before sequential inoculation with Saccharomyces cerevisiae to provide an insight into the particular effects they induce at this stage. The grape must of Malvazija istarska was inoculated with monocultures of Torulaspora delbrueckii, Metschnikowia pulcherrima, Pichia kluyveri, Lachancea thermotolerans, and Schizosaccharomyces pombe, alongside a S. cerevisiae control. Eighty volatile compounds were quantified via headspace solid-phase microextraction and gas chromatography–mass spectrometry, and the data were statistically elaborated. Volatile profiles of non-Saccharomyces yeasts differed significantly from the S. cerevisiae control. Most treatments caused increases in linalool and β-damascenone, decreases in higher alcohols and fatty acids, and improved synthesis of odoriferous esters. Torulaspora delbrueckii and M. pulcherrima produced compounds not commonly found in S. cerevisiae fermented wines. Multivariate statistical analysis linked the investigated yeasts to specific, particularly abundant compounds. Future studies should explore to what degree these contributions persist after sequential inoculation with S. cerevisiae in diverse grape must matrices.
Collapse
|
15
|
The Impact of Indigenous Non-Saccharomyces Yeasts Inoculated Fermentations on ‘Semillon’ Icewine. FERMENTATION 2022. [DOI: 10.3390/fermentation8080413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The emerging low acidity in icewine grapes is becoming a major problem in producing quality icewine. Using non-Saccharomyces cerevisiae yeasts in fermentation can improve wine’s organoleptic characteristics and aromatic quality. This study evaluated two indigenous non-Saccharomyces cerevisiae yeasts, Lachancea thermotolerans (LT-2) and Torulaspora delbrueckii (TD-3), for their ability to improve the acidity and quality of ‘Semillon’ icewine. Five different inoculation schemes were implemented, including a single inoculation of S. cerevisiae (SC), L. thermotolerans (LT), and T. delbrueckii (TD); the sequential inoculation of L. thermotolerans, followed by S. cerevisiae after 6 days (L-S); and the sequential inoculation of L. thermotolerans, followed by T. delbrueckii after 6 days (L-D). The results showed that, during sequential fermentation (L-S and L-D), the presence of S. cerevisiae or T. delbrueckii slightly restrained the growth of L. thermotolerans. Single or sequential inoculation with L. thermotolerans and T. delbrueckii significantly reduced the amount of volatile acidity and increased the glycerol content. Furthermore, fermentations involving L. thermotolerans produced relevant amounts of lactic acid (2.04–2.2 g/L) without excessive deacidification of the icewines. Additionally, sequential fermentations increased the concentration of terpenes, C13-norisoprenoid compounds, and phenethyl compounds. A sensory analysis also revealed that sequentially fermented icewines (L-S and L-D) had more fruity and floral odors and aroma intensity. This study highlights the potential application of L. thermotolerans and T. delbrueckii in sequential fermentation to improve the icewine quality.
Collapse
|
16
|
Tofalo R, Perpetuini G, Rossetti AP, Gaggiotti S, Piva A, Olivastri L, Cicchelli A, Compagnone D, Arfelli G. Impact of Saccharomyces cerevisiae and non-Saccharomyces yeasts to improve traditional sparkling wines production. Food Microbiol 2022; 108:104097. [DOI: 10.1016/j.fm.2022.104097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/31/2022] [Accepted: 07/16/2022] [Indexed: 11/04/2022]
|
17
|
Romano P, Braschi G, Siesto G, Patrignani F, Lanciotti R. Role of Yeasts on the Sensory Component of Wines. Foods 2022; 11:1921. [PMID: 35804735 PMCID: PMC9265420 DOI: 10.3390/foods11131921] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 12/13/2022] Open
Abstract
The aromatic complexity of a wine is mainly influenced by the interaction between grapes and fermentation agents. This interaction is very complex and affected by numerous factors, such as cultivars, degree of grape ripeness, climate, mashing techniques, must chemical−physical characteristics, yeasts used in the fermentation process and their interactions with the grape endogenous microbiota, process parameters (including new non-thermal technologies), malolactic fermentation (when desired), and phenomena occurring during aging. However, the role of yeasts in the formation of aroma compounds has been universally recognized. In fact, yeasts (as starters or naturally occurring microbiota) can contribute both with the formation of compounds deriving from the primary metabolism, with the synthesis of specific metabolites, and with the modification of molecules present in the must. Among secondary metabolites, key roles are recognized for esters, higher alcohols, volatile phenols, sulfur molecules, and carbonyl compounds. Moreover, some specific enzymatic activities of yeasts, linked above all to non-Saccharomyces species, can contribute to increasing the sensory profile of the wine thanks to the release of volatile terpenes or other molecules. Therefore, this review will highlight the main aroma compounds produced by Saccharomyces cerevisiae and other yeasts of oenological interest in relation to process conditions, new non-thermal technologies, and microbial interactions.
Collapse
Affiliation(s)
- Patrizia Romano
- Faculty of Economy, Universitas Mercatorum, 00186 Rome, Italy; (P.R.); (G.S.)
| | - Giacomo Braschi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Campus Food Science, p.zza Goidanich 60, 47521 Cesena, Italy; (G.B.); (R.L.)
| | - Gabriella Siesto
- Faculty of Economy, Universitas Mercatorum, 00186 Rome, Italy; (P.R.); (G.S.)
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Campus Food Science, p.zza Goidanich 60, 47521 Cesena, Italy; (G.B.); (R.L.)
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Quinto Bucci 336, 47521 Bologna, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Campus Food Science, p.zza Goidanich 60, 47521 Cesena, Italy; (G.B.); (R.L.)
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Quinto Bucci 336, 47521 Bologna, Italy
| |
Collapse
|
18
|
Li J, Hong M, Qi B. Impact of Torulaspora delbrueckii During Fermentation on Aromatic Profile of Vidal Blanc Icewine. Front Microbiol 2022; 13:860128. [PMID: 35747371 PMCID: PMC9209767 DOI: 10.3389/fmicb.2022.860128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Non-Saccharomyces yeasts usually have a positive effect on improving the diversity of wine aroma and increasing the differentiation of wine products. Among these non-Saccharomyces yeast species, Torulaspora delbrueckii is often studied and used in winemaking in recent years, but its application in icewine has not been reported yet. In this study, indigenous T. delbrueckii strains (TD1 and TD2) and Saccharomyces cerevisiae strains (commercial yeast SC1 and indigenous icewine yeast SC2) were sequentially inoculated for icewine fermentations; meanwhile, pure S. cerevisiae (SC1 and SC2) fermentations were used as the control; TD1, TD2, and SC2 strains used were screened from spontaneous fermentations of Vidal blanc icewine. The aim was to investigate the effect of T. delbrueckii on the aroma complexity of icewine, which is of great significance to the application of T. delbrueckii in icewine production. The results showed that T. delbrueckii was completely replaced by S. cerevisiae at the middle and later fermentative stages in mixed culture fermentations. Compared with the icewine fermented with pure S. cerevisiae, mixed culture fermented icewines contained lower acetic acid and ethanol, and higher glycerol. The inoculation of T. delbrueckii greatly impacted the levels of several important volatile compounds, and more 2-phenylethyl alcohol, isoamyl acetate, linalool, D-limonene, p-cymene and cineole were produced, and the fruity, flowery, and sweet characteristic was intensified. Moreover, the relevance of strain-specificity within T. delbrueckii to aroma compound differences was shown. To our knowledge, this study is the first to investigate the application of T. delbrueckii in Vidal blanc icewine fermentation, and volatile aroma compounds in the icewine fermented by T. delbrueckii and S. cerevisiae.
Collapse
|
19
|
Kelanne NM, Siegmund B, Metz T, Yang B, Laaksonen O. Comparison of volatile compounds and sensory profiles of alcoholic black currant (Ribes nigrum) beverages produced with Saccharomyces, Torulaspora, and Metschnikowia yeasts. Food Chem 2022; 370:131049. [PMID: 34520974 DOI: 10.1016/j.foodchem.2021.131049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/11/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022]
Abstract
Black currants (Ribes nigrum) were fermented with Saccharomyces and non-Saccharomyces yeasts without added sugar to yield low-ethanol-content beverages. The effects of yeasts on the volatile compounds and sensory characteristics were analysed by HS-SPME-GC-MS, GC-O, and generic descriptive analysis. Ninety-eight volatile compounds were identified from the black currant juice and fermented beverages. Significant increases in the contents of esters (131 %), higher alcohols (391 %), and fatty acids (not present in juice sample) compared to initial juice were observed depending on the yeasts used. GC-O analysis revealed the higher impact of esters on the sensory properties of Saccharomyces bayanus-fermented beverage compared to the Torulaspora delbrueckii-fermented beverage. In the sensory evaluation, non-Saccharomyces yeasts resulted in a higher 'black currant odour'. However, all beverages were intensely sour, which can be a significant challenge in the development of alcoholic berry beverages.
Collapse
Affiliation(s)
- Niina M Kelanne
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turun yliopisto, Finland.
| | - Barbara Siegmund
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9/II, A8010 Graz, Austria
| | - Tapio Metz
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turun yliopisto, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turun yliopisto, Finland
| | - Oskar Laaksonen
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turun yliopisto, Finland
| |
Collapse
|
20
|
Wang S, Lu Y, Fu X, Wang M, Wang W, Wang J, Wang H, Liu Y. Sequential Fermentation with
Torulapora delbrueckii
and selected Saccharomyces cerevisiae for aroma enhancement of Longyan dry white Wine. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Suwen Wang
- Hebei Agricultural University Baoding Hebei 071001 China
| | - Yao Lu
- College of Food science and nutritional engineering China Agricultural University Beijing 100083 China
| | - Xiaofang Fu
- China Great Wall Wine Co., LTD Huailai Hebei 075400 China
| | - Meiqi Wang
- Hebei Agricultural University Baoding Hebei 071001 China
| | - Wenxiu Wang
- Hebei Agricultural University Baoding Hebei 071001 China
| | - Jie Wang
- Hebei Agricultural University Baoding Hebei 071001 China
| | - Huanxiang Wang
- China Great Wall Wine Co., LTD Huailai Hebei 075400 China
| | - Yaqiong Liu
- Hebei Agricultural University Baoding Hebei 071001 China
| |
Collapse
|
21
|
The Influence of Fermenting Yeast on the Sensory Properties of Graševina Wine. Foods 2021; 10:foods10112752. [PMID: 34829033 PMCID: PMC8623077 DOI: 10.3390/foods10112752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
Recent research has showed a breakthrough in investigating the effect of non-Saccharomyces yeast on wine quality and sensory properties. The aim of this study was to compare the influence of conventional yeast, Saccharomyces cerevisiae, vs. that of the non-Saccharomyces Torulaspora delbrueckii on the sensory profile of the white wine Graševina, and to establish if there are any differences in physical–chemical properties in regards to the applied yeast. Sample One was inoculated with both yeasts, while Sample Two was inoculated only with S. cerevisiae. The results indicated that a combination of T. delbrueckii and S. cerevisiae resulted in somewhat higher ethanol content in the finished wine. Sensory evaluation showed no significant discrepancies for any of the wines. Aspect and flavor were graded similarly, but the quality and intensity of the bouquet of Sample One was graded somewhat higher (14 and 6.6) than Sample Two (13.6 and 6.4). These findings open a very wide gate for future research in white wines.
Collapse
|
22
|
Non-Saccharomyces yeasts as bioprotection in the composition of red wine and in the reduction of sulfur dioxide. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111781] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Fernandes T, Silva-Sousa F, Pereira F, Rito T, Soares P, Franco-Duarte R, Sousa MJ. Biotechnological Importance of Torulaspora delbrueckii: From the Obscurity to the Spotlight. J Fungi (Basel) 2021; 7:jof7090712. [PMID: 34575750 PMCID: PMC8467266 DOI: 10.3390/jof7090712] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/28/2022] Open
Abstract
Torulaspora delbrueckii has attracted interest in recent years, especially due to its biotechnological potential, arising from its flavor- and aroma-enhancing properties when used in wine, beer or bread dough fermentation, as well as from its remarkable resistance to osmotic and freezing stresses. In the present review, genomic, biochemical, and phenotypic features of T. delbrueckii are described, comparing them with other species, particularly with the biotechnologically well-established yeast, Saccharomyces cerevisiae. We conclude about the aspects that make this yeast a promising biotechnological model to be exploited in a wide range of industries, particularly in wine and bakery. A phylogenetic analysis was also performed, using the core proteome of T. delbrueckii, to compare the number of homologous proteins relative to the most closely related species, understanding the phylogenetic placement of this species with robust support. Lastly, the genetic tools available for T. delbrueckii improvement are discussed, focusing on adaptive laboratorial evolution and its potential.
Collapse
Affiliation(s)
- Ticiana Fernandes
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (T.F.); (F.S.-S.); (F.P.); (T.R.); (P.S.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Flávia Silva-Sousa
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (T.F.); (F.S.-S.); (F.P.); (T.R.); (P.S.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Fábio Pereira
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (T.F.); (F.S.-S.); (F.P.); (T.R.); (P.S.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Teresa Rito
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (T.F.); (F.S.-S.); (F.P.); (T.R.); (P.S.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Pedro Soares
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (T.F.); (F.S.-S.); (F.P.); (T.R.); (P.S.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Ricardo Franco-Duarte
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (T.F.); (F.S.-S.); (F.P.); (T.R.); (P.S.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
- Correspondence: or ; Tel.: +351-253-604-310; Fax: +351-253-678-980
| | - Maria João Sousa
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (T.F.); (F.S.-S.); (F.P.); (T.R.); (P.S.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
24
|
Commercially Available Non-Saccharomyces Yeasts for Winemaking: Current Market, Advantages over Saccharomyces, Biocompatibility, and Safety. FERMENTATION 2021. [DOI: 10.3390/fermentation7030171] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
About 42 commercial products based on non-Saccharomyces yeasts are estimated as available on the market, being mostly pure cultures (79%), with a predominance of Torulaspora delbrueckii, Lachancea thermotolerans, and Metschnikowia pulcherrima. The others are multi-starter consortia that include non-Saccharomyces/Saccharomyces mixtures or only non-Saccharomyces species. Several commercial yeasts have shown adequate biocompatibility with S. cerevisiae in mixed fermentations, allowing an increased contribution of metabolites of oenological interest, such as glycerol, esters, higher alcohols, acids, thiols, and terpenes, among others, in addition to a lower production of acetic acid, volatile phenols, biogenic amines, or urea. Multi-starter inoculations are also reviewed here, which show adequate biocompatibility and synergy between species. In certain cases, the aromatic profile of wines based on grape varieties considered neutral is improved. In addition, several yeasts show the capacity as biocontrollers against contaminating microorganisms. The studies conducted to date demonstrate the potential of these yeasts to improve the properties of wine as an alternative and complement to the traditional S. cerevisiae.
Collapse
|
25
|
Contribution of Grape Skins and Yeast Choice on the Aroma Profiles of Wines Produced from Pinot Noir and Synthetic Grape Musts. FERMENTATION 2021. [DOI: 10.3390/fermentation7030168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aroma profile is a key component of Pinot noir wine quality, and this is influenced by the diversity, quantity, and typicity of volatile compounds present. Volatile concentrations are largely determined by the grape itself and by microbial communities that produce volatiles during fermentation, either from grape-derived precursors or as byproducts of secondary metabolism. The relative degree of aroma production from grape skins compared to the juice itself, and the impact on different yeasts on this production, has not been investigated for Pinot noir. The influence of fermentation media (Pinot noir juice or synthetic grape must (SGM), with and without inclusion of grape skins) and yeast choice (commercial Saccharomyces cerevisiae EC1118, a single vineyard mixed community (MSPC), or uninoculated) on aroma chemistry was determined by measuring 39 volatiles in finished wines using headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography–mass spectrometry (GC-MS). Fermentation medium clearly differentiated the volatile profile of wines with and without yeast, while differences between EC1118 and MSPC wines were only distinct for Pinot noir juice without skins. SGM with skins produced a similar aroma profile to Pinot noir with skins, suggesting that grape skins, and not the pulp, largely determine the aroma of Pinot noir wines.
Collapse
|
26
|
Selection Process of a Mixed Inoculum of Non-Saccharomyces Yeasts Isolated in the D.O.Ca. Rioja. FERMENTATION 2021. [DOI: 10.3390/fermentation7030148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The use of non-Saccharomyces yeasts in sequential fermentations with S. cerevisiae has been proposed to improve the organoleptic characteristics involved in the quality of wine. The present study set out to select a non-Saccharomyces inoculum from the D.O.Ca. Rioja for use in winemaking. Strains included in the study belonged to Torulaspora delbrueckii, Lachancea thermotolerans, Metschnikowia pulcherrima, Zygosaccharomyces bailii, Williopsis pratensis, Debaryomyces hansenii, Pichia kluyveri, Sporidiobolus salmonicolor, Candida spp., Cryptococcus spp. and two mixed inocula of Lachancea thermotolerans-Torulaspora delbrueckii in a 30/70 ratio. In the first stage of the process, SO2 resistance and presence of enzymatic activities related to wine aroma and wine color and fining (esterase, esterase-lipase, lipase, leucine arylamidase, valine arylamidase, cystine arylamidase, β-glucosidase, pectinase, cellulose, xylanase and glucanase) were studied. In the later stages, selection criteria such as fermentative behavior, aroma compound production or influence on phenolic compounds were studied in laboratory scale vinifications. Taking into account the results obtained in the different stages of the process, a mixed inoculum of Lachancea thermotolerans-Torulaspora delbrueckii in a 30/70 ratio was finally selected. This inoculum stood out for its high implantation capacity, the production of compounds of interest such as glycerol and lactic acid and the consequent modulation of wine acidity. Given these characteristics, the selected inoculum is suitable for the production of quality wines.
Collapse
|
27
|
Native Yeasts and Lactic Acid Bacteria Isolated from Spontaneous Fermentation of Seven Grape Cultivars from the Maule Region (Chile). Foods 2021; 10:foods10081737. [PMID: 34441515 PMCID: PMC8391128 DOI: 10.3390/foods10081737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 01/16/2023] Open
Abstract
Grapes are a source of native yeasts and lactic acid bacteria (LAB); however, the microbial make up is dependent on the grape cultivar and the regional growth conditions. Therefore, the aim of this study was to characterize the yeast and LAB in seven grape cultivars cultivated in Chile. Grape juices were fermented at 25 °C for 7 days. Samples were collected to analyze sugar, organic acids, and ethanol. Microbial evolution was measured with culture-dependent and molecular approaches. Then, a native isolated Candida oleophila was selected for further sequential fermentations with Saccharomyces cerevisiae. The grape cultivars in the Maule showed a diversity of non-Saccharomyces yeasts, with a greater diversity observed at the beginning of the fermentation. However, species from the Hansenasporia, Metschnikowia, Torulaspora, Lachancea, and Candida genera were detected after 7 days, suggesting tolerance to environments rich in ethanol, capability may be associated to the terroir studied, which is characterized by torrid weather and antique and traditional vineyards. The alcoholic fermentation negatively impacted the LAB population, and after 7 days only Leuconostoc mesenteroides was isolated. In the sequential fermentations, C. oleophila was able to produce fermented grape juices with <1.5 g/L glucose, 12.5% (v/v) alcohol, and low concentrations of malic (<1.00 g/L) and succinic (2.05 g/L) acids, while acetic acid reached values >0.3 (g/L). To our knowledge this is the first time C. oleophila has been reported as a potential starter culture for wine production. However, more studies are necessary to fully characterize the potential of C. oleophila on wine attributes.
Collapse
|
28
|
Zhang B, Duan C, Yan G. Effects of mediums on fermentation behaviour and aroma composition in pure and mixed culture of
Saccharomyces cerevisiae
with
Torulaspora delbrueckii. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Boqin Zhang
- Centre for Viticulture and Enology College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
- Key Laboratory of Viticulture and Enology Ministry of Agriculture and Rural Affairs Beijing 100083 China
| | - Changqing Duan
- Centre for Viticulture and Enology College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
- Key Laboratory of Viticulture and Enology Ministry of Agriculture and Rural Affairs Beijing 100083 China
| | - Guoliang Yan
- Centre for Viticulture and Enology College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
- Key Laboratory of Viticulture and Enology Ministry of Agriculture and Rural Affairs Beijing 100083 China
| |
Collapse
|
29
|
A Statistical Workflow to Evaluate the Modulation of Wine Metabolome and Its Contribution to the Sensory Attributes. FERMENTATION 2021. [DOI: 10.3390/fermentation7020072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A data-processing and statistical analysis workflow was proposed to evaluate the metabolic changes and its contribution to the sensory characteristics of different wines. This workflow was applied to rosé wines from different fermentation strategies. The metabolome was acquired by means of two high-throughput techniques: gas chromatography–mass spectrometry (GC-MS) and liquid chromatography–mass spectrometry (LC-MS) for volatile and non-volatile metabolites, respectively, in an untargeted approach, while the sensory evaluation of the wines was performed by a trained panel. Wine volatile and non-volatile metabolites modulation was independently evaluated by means of partial least squares discriminant analysis (PLS-DA), obtaining potential markers of the fermentation strategies. Then, the complete metabolome was integrated by means of sparse generalised canonical correlation analysis discriminant analysis (sGCC-DA). This integrative approach revealed a high link between the volatile and non-volatile data, and additional potential metabolite markers of the fermentation strategies were found. Subsequently, the evaluation of the contribution of metabolome to the sensory characteristics of wines was carried out. First, the all-relevant metabolites affected by the different fermentation processes were selected using PLS-DA and random forest (RF). Each set of volatile and non-volatile metabolites selected was then related to the sensory attributes of the wines by means of partial least squares regression (PLSR). Finally, the relationships among the three datasets were complementary evaluated using regularised generalised canonical correlation analysis (RGCCA), revealing new correlations among metabolites and sensory data.
Collapse
|
30
|
Vaquero C, Loira I, Heras JM, Carrau F, González C, Morata A. Biocompatibility in Ternary Fermentations With Lachancea thermotolerans, Other Non- Saccharomyces and Saccharomyces cerevisiae to Control pH and Improve the Sensory Profile of Wines From Warm Areas. Front Microbiol 2021; 12:656262. [PMID: 33995319 PMCID: PMC8117230 DOI: 10.3389/fmicb.2021.656262] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/22/2021] [Indexed: 02/04/2023] Open
Abstract
Global warming is causing serious problems, especially, in warm regions, where musts with excess sugars and high pH produce wines with decreased freshness and unstable evolution. This study aimed to determine biocompatibility between yeast species, the capacity for microbiological acidification, and the aromatic profile produced in ternary fermentations in which Lachancea thermotolerans has been co-inoculated with Hanseniaspora vineae, Torulaspora delbrueckii, or Metschnikowia pulcherrima, and the fermentation process is subsequently completed with sequential inoculation of Saccharomyces cerevisiae. For this purpose, different cell culture media and instruments were used such as infrared spectroscopy, enzymatic autoanalyzer, chromatograph coupled with a flame ionization detector, spectrophotometric analysis, among others. The behavior of these yeasts was evaluated alone and in co-inoculation, always finishing the fermentation with sequential inoculation of S. cerevisiae, at a stable temperature of 16°C and with a low level of sulfites (25 mg/L) in white must. Significant results were obtained in terms of biocompatibility using population counts (CFU/ml) in differential plating media that permitted monitoring. Quantification of the five species was studied. Concerning acidification by L. thermotolerans in co-inoculations, we showed some metabolic interactions, such as the inhibition of acidification when H. vineae/L. thermotolerans were used, generating just over 0.13 g/L of lactic acid and, conversely, a synergistic effect when M. pulcherrima/L. thermotolerans were used, achieving 3.2 g/L of lactic acid and a reduction in pH of up to 0.33. A diminution in alcohol content higher than 0.6% v/v was observed in co-inoculation with the L. thermotolerans/M. pulcherrima yeasts, with total sugar consumption and very slow completion of fermentation in the inoculations with H. vineae and T. delbrueckii. The aromatic composition of the wines obtained was analyzed and a sensory evaluation conducted, and it was found that both L. thermotolerans and co-inoculations retained more aromatic esters over time and had a lower evolution toward the yellow tones typical of oxidation and that the best sensory evaluation was that of the Lt + Mp co-inoculation. Lachancea thermotolerans and co-inoculations produced wines with low levels of volatile acidity (<0.4 g/L). This work shows that good consortia strategies with binary and ternary fermentations of yeast strains can be a powerful bio-tool for producing more complex wines.
Collapse
Affiliation(s)
- Cristian Vaquero
- EnotecUPM, Chemistry and Food Technology Department, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - Iris Loira
- EnotecUPM, Chemistry and Food Technology Department, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Francisco Carrau
- Área Enología y Biotecnología de Fermentaciones, Facultad de Química, Universidad de la Republica, Montevideo, Uruguay
| | - Carmen González
- EnotecUPM, Chemistry and Food Technology Department, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - Antonio Morata
- EnotecUPM, Chemistry and Food Technology Department, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
31
|
Roudil L, Russo P, Berbegal C, Albertin W, Spano G, Capozzi V. Non-Saccharomyces Commercial Starter Cultures: Scientific Trends, Recent Patents and Innovation in the Wine Sector. Recent Pat Food Nutr Agric 2021; 11:27-39. [PMID: 30706832 DOI: 10.2174/2212798410666190131103713] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/31/2018] [Accepted: 01/01/2019] [Indexed: 11/22/2022]
Abstract
For 15 years, non-Saccharomyces starter cultures represent a new interesting segment in the dynamic field of multinationals and national companies that develop and sell microbial-based biotechnological solutions for the wine sector. Although the diversity and the properties of non- Saccharomyces species/strains have been recently fully reviewed, less attention has been deserved to the commercial starter cultures in term of scientific findings, patents, and their innovative applications. Considering the potential reservoir of biotechnological innovation, these issues represent an underestimated possible driver of coordination and harmonization of research and development activities in the field of wine microbiology. After a wide survey, we encompassed 26 different commercial yeasts starter cultures formulated in combination with at least one non-Saccharomyces strain. The most recent scientific advances have been explored delving into the oenological significance of these commercial starter cultures. Finally, we propose an examination of patent literature for the main yeasts species commercialised in non-Saccharomyces based products. We highlight the presence of asymmetries among scientific findings and the number of patents concerning non-Saccharomyces-based commercial products for oenological purposes. Further investigations on these microbial resources might open new perspectives and stimulate attractive innovations in the field of wine-making biotechnologies.
Collapse
Affiliation(s)
- Ludovic Roudil
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, via Napoli 25, 71122 Foggia, Italy.,Unite de Recherche OEnologie EA 4577, USC 1366 INRA, ENSCBP Bordeaux INP, Universite de Bordeaux, ISVV, 33140, Villenave d'Ornon, France
| | - Pasquale Russo
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, via Napoli 25, 71122 Foggia, Italy
| | - Carmen Berbegal
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, via Napoli 25, 71122 Foggia, Italy.,Enolab. Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERIBioTecMed), Universitat de València, c/ Dr. Moliner 50 E46100, Burjassot-València, Spain
| | - Warren Albertin
- Unite de Recherche OEnologie EA 4577, USC 1366 INRA, ENSCBP Bordeaux INP, Universite de Bordeaux, ISVV, 33140, Villenave d'Ornon, France
| | - Giuseppe Spano
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, via Napoli 25, 71122 Foggia, Italy
| | - Vittorio Capozzi
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, via Napoli 25, 71122 Foggia, Italy
| |
Collapse
|
32
|
Mbuyane LL, Bauer FF, Divol B. The metabolism of lipids in yeasts and applications in oenology. Food Res Int 2021; 141:110142. [PMID: 33642009 DOI: 10.1016/j.foodres.2021.110142] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/26/2020] [Accepted: 01/09/2021] [Indexed: 12/14/2022]
Abstract
Lipids are valuable compounds present in all living organisms, which display an array of functions related to compartmentalization, energy storage and enzyme activation. Furthermore, these compounds are an integral part of the plasma membrane which is responsible for maintaining structure, facilitating the transport of solutes in and out of the cell and cellular signalling necessary for cell survival. The lipid composition of the yeast Saccharomyces cerevisiae has been extensively investigated and the impact of lipids on S. cerevisiae cellular functions during wine alcoholic fermentation is well documented. Although other yeast species are currently used in various industries and are receiving increasing attention in winemaking, little is known about their lipid metabolism. This review article provides an extensive and critical evaluation of our knowledge on the biosynthesis, accumulation, metabolism and regulation of fatty acids and sterols in yeasts. The implications of the yeast lipid content on stress resistance as well as performance during alcoholic fermentation are discussed and a particular emphasis is given on non-Saccharomyces yeasts. Understanding lipid requirements and metabolism in non-Saccharomyces yeasts may lead to a better management of these yeast to enhance their contributions to wine properties.
Collapse
Affiliation(s)
- Lethiwe Lynett Mbuyane
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Florian Franz Bauer
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Benoit Divol
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
33
|
Biological Control of Phytopathogenic Fungi by Kluyveromyces marxianus and Torulaspora delbrueckii Isolated from Iraqi Date Vinegar. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.1.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yeasts are distributed in all environments and have been reported as potential biocontrol agents against various phytopathogenic fungi. To investigate their enzymatic and biological activities, 32 yeasts were isolated from 15 date vinegar samples. Evaluation of the antagonistic activities of isolated yeasts against the plant pathogens Fusarium oxysporium, Sclerotinia sclerotiorum, and Macrophomina phaseolina indicated that there are two yeasts had the highest inhibitory effect against plant pathogens, these yeasts identified as Kluyveromyces marxianus and Torulaspora delbrueckii using traditional and molecular methods. These yeast isolates were tested for fungal cell wall degrading enzymes (in vitro), and results indicated that the yeasts had strong protease and amylase enzyme activity and moderate chitinase and cellulase enzyme activity. The antagonistic activities of each yeast were evaluated using a dual culture technique. The results showed that K. marxianus inhibited the mycelial growth of F. oxysporium, S. sclerotiorum, and M. phaseolina by 70.5, 57.5, and 75.5%, respectively, whereas T. delbrueckii inhibited mycelial growth of F. oxysporum, S. sclerotiorum, and M. phaseolina by 55.3%, 66.2%, and 31.11%, respectively. The biofilm production assay indicated that the tested yeast could form biofilms as a mechanism of antagonistic activity against phytopathogenic fungi.
Collapse
|
34
|
Muñoz-Redondo JM, Puertas B, Cantos-Villar E, Jiménez-Hierro MJ, Carbú M, Garrido C, Ruiz-Moreno MJ, Moreno-Rojas JM. Impact of Sequential Inoculation with the Non- Saccharomyces T. delbrueckii and M. pulcherrima Combined with Saccharomyces cerevisiae Strains on Chemicals and Sensory Profile of Rosé Wines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1598-1609. [PMID: 33507745 DOI: 10.1021/acs.jafc.0c06970] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Controlled inoculations of non-Saccharomyces yeasts are becoming increasingly used to produce high-quality wines due to their enological potential. In this study, we evaluated the impact of sequential inoculation with the commercial non-Saccharomyces yeasts (Torulaspora delbrueckii and Metschnikowia pulcherrima) in combination with Saccharomyces cerevisiae on the chemical and sensory profile of rosé wines. Sequential inoculation with T. delbrueckii produced wines with an overall reduction in esters, mainly explained by the lower concentrations of ethyl esters of medium-chain fatty acids and isoamyl acetate. The lower ester concentrations of these wines were related to a reduction in fruity descriptors. An increase was observed, however, in other minor esters such as cinnamates and ethyl esters of branched acids. Zinc, ethyl isobutyrate, and ethyl dihydrocinnamate were selected as potential markers for this fermentation strategy. Sequential inoculation with M. pulcherrima resulted in rosé wines with an enhanced ester profile, reduced acetaldehyde, and increased anthocyans and tannins. Compared to the control wines fermented with S. cerevisiae, the changes observed in these wines were far subtler, especially for the volatile profile, sensory characteristics, and color parameters, with isobutyl hexanoate and isoamyl butyrate being selected as potential markers.
Collapse
Affiliation(s)
- José Manuel Muñoz-Redondo
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo Avda. Menéndez Pidal, s/n., 14004 Córdoba, Spain
| | - Belén Puertas
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Ctra. Cañada de la Loba (CA 3101) PK3.1, 11471 Jerez de la Frontera, Cádiz, Spain
| | - Emma Cantos-Villar
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Ctra. Cañada de la Loba (CA 3101) PK3.1, 11471 Jerez de la Frontera, Cádiz, Spain
| | - María Jesús Jiménez-Hierro
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Ctra. Cañada de la Loba (CA 3101) PK3.1, 11471 Jerez de la Frontera, Cádiz, Spain
| | - María Carbú
- Microbiology Laboratory, Department of Biomedicine, Biotechnology and Heald Public, Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Puerto Real, Spain
| | - Carlos Garrido
- Microbiology Laboratory, Department of Biomedicine, Biotechnology and Heald Public, Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Puerto Real, Spain
| | - María José Ruiz-Moreno
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo Avda. Menéndez Pidal, s/n., 14004 Córdoba, Spain
| | - José Manuel Moreno-Rojas
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo Avda. Menéndez Pidal, s/n., 14004 Córdoba, Spain
| |
Collapse
|
35
|
Influence of Non- Saccharomyces on Wine Chemistry: A Focus on Aroma-Related Compounds. Molecules 2021; 26:molecules26030644. [PMID: 33530641 PMCID: PMC7865429 DOI: 10.3390/molecules26030644] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Wine fermentation processes are driven by complex microbial systems, which comprise eukaryotic and prokaryotic microorganisms that participate in several biochemical interactions with the must and wine chemicals and modulate the organoleptic properties of wine. Among these, yeasts play a fundamental role, since they carry out the alcoholic fermentation (AF), converting sugars to ethanol and CO2 together with a wide range of volatile organic compounds. The contribution of Saccharomyces cerevisiae, the reference organism associated with AF, has been extensively studied. However, in the last decade, selected non-Saccharomyces strains received considerable commercial and oenological interest due to their specific pro-technological aptitudes and the positive influence on sensory quality. This review aims to highlight the inter-specific variability within the heterogeneous class of non-Saccharomyces in terms of synthesis and release of volatile organic compounds during controlled AF in wine. In particular, we reported findings on the presence of model non-Saccharomyces organisms, including Torulaspora delbrueckii, Hanseniaspora spp,Lachancea thermotolerans, Metschnikowia pulcherrima, Pichia spp. and Candida zemplinina, in combination with S. cerevisiae. The evidence is discussed from both basic and applicative scientific perspective. In particular, the oenological significance in different kind of wines has been underlined.
Collapse
|
36
|
Catrileo D, Acuña-Fontecilla A, Godoy L. Adaptive Laboratory Evolution of Native Torulaspora delbrueckii YCPUC10 With Enhanced Ethanol Resistance and Evaluation in Co-inoculated Fermentation. Front Microbiol 2021; 11:595023. [PMID: 33408704 PMCID: PMC7779481 DOI: 10.3389/fmicb.2020.595023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
Torulaspora delbrueckii is a yeast species typically present in the early stages of the fermentation process. T. delbrueckii positively modifies the aromatic properties of wines. However, its contribution to the final quality of the wine is restricted by its low tolerance to ethanol. T. delbrueckii is capable of fermenting and tolerating an ethanol concentration ranging from 7.4% (v/v) to slightly higher than 9% (v/v). For this reason, it cannot complete fermentation, when alcohol reach levels higher than 12% (v/v), limiting their use in the industry. The objective of this work was to obtain new variants of T. delbrueckii with improved resistance to ethanol through adaptive laboratory evolution. Variants capable of tolerating ethanol levels of 11.5% (v/v) were obtained. These presented improved kinetic parameters, and additionally showed an increase in resistance to SO2 in ethanol compared to the original strain. Co-inoculated fermentations were performed with the original strain (FTd/Sc) and with the evolved strain (FTdF/Sc), in addition to a control fermentation using only Saccharomyces cerevisiae EC1118 (FSc). The results obtained show that FTdF/Sc present higher levels of 2-Ethylhexanol, compared to FTd/Sc and FSc. Furthermore, FTdF/Sc presents higher levels of total alcohols, total aldehydes, total phenolic derivatives, and total sulfur compounds with significant differences with FSc. These results provide a T. delbrueckii YCPUC10-F yeast with higher resistance to ethanol, which can be present throughout the fermentation process and be used in co-inoculated fermentations. This would positively impact the performance of T. delbrueckii by allowing it to be present not only in the early stages of fermentation but to remain until the end of fermentation.
Collapse
Affiliation(s)
- Daniela Catrileo
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Acuña-Fontecilla
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Liliana Godoy
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
37
|
Li N, Wang QQ, Xu YH, Li AH, Tao YS. Increased glycosidase activities improved the production of wine varietal odorants in mixed fermentation of P. fermentans and high antagonistic S. cerevisiae. Food Chem 2020; 332:127426. [DOI: 10.1016/j.foodchem.2020.127426] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 11/24/2022]
|
38
|
Einfalt D. Barley-sorghum craft beer production with Saccharomyces cerevisiae, Torulaspora delbrueckii and Metschnikowia pulcherrima yeast strains. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03632-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractThe use of different yeast strains contributes to obtain insights into beer products with diverse sensory characteristics. In this study, three yeast species of different genera were selected to evaluate their fermentation performance and sensory profile for barley-sorghum beer production. Baley-sorghum wort was produced with 12.5°P and fermented with Saccharomyces cerevisiae, Torulaspora delbrueckii and Metschnikowia pulcherrima yeast strains. Differences were observed in terms of fermentation time and ability to ferment maltose. S. cerevisiae attenuated initial maltose concentration within 72 h, while M. pulcherrima and T. delbrueckii performed fermentation within 120 and 192 h, respectively. Both yeast strains simultaneously produced 11% and 23% lower ethanol concentrations, compared to S. cerevisiae with 37.9 g/L. Wort fermented with T. delbrueckii showed residual maltose concentration of 19.7 ± 4.1 g/L, resulting in significantly enhanced beer sweetness. S. cerevisiae produced significantly increased levels of higher alcohols, and obtained the highest scores for the sensory attribute body perception. Beer produced with T. delbrueckii contained significantly lower fermentative 2,3-butanediol and 2-methyl-1-butanol volatiles; this beer also showed reduced body perception. Beer conditioned with T. delbrueckii was significantly preferred over M. pulcherrima. Besides S. cerevisiae with high fermentative power, T. delbrueckii and M. pulcherrima were found to have reduced maltose fermenting abilities and provide significantly different sensory attributes to barley-sorghum beers.
Collapse
|
39
|
Improved Saccharomyces cerevisiae Strain in Pure and Sequential Fermentation with Torulaspora delbrueckii for the Production of Verdicchio Wine with Reduced Sulfites. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The application of yeast strains that are low producers of sulfur compounds is actually required by winemakers for the production of organic wine. This purpose could be satisfied using a native Saccharomyces cerevisiae strain improved for oenological aptitudes. Moreover, to improve the aromatic complexity of wines, sequential fermentations carried out with S. cerevisiae/non-Saccharomyces yeast is widely used. For these reasons, in the present work an improved native S. cerevisiae low producer of sulfite and sulfide compounds was evaluated in pure and in sequential fermentation with a selected Torulaspora delbrueckii. Additionally, the influence of grape juices coming from three different vintages under winery conditions was evaluated. In pure fermentation, improved native S. cerevisiae strain exhibited a behavior related to vintage, highlighting that the composition of grape juice affects the fermentation process. In particular, an increase in ethyl octanoate (vintage 2017) and phenyl ethyl acetate (vintage 2018) was detected. Moreover, isoamyl acetate was highly consistent and could be a distinctive aroma of the strain. The sequential fermentation T. delbrueckii/S. cerevisiae determined an increase in aroma compounds such as phenyl ethyl acetate and ethyl hexanoate. In this way, it was possible to produce Verdicchio wine with reduced sulfites and characterized by a peculiar aromatic taste.
Collapse
|
40
|
Wang R, Sun J, Lassabliere B, Yu B, Liu SQ. Fermentation characteristics of four non-Saccharomyces yeasts in green tea slurry. Food Microbiol 2020; 92:103609. [PMID: 32950144 DOI: 10.1016/j.fm.2020.103609] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/20/2020] [Accepted: 07/25/2020] [Indexed: 01/19/2023]
Abstract
The fermentation characteristics of non-Saccharomyces yeasts (Pichia kluyveri FrootZen, Torulaspora delbrueckii Prelude, Williopsis saturnus var. mrakii NCYC2251 and Torulaspora delbrueckii Biodiva) were evaluated in green tea slurry fermentation. Each yeast showed different fermentation performances: strains Prelude and Biodiva utilized sucrose faster than the other two yeasts; strain NCYC2251 was the only species that metabolized xylose. Strain FrootZen increased the caffeine content significantly and strain Prelude showed the opposite trend, both at a statistical level, while theanine contents in four samples were relatively stable. Biodiva and FrootZen significantly improved polyphenols content and the oxygen radical absorbance capacity of fermented teas. Some endogenous volatiles such as ketones, lactones and aldehydes decreased to lower or undetected levels, but one of the key tea aroma compounds methyl salicylate increased by 34-fold and 100-fold in P. kluyveri and W. saturnus samples respectively. Therefore, green tea fermentation by appropriate non-Saccharomyces yeasts can enhance its antioxidant capacity and alter the aroma compound profile.
Collapse
Affiliation(s)
- Rui Wang
- Department of Food Science & Technology, National University of Singapore, Science Drive 3, Singapore, 117543, Singapore
| | - Jingcan Sun
- Mane SEA PTE LTD, Biopolis Drive 3, 138623, Singapore
| | | | - Bin Yu
- Mane SEA PTE LTD, Biopolis Drive 3, 138623, Singapore
| | - Shao Quan Liu
- Department of Food Science & Technology, National University of Singapore, Science Drive 3, Singapore, 117543, Singapore; National University of Singapore (Suzhou) Research Institute, No. 377 Linquan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
41
|
Ruiz J, de Celis M, de Toro M, Mendes-Ferreira A, Rauhut D, Santos A, Belda I. Phenotypic and transcriptional analysis of Saccharomyces cerevisiae during wine fermentation in response to nitrogen nutrition and co-inoculation with Torulaspora delbrueckii. Food Res Int 2020; 137:109663. [PMID: 33233242 DOI: 10.1016/j.foodres.2020.109663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/23/2020] [Accepted: 09/06/2020] [Indexed: 12/25/2022]
Abstract
Nitrogen content of grape musts strongly impacts on fermentation performance and wine metabolite production. As nitrogen is a limiting nutrient in most grape musts, nitrogen supplementation is a common practice that ensures yeast growth during fermentation. However, preferred nitrogen sources -as ammonium- repress the genes related to alternative nitrogen sources consumption, usually involved in aromatic compounds production. Here, we describe the effect of high ammonium doses in Saccharomyces cerevisiae fermentation performance and wine properties, and how it is affected by yeast co-inoculation in mixed (S. cerevisiae + Torulaspora delbrueckii) fermentations. In addition, an RNA-seq analysis allowed us to study the S. cerevisiae transcriptional response to ammonium nutrition and yeast interaction, demonstrating that T. delbrueckii presence affects the global S. cerevisiae transcriptional response, reducing ammonium effects at both phenotypic -fermentation kinetics and metabolite production- and transcriptional levels, under experimental conditions.
Collapse
Affiliation(s)
- Javier Ruiz
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Biology Faculty, Complutense University of Madrid, Madrid, Spain
| | - Miguel de Celis
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Biology Faculty, Complutense University of Madrid, Madrid, Spain
| | - María de Toro
- Plataforma de Genómica y Bioinformática, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Ana Mendes-Ferreira
- BioISI-Biosystems and Integrative Sciences Institute, Universidade de Trás-os-Montes e Alto Douro, Portugal
| | - Doris Rauhut
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
| | - Antonio Santos
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Biology Faculty, Complutense University of Madrid, Madrid, Spain
| | - Ignacio Belda
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Biology Faculty, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
42
|
Impact of the Timing and Temperature of Malolactic Fermentation on the Aroma Composition and Mouthfeel Properties of Chardonnay Wine. Foods 2020; 9:foods9060802. [PMID: 32570784 PMCID: PMC7353488 DOI: 10.3390/foods9060802] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 11/17/2022] Open
Abstract
Malolactic fermentation (MLF) is an important process in wine production due to the resulting reduction in acidity. MLF is typically induced by the addition of Oenococcus oeni after the completion of alcoholic fermentation (AF), but can occur concurrent with AF by co-inoculation of O. oeni with Saccharomyces cerevisiae. This study investigated the effect of MLF inoculation timing and temperature (15 °C and 21 °C) and the presence of the non-Saccharomyces yeast Torulaspora delbrueckii on Chardonnay wine aroma and mouthfeel. Aroma composition was measured using headspace solid-phase microextraction-gas chromatography mass spectrometry (HS-SPME-GCMS). Mouthfeel attributes of the wines produced were assessed by a winemaker panel, using Napping® and Ultra-flash profiling. Significant differences in aroma composition and mouthfeel perception were found based on MLF timing and inoculation conditions, as well as between temperatures. Temperature had a greater impact on the aroma composition for sequential inoculations, while there were little differences based on the temperature of concurrent fermentations. Treatment type and temperature also affected the chemical composition of finished wines. Mouthfeel was impacted, although not as strongly as aroma composition. These findings demonstrate the usefulness of various MLF practices to influence the sensory qualities of a Chardonnay wine.
Collapse
|
43
|
Isotopic Tracers Unveil Distinct Fates for Nitrogen Sources during Wine Fermentation with Two Non- Saccharomyces Strains. Microorganisms 2020; 8:microorganisms8060904. [PMID: 32560056 PMCID: PMC7356982 DOI: 10.3390/microorganisms8060904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/08/2020] [Accepted: 06/14/2020] [Indexed: 12/30/2022] Open
Abstract
Non-Saccharomyces yeast strains have become increasingly prevalent in the food industry, particularly in winemaking, because of their properties of interest both in biological control and in complexifying flavour profiles in end-products. However, unleashing the full potential of these species would require solid knowledge of their physiology and metabolism, which is, however, very limited to date. In this study, a quantitative analysis using 15N-labelled NH4Cl, arginine, and glutamine, and 13C-labelled leucine and valine revealed the specificities of the nitrogen metabolism pattern of two non-Saccharomyces species, Torulaspora delbrueckii and Metschnikowia pulcherrima. In T. delbrueckii, consumed nitrogen sources were mainly directed towards the de novo synthesis of proteinogenic amino acids, at the expense of volatile compounds production. This redistribution pattern was in line with the high biomass-producer phenotype of this species. Conversely, in M. pulcherrima, which displayed weaker growth capacities, a larger proportion of consumed amino acids was catabolised for the production of higher alcohols through the Ehrlich pathway. Overall, this comprehensive overview of nitrogen redistribution in T. delbrueckii and M. pulcherrima provides valuable information for a better management of co- or sequential fermentation combining these species with Saccharomyces cerevisiae.
Collapse
|
44
|
Castrillo D, Rabuñal E, Neira N, Blanco P. Oenological potential of non-Saccharomyces yeasts to mitigate effects of climate change in winemaking: impact on aroma and sensory profiles of Treixadura wines. FEMS Yeast Res 2020; 19:5581503. [PMID: 31584676 DOI: 10.1093/femsyr/foz065] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/02/2019] [Indexed: 12/27/2022] Open
Abstract
The effects of climate change on wine include high-alcohol content, low acidity and aroma imbalance. The potential of several non-Saccharomyces wine yeasts to mitigate these effects was evaluated by sequential fermentation of Treixadura grape must. Fermentations with only Saccharomyces cerevisiae ScXG3 and a spontaneous process were used as control assays. All yeast strains were obtained from the yeast collection of Estación de Viticultura e Enoloxía de Galicia (EVEGA), Galicia, Spain. Fermentation kinetics as well as yeast dynamics and implantation ability varied depending on inoculated yeasts. In addition, the results showed significant differences in the chemical composition of wine. Starmerella bacillaris 474 reduced the alcohol content (1.1% vol) and increased the total acidity (1.2 g L-1) and glycerol of wines. Fermentation with Lachancea thermotolerans Lt93 and Torulaspora delbrueckii Td315 also decreased the alcohol content, although to a lesser extent (0.3% and 0.7% vol, respectively); however, their effect on wine acidity was less significant. The wines also differed in their concentration of volatile compounds and sensory characteristics. Thus, wines made with Metschnikowia fructicola Mf278 and S. cerevisiae ScXG3 had higher content of esters, acetates and some acids than other wines, and were most appreciated by tasters due to their fruity character and overall impression.
Collapse
Affiliation(s)
- David Castrillo
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Ponte San Clodio s/n, 32428 Leiro, Ourense, Spain
| | - Eva Rabuñal
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Ponte San Clodio s/n, 32428 Leiro, Ourense, Spain
| | - Noemi Neira
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Ponte San Clodio s/n, 32428 Leiro, Ourense, Spain
| | - Pilar Blanco
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Ponte San Clodio s/n, 32428 Leiro, Ourense, Spain
| |
Collapse
|
45
|
Rêgo ESB, Rosa CA, Freire AL, Machado AMDR, Gomes FDCO, Costa ASPD, Mendonça MDC, Hernández-Macedo ML, Padilha FF. Cashew wine and volatile compounds produced during fermentation by non-Saccharomyces and Saccharomyces yeast. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Bordet F, Joran A, Klein G, Roullier-Gall C, Alexandre H. Yeast-Yeast Interactions: Mechanisms, Methodologies and Impact on Composition. Microorganisms 2020; 8:E600. [PMID: 32326124 PMCID: PMC7232261 DOI: 10.3390/microorganisms8040600] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/22/2022] Open
Abstract
During the winemaking process, alcoholic fermentation is carried out by a consortium of yeasts in which interactions occurs. The consequences of these interactions on the wine matrix have been widely described for several years with the aim of controlling the winemaking process as well as possible. In this review, we highlight the wide diversity of methodologies used to study these interactions, and their underlying mechanisms and consequences on the final wine composition and characteristics. The wide variety of matrix parameters, yeast couples, and culture conditions have led to contradictions between the results of the different studies considered. More recent aspects of modifications in the composition of the matrix are addressed through different approaches that have not been synthesized recently. Non-volatile and volatile metabolomics, as well as sensory analysis approaches are developed in this paper. The description of the matrix composition modification does not appear sufficient to explain interaction mechanisms, making it vital to take an integrated approach to draw definite conclusions on them.
Collapse
Affiliation(s)
- Fanny Bordet
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
- Lallemand SAS, 19, rue des Briquetiers, BP 59, 31702 Blagnac CEDEX, France
| | - Alexis Joran
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
| | - Géraldine Klein
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
| | - Chloé Roullier-Gall
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
| | - Hervé Alexandre
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
| |
Collapse
|
47
|
Effects of Different Yeasts on Physicochemical and Oenological Properties of Red Dragon Fruit Wine Fermented with Saccharomyces cerevisiae, Torulaspora delbrueckii and Lachancea thermotolerans. Microorganisms 2020; 8:microorganisms8030315. [PMID: 32106517 PMCID: PMC7142936 DOI: 10.3390/microorganisms8030315] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 11/30/2022] Open
Abstract
A new type of fruit wine made from red dragon fruit juice was produced through alcoholic fermentation (AF) with different yeasts: Saccharomyces cerevisiae EC-1118, Torulaspora delbrueckii Biodiva and Lachancea thermotolerans Concerto. Complete AF with similar fermentation rates in terms of sugar utilisation and ethanol production (8–9%, v/v) was achieved by three yeast strains. T. delbrueckii produced a significantly lower amount of glycerol and acetic acid, while L. thermotolerans produced more lactic and succinic acids. In addition, the two non-Saccharomyces strains were more efficient in proline utilisation. For volatile compounds, S. cerevisiae produced the highest amounts of esters, while T. delbrueckii produced more higher alcohols, isoamyl acetate and terpenes. On the other hand, AF caused significant degradation of betacyanin pigments and total phenolic compounds. Nevertheless, better retention of antioxidant activity and colour stability was found in L. thermotolerans and T. delbrueckii fermented wines than that of S. cerevisiae. This study suggested that it is feasible to use pure non-Saccharomyces yeast to produce red dragon fruit wine for commercialization.
Collapse
|
48
|
Characterization of major properties and aroma profile of kiwi wine co-cultured by Saccharomyces yeast (S. cerevisiae, S. bayanus, S. uvarum) and T. delbrueckii. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03439-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Alperstein L, Gardner JM, Sundstrom JF, Sumby KM, Jiranek V. Yeast bioprospecting versus synthetic biology-which is better for innovative beverage fermentation? Appl Microbiol Biotechnol 2020; 104:1939-1953. [PMID: 31953561 DOI: 10.1007/s00253-020-10364-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/30/2019] [Accepted: 01/09/2020] [Indexed: 01/08/2023]
Abstract
Producers often utilise some of the many available yeast species and strains in the making of fermented alcoholic beverages in order to augment flavours, aromas, acids and textural properties. But still, the demand remains for more yeasts with novel phenotypes that not only impact sensory characteristics but also offer process and engineering advantages. Two strategies for finding such yeasts are (i) bioprospecting for novel strains and species and (ii) genetic modification of known yeasts. The latter enjoys the promise of the emerging field of synthetic biology, which, in principle, would enable scientists to create yeasts with the exact phenotype desired for a given fermentation. In this mini review, we compare and contrast advances in bioprospecting and in synthetic biology as they relate to alcoholic fermentation in brewing and wine making. We explore recent advances in fermentation-relevant recombinant technologies and synthetic biology including the Yeast 2.0 Consortium, use of environmental yeasts, challenges, constraints of law and consumer acceptance.
Collapse
Affiliation(s)
- Lucien Alperstein
- Department of Wine & Food Science, The University of Adelaide, PMB1, Glen Osmond, 5064, South Australia, Australia
| | - Jennifer M Gardner
- Department of Wine & Food Science, The University of Adelaide, PMB1, Glen Osmond, 5064, South Australia, Australia
| | - Joanna F Sundstrom
- Department of Wine & Food Science, The University of Adelaide, PMB1, Glen Osmond, 5064, South Australia, Australia.,Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, South Australia, Australia
| | - Krista M Sumby
- Department of Wine & Food Science, The University of Adelaide, PMB1, Glen Osmond, 5064, South Australia, Australia.,Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, South Australia, Australia
| | - Vladimir Jiranek
- Department of Wine & Food Science, The University of Adelaide, PMB1, Glen Osmond, 5064, South Australia, Australia. .,Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, South Australia, Australia.
| |
Collapse
|
50
|
Hou X, Chen L, Yin H, Dong J, Yu J, He Y, Yang M. Quantification of strains in mixed lager yeast cultures using microsatellite PCR and GeXP. JOURNAL OF THE INSTITUTE OF BREWING 2020. [DOI: 10.1002/jib.600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaoping Hou
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewery Co. Ltd.; Tailiu Road 602, Gate 3 Qingdao Shandong China 266100
| | - Lu Chen
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewery Co. Ltd.; Tailiu Road 602, Gate 3 Qingdao Shandong China 266100
| | - Hua Yin
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewery Co. Ltd.; Tailiu Road 602, Gate 3 Qingdao Shandong China 266100
| | - Jianjun Dong
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewery Co. Ltd.; Tailiu Road 602, Gate 3 Qingdao Shandong China 266100
| | - Junhong Yu
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewery Co. Ltd.; Tailiu Road 602, Gate 3 Qingdao Shandong China 266100
| | - Yang He
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewery Co. Ltd.; Tailiu Road 602, Gate 3 Qingdao Shandong China 266100
| | - Mei Yang
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewery Co. Ltd.; Tailiu Road 602, Gate 3 Qingdao Shandong China 266100
| |
Collapse
|