1
|
Wang J, Li X, Guan F, Yang Z, Zhai X, Zhang Y, Tang X, Duan J, Xiao H. The Isolation of Anaerobic and Facultative Anaerobic Sulfate-Reducing Bacteria (SRB) and a Comparison of Related Enzymes in Their Sulfate Reduction Pathways. Microorganisms 2023; 11:2019. [PMID: 37630579 PMCID: PMC10458228 DOI: 10.3390/microorganisms11082019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Sulfate-reducing bacteria (SRB) are an important group of microorganisms that cause microbial corrosion. In this study, culturable SRB were isolated and identified from the inner rust layer of three kinds of steel and from sediments, and a comparison of amino acid sequences encoding related enzymes in the sulfate reduction pathway between anaerobic and facultative anaerobic SRB strains was carried out. The main results are as follows. (1) Seventy-seven strains were isolated, belonging to five genera and seven species, with the majority being Desulfovibrio marinisediminis. For the first time, Holodesulfovibrio spirochaetisodalis and Acinetobacter bereziniae were separated from the inner rust layer of metal, and sulfate reduction by A. bereziniae, Virgibacillus dokdonensis, and Virgibacillus chiguensis, etc., was also demonstrated for the first time. (2) Three strains of strictly anaerobic bacteria and four strains of facultative anaerobic bacteria were screened from seven bacterial strains. (3) Most of the anaerobic SRB only contained enzymes for the dissimilatory sulfate reduction pathway, while those of facultative anaerobic bacteria capable of producing hydrogen sulfide included two possible ways: containing the related enzymes from the dissimilatory pathway only, or containing enzymes from both dissimilatory and assimilation pathways. This study newly discovered that some bacterial genera exhibit sulfate reduction ability and found that there are differences in the distribution of enzymes related to the sulfate reduction pathway between anaerobic and facultative anaerobic SRB type trains, providing a basis for the development and utilization of sulfate-reducing bacterial resources and furthering our understanding of the metabolic mechanisms of SRB.
Collapse
Affiliation(s)
- Jing Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
| | - Xiaohong Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Fang Guan
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
- Laoshan Laboratory, Qingdao 266000, China
| | - Zhibo Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaofan Zhai
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
- Laoshan Laboratory, Qingdao 266000, China
| | - Yimeng Zhang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
- Laoshan Laboratory, Qingdao 266000, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laoshan Laboratory, Qingdao 266000, China
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
- Laoshan Laboratory, Qingdao 266000, China
| | - Hui Xiao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laoshan Laboratory, Qingdao 266000, China
| |
Collapse
|
2
|
The Diverse Indigenous Bacterial Community in the Rudna Mine Does Not Cause Dissolution of Copper from Kupferschiefer in Oxic Conditions. MINERALS 2022. [DOI: 10.3390/min12030366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Blasting and fracking of rock in mines exposes fresh rock surfaces to the local water and microbial communities. This may lead to leaching of metals from the rock by chemical or biological means and can cause acidification of the water system in the mine, i.e., acid rock drainage (ARD). Failure to prevent leakage of metal contaminated mine water may be harmful for the environment, especially to the local groundwater. In the Rudna mine, Poland, an in situ bioleaching pilot test at approximately 1 km depth was performed in the H2020 BIOMOre project (Grant Agreement #642456). After the leaching stage, different methods for irreversible inhibition of acidophilic iron oxidizing microorganisms used for reoxidation of reduced iron in the leaching solution were tested and were shown to be effective. However, the potential of the natural mine water microbial communities to cause leaching of copper or acidification of the mine waters has not been tested. In this study, we set up a microcosm experiment simulating the exposure of freshly fractionated Kupferschiefer sandstone or black schist to two different chloride-rich water types in the Rudna mine. The pH of the microcosms water was measured over time. At the end of an 18-week incubation, the bacterial community was examined by high throughput sequencing and qPCR, and the presence of copper tolerant heterotrophic bacteria was tested by cultivation. The dissolution of copper into the chloride rich microcosm water was measured. The pH in the microcosms did not decrease over the time of incubation. The sandstone increased the number of bacteria in the microcosms with one or over two orders of magnitude compared to the original water. The bacterial communities in the two tested mine waters were diverse and similar despite the difference in salinity. The bacterial diversity was high but changed in the less saline water during the incubation. There was a high content of sulphate reducing bacteria in the original mine waters and in the microcosms, and their number increased during the incubation. No acidophilic iron oxidizers were detected, but in the microcosms containing the less saline water low numbers of Cu tolerant bacteria were detected. Copper to a concentration of up to 939 mg L−1 was leached from the rock also in the microbe-free negative controls, which was up to 2.4 times that leached in the biotic microcosms, indicating that the leaching was also abiotic, not only caused by bacteria.
Collapse
|
3
|
Eregowda T, Rene ER, Matanhike L, Lens PNL. Effect of selenate and thiosulfate on anaerobic methanol degradation using activated sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29804-29811. [PMID: 31965493 DOI: 10.1007/s11356-020-07597-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
Anaerobic bioconversion of methanol was tested in the presence of selenate (SeO42-), thiosulfate (S2O32-), and sulfate (SO42-) as electron acceptors. Complete SeO42- reduction occurred at COD:SeO42- ratios of 12 and 30, whereas ~ 83% reduction occurred when the COD:SeO42- ratio was 6. Methane production did not occur at the three COD:SeO42- ratios investigated. Up to 10.1 and 30.9% of S2O32- disproportionated to SO42- at COD:S2O32- ratios of 1.2 and 2.25, respectively, and > 99% reduction was observed at both ratios. The presence of S2O32- lowered the methane production by 73.1% at a COD:S2O32- ratio of 1.2 compared to the control (no S2O32-). This study showed that biogas production was not preferable for SeO42- and S2O32--rich effluents and volatile fatty acid production could be a potential resource recovery option.
Collapse
Affiliation(s)
- Tejaswini Eregowda
- UNESCO-IHE, Institute for Water Education, P. O. Box. 3015, 2601DA, Delft, The Netherlands
| | - Eldon R Rene
- UNESCO-IHE, Institute for Water Education, P. O. Box. 3015, 2601DA, Delft, The Netherlands.
| | - Luck Matanhike
- UNESCO-IHE, Institute for Water Education, P. O. Box. 3015, 2601DA, Delft, The Netherlands
| | - Piet N L Lens
- UNESCO-IHE, Institute for Water Education, P. O. Box. 3015, 2601DA, Delft, The Netherlands
- Microbiology Department, School of Natural Sciences, National University of Ireland, Galway, University Road, Galway, Ireland
| |
Collapse
|
4
|
Oliveira FR, Surendra KC, Jaisi DP, Lu H, Unal-Tosun G, Sung S, Khanal SK. Alleviating sulfide toxicity using biochar during anaerobic treatment of sulfate-laden wastewater. BIORESOURCE TECHNOLOGY 2020; 301:122711. [PMID: 31927459 DOI: 10.1016/j.biortech.2019.122711] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
This study examined the use of biochar to alleviate sulfide toxicity to methane producing archaea (MPA) and sulfate-reducing bacteria (SRB) during anaerobic treatment of sulfate-rich wastewater with concomitant sulfur recovery. At the sulfate concentration of 6000 mg SO42-/L, the dissolved sulfide (DS) of 131 mg S/L resulted in total volatile fatty acids concentration of 3500 mg/L as acetic acid (HAc) and the reactors were on the verge of failure. Biochar removed >98% of H2S(g), 94% of DS, and 89% of unionized sulfide (H2Saq). 16S rRNA analysis revealed that after sulfide removal the relative abundance of MPA (Methanobacterium and Methanosaeta) increased from 0.7% to 3.7%, while the relative abundance of SRB (Desulfovibrio) decreased from 9.3% to 0.5% indicating that the reactor recovered to stable state. This study showed that biochar could effectively remove H2S from biogas, alleviate sulfide toxicity to MPA and SRB, and promote stability of the anaerobic process.
Collapse
Affiliation(s)
- Fernanda R Oliveira
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States
| | - Deb P Jaisi
- Plant and Soil Sciences, University of Delaware, Newark, DE 19716, United States
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Gulcin Unal-Tosun
- Plant and Soil Sciences, University of Delaware, Newark, DE 19716, United States
| | - Shihwu Sung
- College of Agriculture, Forestry and Natural Resource Management, University of Hawaii at Hilo, 200 W. Kawili Street, Hilo, HI 96720, United States
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States.
| |
Collapse
|
5
|
Wang R, Wilfert P, Dugulan I, Goubitz K, Korving L, Witkamp GJ, van Loosdrecht MC. Fe(III) reduction and vivianite formation in activated sludge. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
6
|
Antunes TC, Ballarini AE, Sand SVANDER. Temporal variation of bacterial population and response to physical and chemical parameters along a petrochemical industry wastewater treatment plant. AN ACAD BRAS CIENC 2019; 91:e20180394. [PMID: 31269105 DOI: 10.1590/0001-3765201920180394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/24/2018] [Indexed: 11/22/2022] Open
Abstract
The petrochemical industry has played a considerable role in generation and release of waste in the environment. Activated sludge and facultative lagoons are commonly used for domestic and industrial wastewater treatment due to their low-cost and minimal need for operational requirements. Microorganisms present in wastewater treatment plant (WWTP) are responsible for most nutrient removal. In this study, microbiological and physicochemical parameters were used to estimate changes in bacterial community in a petrochemical industrial WWTP. The activated sludge was the place with higher heterotrophic bacterial quantification. Denitrifying bacteria was reduced at least 5.3 times throughout all collections samples. We observe a decrease in the total Kjeldahl nitrogen, oxygen demand and phosphate throughout the WWTP. In this work, we also use Matrix-Assisted Laser Desorption Ionisation-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) for bacteria isolates identification comparing with 16S rDNA sequencing. The MALDI-TOF MS allowed the identification of 93% of the isolates and only 5% show different results from 16S rDNA sequencing showing that the MALDI-TOF MS can be a tool for identifying environmental bacteria. The observation of microbial community dynamics in the WWTP is important in order to understand the functioning of the ecological structure formed in a specific environment.
Collapse
Affiliation(s)
- Themis C Antunes
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Ana E Ballarini
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Sueli VAN DER Sand
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| |
Collapse
|
7
|
Rubio-Rincón F, Lopez-Vazquez C, Welles L, van den Brand T, Abbas B, van Loosdrecht M, Brdjanovic D. Effects of electron acceptors on sulphate reduction activity in activated sludge processes. Appl Microbiol Biotechnol 2017; 101:6229-6240. [PMID: 28547567 PMCID: PMC5522498 DOI: 10.1007/s00253-017-8340-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/07/2017] [Indexed: 11/29/2022]
Abstract
The concentration of sulphate present in wastewater can vary from 10 to 500 mg SO42−/L. During anaerobic conditions, sulphate is reduced to sulphide by sulphate-reducing bacteria (SRB). Sulphide generation is undesired in wastewater treatment plants (WWTPs). Previous research indicated that SRB are inhibited by the presence of electron acceptors (such as O2, NO3 and NO2). However, the contact times and concentrations used in those studies are by far higher than occur in WWTPs. Since sulphide can influence the biological nitrogen and phosphorus removal processes, this research aimed to understand how the different electron acceptors commonly present in biological nutrient removal (BNR) systems can affect the proliferation of SRB. For this purpose, a culture of SRB was enriched in a sequencing batch reactor (approx. 88% of the total bacteria population). Once enriched, the SRB were exposed for 2 h to typical concentrations of electron acceptors like those observed in BNR systems. Their activity was assessed using three different types of electron donors (acetate, propionate and lactate). Oxygen was the most inhibiting electron acceptor regardless the carbon source used. After exposure to oxygen and when feeding acetate, an inactivation time in the sulphate reduction activity was observed for 1.75 h. Once the sulphate reduction activity resumed, only 60% of the original activity was recovered. It is suggested that the proliferation of SRB is most likely to occur in BNR plants with an anaerobic fraction higher than 15% and operating at sludge retention times higher than 20 days (at a temperature of 20 °C). These results can be used to implement strategies to control the growth of sulphate reducers that might compete for organic carbon with phosphate-accumulating organisms.
Collapse
Affiliation(s)
- Francisco Rubio-Rincón
- Sanitary Engineering Chair Group, Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2611AX, Delft, The Netherlands. .,Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Carlos Lopez-Vazquez
- Sanitary Engineering Chair Group, Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2611AX, Delft, The Netherlands
| | - Laurens Welles
- Sanitary Engineering Chair Group, Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2611AX, Delft, The Netherlands.,Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Tessa van den Brand
- KWR Watercycle Research Institute, Groningenhaven 7, 3433 PE, Nieuwegein, The Netherlands
| | - Ben Abbas
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Mark van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Damir Brdjanovic
- Sanitary Engineering Chair Group, Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2611AX, Delft, The Netherlands.,Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| |
Collapse
|
8
|
Valverde-Pérez B, Wágner DS, Lóránt B, Gülay A, Smets BF, Plósz BG. Short-sludge age EBPR process - Microbial and biochemical process characterisation during reactor start-up and operation. WATER RESEARCH 2016; 104:320-329. [PMID: 27570133 DOI: 10.1016/j.watres.2016.08.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/30/2016] [Accepted: 08/12/2016] [Indexed: 06/06/2023]
Abstract
The new paradigm for used water treatment suggests the use of short solid retention times (SRT) to minimize organic substrate mineralization and to maximize resource recovery. However, little is known about the microbes and the underlying biogeochemical mechanisms driving these short-SRT systems. In this paper, we report the start-up and operation of a short-SRT enhanced biological phosphorus removal (EBPR) system operated as a sequencing batch reactor (SBR) fed with preclarified municipal wastewater, which is supplemented with propionate. The microbial community was analysed via 16S rRNA amplicon sequencing. During start-up (SRT = 8 d), the EBPR was removing up to 99% of the influent phosphate and completely oxidized the incoming ammonia. Furthermore, the sludge showed excellent settling properties. However, once the SRT was shifted to 3.5 days nitrification was inhibited and bacteria of the Thiothrix taxon proliferated in the reactor, thereby leading to filamentous bulking (sludge volume index up to SVI = 1100 mL/g). Phosphorus removal deteriorated during this period, likely due to the out-competition of polyphosphate accumulating organisms (PAO) by sulphate reducing bacteria (SRB). Subsequently, SRB activity was suppressed by reducing the anaerobic SRT from 1.2 day to 0.68 day, with a consequent rapid SVI decrease to ∼200 ml/g. The short-SRT EBPR effectively removed phosphate and nitrification was mitigated at SRT = 3 days and oxygen levels ranging from 2 to 3 mg/L.
Collapse
Affiliation(s)
- Borja Valverde-Pérez
- Department of Environmental Engineering (DTU Environment), Technical University of Denmark, Miljøvej, Building 115, DK-2800, Kgs. Lyngby, Denmark.
| | - Dorottya S Wágner
- Department of Environmental Engineering (DTU Environment), Technical University of Denmark, Miljøvej, Building 115, DK-2800, Kgs. Lyngby, Denmark
| | - Bálint Lóránt
- Department of Environmental Engineering (DTU Environment), Technical University of Denmark, Miljøvej, Building 115, DK-2800, Kgs. Lyngby, Denmark
| | - Arda Gülay
- Department of Environmental Engineering (DTU Environment), Technical University of Denmark, Miljøvej, Building 115, DK-2800, Kgs. Lyngby, Denmark
| | - Barth F Smets
- Department of Environmental Engineering (DTU Environment), Technical University of Denmark, Miljøvej, Building 115, DK-2800, Kgs. Lyngby, Denmark
| | - Benedek Gy Plósz
- Department of Environmental Engineering (DTU Environment), Technical University of Denmark, Miljøvej, Building 115, DK-2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
9
|
Wilfert P, Mandalidis A, Dugulan AI, Goubitz K, Korving L, Temmink H, Witkamp GJ, Van Loosdrecht MCM. Vivianite as an important iron phosphate precipitate in sewage treatment plants. WATER RESEARCH 2016; 104:449-460. [PMID: 27579874 DOI: 10.1016/j.watres.2016.08.032] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/08/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
Iron is an important element for modern sewage treatment, inter alia to remove phosphorus from sewage. However, phosphorus recovery from iron phosphorus containing sewage sludge, without incineration, is not yet economical. We believe, increasing the knowledge about iron-phosphorus speciation in sewage sludge can help to identify new routes for phosphorus recovery. Surplus and digested sludge of two sewage treatment plants was investigated. The plants relied either solely on iron based phosphorus removal or on biological phosphorus removal supported by iron dosing. Mössbauer spectroscopy showed that vivianite and pyrite were the dominating iron compounds in the surplus and anaerobically digested sludge solids in both plants. Mössbauer spectroscopy and XRD suggested that vivianite bound phosphorus made up between 10 and 30% (in the plant relying mainly on biological removal) and between 40 and 50% of total phosphorus (in the plant that relies on iron based phosphorus removal). Furthermore, Mössbauer spectroscopy indicated that none of the samples contained a significant amount of Fe(III), even though aerated treatment stages existed and although besides Fe(II) also Fe(III) was dosed. We hypothesize that chemical/microbial Fe(III) reduction in the treatment lines is relatively quick and triggers vivianite formation. Once formed, vivianite may endure oxygenated treatment zones due to slow oxidation kinetics and due to oxygen diffusion limitations into sludge flocs. These results indicate that vivianite is the major iron phosphorus compound in sewage treatment plants with moderate iron dosing. We hypothesize that vivianite is dominating in most plants where iron is dosed for phosphorus removal which could offer new routes for phosphorus recovery.
Collapse
Affiliation(s)
- P Wilfert
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 7, 8911 MA, Leeuwarden, The Netherlands; Dept. Biotechnology, Delft Univ Technol, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - A Mandalidis
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 7, 8911 MA, Leeuwarden, The Netherlands
| | - A I Dugulan
- Fundamental Aspects Mat & Energy Grp, Delft Univ Technol, Mekelweg 15, 2629 JB Delft, The Netherlands
| | - K Goubitz
- Fundamental Aspects Mat & Energy Grp, Delft Univ Technol, Mekelweg 15, 2629 JB Delft, The Netherlands
| | - L Korving
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 7, 8911 MA, Leeuwarden, The Netherlands.
| | - H Temmink
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 7, 8911 MA, Leeuwarden, The Netherlands; Sub-department of Environmental Technology, Wageningen University, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| | - G J Witkamp
- Dept. Biotechnology, Delft Univ Technol, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - M C M Van Loosdrecht
- Dept. Biotechnology, Delft Univ Technol, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
10
|
Ghorbel L, Coudert L, Gilbert Y, Mercier G, Blais JF. Assessment of sulfide production risk in soil during the infiltration of domestic wastewater treated by a sulfur-utilizing denitrification process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:19071-19083. [PMID: 27343077 DOI: 10.1007/s11356-016-6979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/25/2016] [Indexed: 06/06/2023]
Abstract
This study aimed to determine the potential of sulfide generation during infiltration through soil of domestic wastewater treated by a sulfur-utilizing denitrification process. Three types of soil with different permeability rates (K s = 0.028, 0.0013, and 0.00015 cm/s) were investigated to evaluate the potential risk of sulfur generation during the infiltration of domestic wastewater treated by a sulfur-utilizing denitrification system. These soils were thoroughly characterized and tested to assess their capacity to be used as drainages for wastewaters. Experiments were conducted under two operating modes (saturated and unsaturated). Sulfate, sulfide, and chemical oxygen demand (COD) levels were determined over a period of 100 days. Despite the high concentration of sulfates (200 mg/L) under anaerobic conditions (ORP = -297 mV), no significant amount of sulfide was generated in the aqueous (<0.2 mg/L) or gaseous (<0.15 ppm) phases. Furthermore, the soil permeability did not have a noticeable effect on the infiltration of domestic wastewater treated by a sulfur-utilizing denitrification system due to low contents of organic matter (i.e., dissolved organic carbon, DOC). The autotrophic denitrification process used to treat the domestic wastewater allowed the reduction of the concentration of biochemical oxygen demand (BOD5) below 5 mg/L, of DOC below 7 mg/L, and of COD below 100 mg/L.
Collapse
Affiliation(s)
- L Ghorbel
- Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Université du Québec, 490 rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - L Coudert
- Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Université du Québec, 490 rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Y Gilbert
- PREMIER TECH, 1 avenue Premier Campus Premier Tech, Rivière-du-Loup, QC, G5R 6C1, Canada
| | - G Mercier
- Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Université du Québec, 490 rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - J F Blais
- Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Université du Québec, 490 rue de la Couronne, Québec, QC, G1K 9A9, Canada.
| |
Collapse
|
11
|
Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wastewater treatment. World J Microbiol Biotechnol 2015; 31:1675-81. [DOI: 10.1007/s11274-015-1935-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/27/2015] [Indexed: 10/23/2022]
|