1
|
Ling L, Yue R, Wang Y, Feng L, Yang L, Li Y, Mo R, Zhang W, Kong F, Jiang Y, Zhou Y. Volatile organic compounds from Stenotrophomonas geniculata J-0 as potential biofumigants manage bulb rot caused by Fusarium oxysporum in postharvest Lanzhou lily. World J Microbiol Biotechnol 2024; 41:9. [PMID: 39690368 DOI: 10.1007/s11274-024-04228-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
The Lanzhou lily bulbs are often vulnerable to postharvest infections by pathogenic fungi, leading to lily bulb rot. This study investigated the ability of volatile organic compounds (VOCs) produced by Stenotrophomonas geniculata J-0 to control the highly pathogenic fungus Fusarium oxysporum BH-7 in postharvest Lanzhou lily bulbs. VOCs of S. geniculata J-0 showed inhibitory effect on the mycelial growth of F. oxysporum BH-7, with a maximum inhibition of 100%. Scanning electron microscope (SEM) observed that VOCs caused a shift in mycelial morphology from elongated and uniform tubular to collapsed and wrinkled. Moreover, VOCs of J-0 significantly reduced pathogenic fungal spore germination and sporulation. Through headspace gas chromatography-ion mobility spectrometry analysis, J-0 emitted 15 volatile compounds. The fumigation test of BH-7 with single pure synthetic compounds showed that 1-penten-3-one had excellent antifungal activity, with an inhibition rate of 100% at 4 μL/L. Additionally, our results revealed 1-penten-3-one destroyed the integrity and increased the permeability of BH-7 mycelial cell membranes, leading to leakage of intracellular electrolytes and substances, a reduction in extracellular pH, a blockage of ergosterol synthesis and an elevation in malondialdehyde content. In vivo experiments, fumigation of 1-penten-3-one at an exceptionally low concentration (4 μL/L) for a very short period of time (0.5 h) was effective in delaying the onset and prevalence of postharvest diseases. Hence, this study provides novel antifungal agents to control disease in postharvest Lanzhou lily and enhances our understanding of the biocontrol potential of volatiles from S. geniculata.
Collapse
Affiliation(s)
- Lijun Ling
- College of Life Science, Northwest Normal University, No.967, Anning East Road, Lanzhou, 730070, People's Republic of China.
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou, 730070, People's Republic of China.
| | - Rui Yue
- College of Life Science, Northwest Normal University, No.967, Anning East Road, Lanzhou, 730070, People's Republic of China
| | - Yuanyuan Wang
- College of Life Science, Northwest Normal University, No.967, Anning East Road, Lanzhou, 730070, People's Republic of China
| | - Lijun Feng
- College of Life Science, Northwest Normal University, No.967, Anning East Road, Lanzhou, 730070, People's Republic of China
| | - Ling Yang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
- College of Health, Lanzhou Vocational and Technical College, Lanzhou, 730070, People's Republic of China
| | - Yao Li
- College of Life Science, Northwest Normal University, No.967, Anning East Road, Lanzhou, 730070, People's Republic of China
| | - Rongxiu Mo
- College of Life Science, Northwest Normal University, No.967, Anning East Road, Lanzhou, 730070, People's Republic of China
| | - Wenyue Zhang
- College of Life Science, Northwest Normal University, No.967, Anning East Road, Lanzhou, 730070, People's Republic of China
| | - Fanjin Kong
- College of Life Science, Northwest Normal University, No.967, Anning East Road, Lanzhou, 730070, People's Republic of China
| | - Yijuan Jiang
- College of Life Science, Northwest Normal University, No.967, Anning East Road, Lanzhou, 730070, People's Republic of China
| | - Yongpeng Zhou
- College of Life Science, Northwest Normal University, No.967, Anning East Road, Lanzhou, 730070, People's Republic of China
| |
Collapse
|
2
|
Mao L, Yin B, Ye Z, Kang J, Sun R, Wu Z, Ge J, Ping W. Plant growth-promoting microorganisms drive K strategists through deterministic processes to alleviate biological stress caused by Fusarium oxysporum. Microbiol Res 2024; 289:127911. [PMID: 39303412 DOI: 10.1016/j.micres.2024.127911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Soybean root rot, caused by soil-borne pathogens such as Fusarium oxysporum, frequently occurs in Northeast China and leads to a decline in soil health and becoming a bottleneck for soybean yield in the region. To address this issue, applying beneficial microorganisms and altering soil microbial community structure have become effective strategies. In this study, the 90-day soybean pot experiment was conducted to explore the assembly process and life strategy selection of bacterial communities in the rhizosphere of healthy (inoculated with Funneliformis mosseae, F group and treated with Pseudomonas putida, P group) and diseased (inoculated with F. oxysporum, O group) soybean plants, as well as the recovery effect of beneficial microorganisms on soil-borne diseases (combined treatments OP and OF). Results indicated that in healthy soils (P and F), microbial community assembly process in the soybean rhizosphere was entirely governed by heterogeneous selection (HeS, 100 %). However, inoculated with P. putida (OP) was primarily driven by stochastic processes (HeS 40 %, dispersal limitation (DL) 60 %), and the F. mosseae treatment (OF) predominantly followed a deterministic process (HeS 89 %, DL 11 %) in diseased soils. Inoculation of plant growth-promoting microorganisms (PGPMs) in diseased soil drove the life strategy of the rhizosphere bacterial community from r- to K-strategy, evident from the lower rRNA operon (rrn) copy numbers (O 3.7, OP 2.1, OF 2.3), higher G+ to G- ratios (O 0.47, OP 0.58, OF 0.57), and a higher abundance of oligotrophs (O 50 %, OP 53 %, OF 54 %). In healthy (P and F) and diseased (O, OP, OF) rhizosphere soils, OTU820, OTU6142, and OTU8841 under the K-strategy, and OTU6032 and OTU6917 under the r-strategy, which served as keystone species, had a significant promoting relationship with plant biomass and defense capabilities ( p <0.05). Additionally, inoculation of PGPMs improved autotoxin degradation and positively correlated with bacterial life strategies in both healthy and diseased soils (P, F, OP and OF) ( p <0.05). These findings enhance our understanding of soil-microbe interactions and offer new insights and precise control measures for soybean disease management and soil environment remediation.
Collapse
Affiliation(s)
- Liangyang Mao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Bo Yin
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| | - Zeming Ye
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jie Kang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Rui Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Zhenchao Wu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Wenxiang Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
3
|
Sang Y, Ren K, Chen Y, Wang B, Meng Y, Zhou W, Jiang Y, Xu J. Integration of soil microbiology and metabolomics to elucidate the mechanism of the accelerated infestation of tobacco by the root-knot nematode. Front Microbiol 2024; 15:1455880. [PMID: 39247692 PMCID: PMC11377229 DOI: 10.3389/fmicb.2024.1455880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Tobacco root-knot nematode (TRKN) disease is a soil-borne disease that presents a major hazard to the cultivation of tobacco, causing significant reduction in crop quality and yield, and affecting soil microbial diversity and metabolites. However, differences in rhizosphere soil microbial communities and metabolites between healthy tobacco soils and tobacco soils with varying degrees of TRKN infection remain unclear. Methods In this study, diseased rhizosphere soils of tobacco infected with different degrees of TRKN [severally diseased (DH) soils, moderately diseased (DM) soils, and mildly diseased (DL) soils] and healthy (H) rhizosphere soils were collected. Here, we combined microbiology with metabolomics to investigate changes in rhizosphere microbial communities and metabolism in healthy and TRKN-infected tobacco using high-throughput sequencing and LC-MS/MS platforms. Results The results showed that the Chao1 and Shannon indices of bacterial communities in moderately and mildly diseased soils were significantly higher than healthy soils. The Proteobacteria, Actinobacteria, Ascomycota, Burkholderia, Bradyrhizobium and Dyella were enriched in the rhizosphere soil of healthy tobacco. Basidiomycota, Agaricales, Pseudeurotiaceae and Ralstonia were enriched in severally diseased soils. Besides, healthy soils exhibited a relatively complex and interconnected network of bacterial molecular ecologies, while in severally and moderately diseased soils the fungal molecular networks are relatively complex. Redundancy analysis showed that total nitrogen, nitrate nitrogen, available phosphorus, significantly affected the changes in microbial communities. In addition, metabolomics results indicated that rhizosphere soil metabolites were significantly altered after tobacco plants were infected with TRKNs. The relative abundance of organic acids was higher in severally diseased soils. Spearman's analyses showed that oleic acid, C16 sphinganine, 16-hydroxyhexadecanoic acid, D-erythro-3-methylmalate were positively correlated with Basidiomycota, Agaricales, Ralstonia. Discussion In conclusion, this study revealed the relationship between different levels of TRKN invasion of tobacco root systems with bacteria, fungi, metabolites and soil environmental factors, and provides a theoretical basis for the biological control of TRKN disease.
Collapse
Affiliation(s)
- Yinghua Sang
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Ke Ren
- Yunnan Academy of Tobacco Agricultural Sciences, Yuxi, China
| | - Yi Chen
- Yunnan Academy of Tobacco Agricultural Sciences, Yuxi, China
| | - Bin Wang
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Yufang Meng
- Yuxi Branch of Yunnan Provincial Tobacco Company, Yuxi, Yunnan, China
| | - Wenbing Zhou
- Yuxi Branch of Yunnan Provincial Tobacco Company, Yuxi, Yunnan, China
| | - Yonglei Jiang
- Yunnan Academy of Tobacco Agricultural Sciences, Yuxi, China
| | - Junju Xu
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
4
|
Hu B, Zheng Y, Wang D, Guo Y, Dong Y. Managing faba bean wilt disease through intercropping with wheat and reasonable nitrogen application: enhancing nutrient absorption and biochemical resistance in faba beans. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1029-1046. [PMID: 38974356 PMCID: PMC11222364 DOI: 10.1007/s12298-024-01466-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/29/2024] [Accepted: 05/21/2024] [Indexed: 07/09/2024]
Abstract
Faba bean wilt disease is a key factor limiting its production. Intercropping of faba bean with wheat has been adopted as a prevalent strategy to mitigate this disease. Nitrogen fertilizer improves faba bean yield, yet wilt disease imposes limitations. However, faba bean-wheat intercropping is effective in controlling wilt disease. To investigate the effect of intercropping under varying nitrogen levels on the incidence of faba bean wilt disease, nutrient uptake, and biochemical resistance in faba bean. Field and pot experiments were conducted in two cropping systems: faba bean monocropping (M) and faba bean-wheat intercropping (I). At four nitrogen levels, we assessed the incidence rate of wilt disease, quantified nutrient uptake, and evaluated biochemical resistance indices of plants. The application of N decreased the incidence rate of wilt disease, with the lowest reduction observed in intercropping at the N2 level. N application at levels N1, N2, and N3 enhanced the content of N, P, K, Fe, and Mn as well as superoxide dismutase (SOD), phenylalanine ammonia lyase (PAL), and polyphenol oxidase (PPO) activities and defense gene expression in monocultured plants. Additionally, these levels increased the contents of total phenols, flavonoids, soluble sugars, and soluble proteins, and all reached their maximum in intercropping at the N2 level. The application of intercropping and N effectively controlled the occurrence of faba bean wilt disease by promoting nutrient absorption, alleviating peroxidation stress, and enhancing resistance in plants. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01466-1.
Collapse
Affiliation(s)
- Bijie Hu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Yiran Zheng
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Dongsheng Wang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Yuting Guo
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Yan Dong
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
5
|
Ju J, Zhou B, Yang G, Fu X, Wang X, Guo L, Liu W. Study on the metabolic process of phthalic acid driven proliferation of Rhizoctonia solani. FRONTIERS IN PLANT SCIENCE 2023; 14:1266916. [PMID: 37885668 PMCID: PMC10598758 DOI: 10.3389/fpls.2023.1266916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023]
Abstract
Introduction Continuous cropping obstacle seriously affects the quality and yield of Salvia miltiorrhiza, and the synergistic effect of root exudates and rhizosphere pathogenic microorganisms may be an important cause of continuous cropping obstacle. This study aimed to explore the effects of representative organic acids on the growth and metabolism of specific microorganisms in the S. miltiorrhiza rhizosphere soil under continuous cropping, and clarify its mechanism. Methods The effect of phthalic acid (PA) on the growth and metabolism of Rhizoctonia solani was evaluated by mycelial growth inhibition method. Ultra-high performance liquid chromatography and tandem mass spectrometry were used to identify the differential metabolites of R. solani induced by exogenous PA. Results PA exerted a concentration-dependent effect on mycelial growth, biomass, intracellular polysaccharides con-tent, and total protein content in R. solani. A total of 1773 metabolites and 1040 differential metabolites were identified in the blank medium (CK), Fungi (CK + fungi), and PA-Fungi (CK + fungi + acid) groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the differential metabolites were mainly involved in the sugar, lipid, and protein metabolic pathways related to stable membrane structure and cell growth. Discussion The proliferation and metabolism network of R. solani induced by PA was proposed, and the enhancement of sugar, lipid, and amino acid metabolism was presumed to be related to the active resistance of cells to organic acid stress. These results offer new in-sights into the effects of PA metabolism on promoting R. solani proliferation, and provide theoretical support for further optimizing the rhizosphere microecological environment of Salvia miltiorrhiza continuous cropping soil and reducing continuous cropping obstacle.
Collapse
Affiliation(s)
- Jidong Ju
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Pharmaceutical Institute, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bingqian Zhou
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Guohong Yang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xinyu Fu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Pharmaceutical Institute, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lanping Guo
- Chinese Medicine Resource Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
6
|
Liu J, Zhang S, Li E, Zhu Y, Cai H, Xia S, Kong C. Effects of cubic ecological restoration of mining wasteland and the preferred restoration scheme. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158155. [PMID: 35988610 DOI: 10.1016/j.scitotenv.2022.158155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/23/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
In view of the strong acidity and high heavy metal contents of the soil, the low vegetation cover, and strong soil erosion caused by mining activities, the reasonable determination of the cubic restoration mode is the key to determining the good or bad ecological restoration effects on mining wasteland. In this study, based on field experiments, a combined cubic ecological restoration scheme for soil improvement-vegetation reconstruction was constructed. Using analysis of variance, a regression model, and the Mantel test, the differences in soil properties and the biodiversity were analyzed under different restoration schemes, the entropy-weighted-TOPSIS method was used to optimize the best ecological restoration model. The results revealed that compared with the pre-restoration state, the restoration significantly increased the soil pH (p < 0.05) by 4.07-5.73, regulated the strong acidic environment of the soil, increased the organic matter content by 5.35-11.21 times, and improved the soil fertility. The available contents of Pb and Cd were reduced by 67.15-75.58 % and 64.15-88.68 %, respectively compared with the background values. Biodiversity improved significantly, and the available content of Cd was an important factor in the biodiversity recovery. The evaluation of the effect of the restoration scheme showed that the combination of mixed soil amendments of rice husks and chicken manure (10 kg/m2), bacterial fertilizer (1.8 kg/m2), biochar (1.3 kg/m2), lime (8.3 kg/m2), and soil conditioner (1.0 kg/m2) and tolerant plants (Pinus elliottii, Lagerstroemia indica, and Plantago asiatica) are the optimal cubic ecological restoration scheme for the study area, with a plant survival rate of > 90 %, eight families and 10 species of plants, and a coverage rate of 100 %. These research results provide a scientific basis and technical support for reasonable artificial intervention in ecological restoration of mining waste sites in Nanling, northern Guangdong.
Collapse
Affiliation(s)
- Jun Liu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Engineering Laboratory of Anhui Province for Comprehensive Utilization of Water and Soil Resources and Construction of Ecological Protection in Mining Area with High Groundwater Level, Huainan 232001, China
| | - Shiwen Zhang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Engineering Laboratory of Anhui Province for Comprehensive Utilization of Water and Soil Resources and Construction of Ecological Protection in Mining Area with High Groundwater Level, Huainan 232001, China; Shaanxi Key Laboratory of Land Reclamation Engineering, Xian 710064, China.
| | - Enwei Li
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Engineering Laboratory of Anhui Province for Comprehensive Utilization of Water and Soil Resources and Construction of Ecological Protection in Mining Area with High Groundwater Level, Huainan 232001, China
| | - Yafei Zhu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Engineering Laboratory of Anhui Province for Comprehensive Utilization of Water and Soil Resources and Construction of Ecological Protection in Mining Area with High Groundwater Level, Huainan 232001, China
| | - Huizhen Cai
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Engineering Laboratory of Anhui Province for Comprehensive Utilization of Water and Soil Resources and Construction of Ecological Protection in Mining Area with High Groundwater Level, Huainan 232001, China
| | - Shasha Xia
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Engineering Laboratory of Anhui Province for Comprehensive Utilization of Water and Soil Resources and Construction of Ecological Protection in Mining Area with High Groundwater Level, Huainan 232001, China
| | - Chenchen Kong
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Engineering Laboratory of Anhui Province for Comprehensive Utilization of Water and Soil Resources and Construction of Ecological Protection in Mining Area with High Groundwater Level, Huainan 232001, China
| |
Collapse
|
7
|
Zhang X, Ning K, Yang Z, Huang X, Yu H, Fu N, Qin X, Hao L, Zhang F. Responses of transcriptome and metabolome in the roots of Pugionium cornutum (L.) Gaertn to exogenously applied phthalic acid. BMC PLANT BIOLOGY 2022; 22:535. [PMID: 36396992 PMCID: PMC9670373 DOI: 10.1186/s12870-022-03927-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The yield and quality of Pugionium cornutum (L.) Gaertn., a healthy, green vegetable with low sugar and high protein contents and high medicinal value, is severely affected by autotoxicity, which is a leading factor in the formation of plant disease. To help characterize the autotoxicity mechanism of P. cornutum (L.) Gaertn., we performed transcriptomic and metabolic analysis of the roots of P. cornutum (L.) Gaertn. response to phthalic acid, an autotoxin from P. cornutum (L.) Gaertn. RESULTS In this study, high-throughput sequencing of nine RNA-seq libraries generated from the roots.of P. cornutum (L.) Gaertn. under different phthalic acid treatments yielded 37,737 unigenes. In total, 1085 (703 upregulated and 382 downregulated) and 5998 (4385 upregulated and 1613 downregulated) DEGs were identified under 0.1 and 10 mmol·L- 1 phthalic acid treatment, respectively, compared with the control treatment. Glutathione metabolism was among the top five important enriched pathways. In total, 457 and 435 differentially accumulated metabolites were detected under 0.1 and 10 mmol·L- 1 phthalic acid treatment compared with the control, respectively, of which 223 and 253, respectively, increased in abundance. With the increase in phthalic acid concentration, the accumulation of ten metabolites increased significantly, while that of four metabolites decreased significantly, and phthalic acid, dambonitol, 4-hydroxy-butyric acid, homocitrulline, and ethyl β-D-glucopyranoside were 100 times more abundant under the 10 mmol·L- 1 phthalic acid treatment than under the control. Seventeen differentially expressed genes significantly associated with phthalic acid content were identified. In addition, the L-histidinol content was highest under 0.1 mmol·L- 1 phthalic acid, and a total of eleven differentially expressed genes were significantly positively correlated with the L-histidinol content, all of which were annotated to heat shock proteins, aquaporins and cysteine proteases. CONCLUSIONS Accumulation of autotoxins altered the metabolic balance in P. cornutum (L.) Gaertn. and influenced water absorption and carbon and nitrogen metabolism. These important results provide insights into the formation mechanisms of autotoxicity and for the subsequent development of new control measures to improve the production and quality of replanted plants.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Hohhot, 010011, China
| | - Kezhen Ning
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Hohhot, 010011, China
| | - Zhongren Yang
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Hohhot, 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Big Data Research and Application for Agriculture and Animal Husbandry, Hohhot, 010011, China
| | - Xiumei Huang
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Hohhot, 010011, China
| | - Hongtao Yu
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Hohhot, 010011, China
| | - Nana Fu
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Hohhot, 010011, China
| | - Xinyuan Qin
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Hohhot, 010011, China
| | - Lizhen Hao
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Hohhot, 010011, China
| | - Fenglan Zhang
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Hohhot, 010011, China.
| |
Collapse
|
8
|
Yang W, Li Y, Zhao Q, Guo Y, Dong Y. Intercropping alleviated the phytotoxic effects of cinnamic acid on the root cell wall structural resistance of faba bean and reduced the occurrence of Fusarium wilt. PHYSIOLOGIA PLANTARUM 2022; 174:e13827. [PMID: 36403196 DOI: 10.1111/ppl.13827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/12/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Soilborne Fusarium wilt is a key factor restricting the cultivation of faba bean. Intercropping faba bean and wheat effectively alleviate faba bean Fusarium wilt. This study analyzed the mechanism by which cinnamic acid promotes Fusarium wilt and the mechanism that enables intercropping alleviated Fusarium wilt. Faba beans were inoculated with Fusarium oxysporum f. sp. fabae (FOF), while the controls were not inoculated. Different concentrations of cinnamic acid were added to the inoculated plants to study the occurrence of Fusarium wilt, seedling growth, the activities of cell wall degradation enzyme (CWDESs) produced by FOF in the root, defense enzymes, total phenolics and lignin, levels of expression of the pathogenesis-related genes (PRs) PR1, PR2, and PR10, and changes in the submicroscopic cell wall structure of the roots under monocropping and intercropping systems. Cinnamic acid increased the activities of CWDEs produced by FOF in the roots, increased the activities of phenylalanine ammonia lyase and polyphenol oxidase and the contents of total phenolics and lignin, and upregulated the levels of expression of PRs in the root, but it decreased the activity of peroxidase. Transmission electron microscopy (TEM) observations identified severe damage and disruption of the root cell walls, and numerous FOF mycelia entered the cytoplasm from the cell wall. The combination of these factors increased the occurrence of Fusarium wilt. The activities of CWDEs produced by FOF in the roots decreased by intercropping wheat with faba bean, which increased the resistance of the root cell walls to infection and decreased the Fusarium wilt.
Collapse
Affiliation(s)
- Wenhao Yang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Yu Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Qian Zhao
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Yuting Guo
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Yan Dong
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
9
|
Wei H, Wang Y, Li W, Qiu Y, Hua C, Zhang Y, Guo Z, Xie Z. Immunomodulatory activity and active mechanisms of a low molecular polysaccharide isolated from Lanzhou lily bulbs in RAW264.7 macrophages. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
10
|
Earthworm activity optimized the rhizosphere bacterial community structure and further alleviated the yield loss in continuous cropping lily (Lilium lancifolium Thunb.). Sci Rep 2021; 11:20840. [PMID: 34675325 PMCID: PMC8531344 DOI: 10.1038/s41598-021-99597-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/27/2021] [Indexed: 11/09/2022] Open
Abstract
The soil microbial community plays a vital role in the biogeochemical cycles of bioelements and maintaining healthy soil conditions in agricultural ecosystems. However, how the soil microbial community responds to mitigation measures for continuous cropping obstacles remains largely unknown. Here we examined the impact of quicklime (QL), chemical fungicide (CF), inoculation with earthworm (IE), and a biocontrol agent (BA) on the soil microbial community structure, and the effects toward alleviating crop yield decline in lily. High-throughput sequencing of the 16S rRNA gene from the lily rhizosphere after 3 years of continuous cropping was performed using the Illumina MiSeq platform. The results showed that Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Chloroflexi and Gemmatimonadetes were the dominant bacterial phyla, with a total relative abundance of 86.15-91.59%. On the other hand, Betaproteobacteriales, Rhizobiales, Myxococcales, Gemmatimonadales, Xanthomonadales, and Micropepsales were the dominant orders with a relative abundance of 28.23-37.89%. The hydrogen ion concentration (pH) and available phosphorus (AP) were the key factors affecting the structure and diversity of the bacterial community. The yield of continuous cropping lily with using similar treatments decreased yearly for the leaf blight, but that of IE was significantly (p < 0.05) higher than with the other treatments in the same year, which were 17.9%, 18.54%, and 15.69% higher than that of blank control (CK) over 3 years. In addition, IE significantly (p < 0.05) increased organic matter (OM), available nitrogen (AN), AP, and available potassium (AK) content in the lily rhizosphere soil, optimized the structure and diversity of the rhizosphere bacterial community, and increased the abundance of several beneficial bacterial taxa, including Rhizobiales, Myxococcales, Streptomycetales and Pseudomonadales. Therefore, enriching the number of earthworms in fields could effectively optimize the bacterial community structure of the lily rhizosphere soil, promote the circulation and release in soil nutrients and consequently alleviate the loss of continuous cropping lily yield.
Collapse
|
11
|
Wang Y, Zhang W, Zhang Z, Wang W, Xu S, He X. Isolation, identification and characterization of phenolic acid-degrading bacteria from soil. J Appl Microbiol 2020; 131:208-220. [PMID: 33270328 DOI: 10.1111/jam.14956] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 11/22/2020] [Accepted: 11/29/2020] [Indexed: 11/29/2022]
Abstract
AIMS To isolate, identify and characterize phenolic acid-degrading bacteria and reduce plant growth inhibition caused by phenolic acids. METHODS AND RESULTS A total of 11 bacterial isolates with high phthalic acid (PA)-degrading ability were obtained using mineral salt medium (MSM) medium containing PA as sole carbon source. These isolates were identified as Arthrobacter globiformis, Pseudomonas putida and Pseudomonas hunanensis by sequence analyses of the 16S rRNA gene. Among them, five Pseudomonas strains could also effectively degrade ferulic acid (FA), p-hydroxybenzoic acid (PHBA) and syringic acid (SA) in MSM solution. P. putida strain 7 and P. hunanensis strain 10 showed highly efficient degradation of PA, SA, FA and PHBA, and could reduce their inhibition of lily, watermelon, poplar and strawberry seedling growth in soils respectively. These two strains could promote plant growth in soil with phenolic acids. CONCLUSIONS In this study, bacterial strains with highly efficient phenolic acid-degrading abilities could not only effectively reduce the autotoxicity of phenolic acids on plants but also were able to promote plant growth in soil with phenolic acids. SIGNIFICANCE AND IMPACT OF THE STUDY In this study, Pseudomonas can promote plant growth while degrading phenolic acids. Our results provide new choices for the biological removal of autotoxins.
Collapse
Affiliation(s)
- Y Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China.,College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - W Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China.,College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Z Zhang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - W Wang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
| | - S Xu
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - X He
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China.,College of Landscape Architecture, Beijing University of Agriculture, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
| |
Collapse
|
12
|
Guo Y, Lv J, Zhao Q, Dong Y, Dong K. Cinnamic Acid Increased the Incidence of Fusarium Wilt by Increasing the Pathogenicity of Fusarium oxysporum and Reducing the Physiological and Biochemical Resistance of Faba Bean, Which Was Alleviated by Intercropping With Wheat. FRONTIERS IN PLANT SCIENCE 2020; 11:608389. [PMID: 33381139 PMCID: PMC7767866 DOI: 10.3389/fpls.2020.608389] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/12/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND Continuous cropping has resulted in the accumulation of self-toxic substances in faba beans which has restricted their global production. Intercropping is widely used to alleviate these problems. AIMS To explore the role of cinnamic acid stress in faba bean physiology and disease resistance, and the potential mitigating effects of intercropping the faba bean with wheat. METHODS Faba bean seedlings were grown with or without wheat in both field and hydroponic conditions in the presence of different cinnamic acid concentrations and Fusarium oxysporum (FOF), the occurrence of. Fusarium-mediated wilt and oxidative stress, as well as plant growth indices and the anti-pathogen defense system were analyzed. RESULTS Cinnamic acid significantly increased Fusarium pathogenicity, inhibited the activity of defense enzymes and reduced the ability of plants to resist pathogens, indicating the importance of cinnamic acid in the promotion of Fusarium wilt resulting in reduced seedling growth. Intercropping with wheat improved plant resistance by alleviating cinnamic acid-induced stress, which promoted crop growth and decreased the incidence and disease index of Fusarium wilt. CONCLUSION Cinnamic acid promotes Fusarium wilt by stimulating pathogen enzyme production and destroying the defense capability of faba bean roots. Intercropping reduces Fusarium wilt by alleviating the damage caused by cinnamic acid to the defense system of the faba bean root system.
Collapse
Affiliation(s)
- Yuting Guo
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - J. Lv
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Q. Zhao
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Yan Dong
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - K. Dong
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
13
|
Hui H, Li X, Jin H, Yang X, Xin A, Zhao R, Qin B. Structural characterization, antioxidant and antibacterial activities of two heteropolysaccharides purified from the bulbs of Lilium davidii var. unicolor Cotton. Int J Biol Macromol 2019; 133:306-315. [DOI: 10.1016/j.ijbiomac.2019.04.082] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/28/2019] [Accepted: 04/11/2019] [Indexed: 10/27/2022]
|
14
|
Zhao Q, Chen L, Dong K, Dong Y, Xiao J. Cinnamic Acid Inhibited Growth of Faba Bean and Promoted the Incidence of Fusarium Wilt. PLANTS 2018; 7:plants7040084. [PMID: 30314266 PMCID: PMC6313924 DOI: 10.3390/plants7040084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/20/2018] [Accepted: 10/02/2018] [Indexed: 11/16/2022]
Abstract
To ascertain the role and mechanism of cinnamic acid in the process of soil-borne Fusarium wilt infection with fava bean, we studied the effect of cinnamic acid on the faba bean and Fusarium oxysporum f. fabae (FOF). Our results showed that cinnamic acid treatment affected the physiological resistance of faba bean to FOF after inoculation with the pathogen and enhanced the pathogenicity of the pathogen, which may have led to aggravation of infection by the pathogen and increases in the incidence rates of Fusarium wilt and disease.
Collapse
Affiliation(s)
- Qian Zhao
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China.
| | - Ling Chen
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China.
| | - Kun Dong
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China.
| | - Yan Dong
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China.
| | - Jingxiu Xiao
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
15
|
H1-A, a compound isolated from Fusarium oxysporum inhibits hepatitis C virus (HCV) NS3 serine protease. Chin J Nat Med 2017; 14:299-302. [PMID: 27114318 DOI: 10.1016/s1875-5364(16)30031-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Indexed: 01/10/2023]
Abstract
The present study was aimed to isolate the active compounds from the fermentation products of Fusarium oxysporum, which had hepatitis C virus (HCV) NS3 protease inhibitory activity. A bioactive compound was isolated by reverse-phase silica-gel column chromatography, silica-gel column chromatography, semi-preparative reverse-phase High Performance Liquid Chromatography (HPLC), and then its molecular structure was elucidated based on the spectrosopic analysis. As a result, the compound (H1-A, 1) Ergosta-5, 8 (14), 22-trien-7-one, 3-hydroxy-,(3β, 22E) was isolated and identified. To the best of our knowledge, this was the first report on the isolation of H1-A from microorganisms with the inhibitory activity of NS3 protease.
Collapse
|
16
|
Cheng F, Cheng Z. Research Progress on the use of Plant Allelopathy in Agriculture and the Physiological and Ecological Mechanisms of Allelopathy. FRONTIERS IN PLANT SCIENCE 2015; 6:1020. [PMID: 26635845 PMCID: PMC4647110 DOI: 10.3389/fpls.2015.01020] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/04/2015] [Indexed: 05/22/2023]
Abstract
Allelopathy is a common biological phenomenon by which one organism produces biochemicals that influence the growth, survival, development, and reproduction of other organisms. These biochemicals are known as allelochemicals and have beneficial or detrimental effects on target organisms. Plant allelopathy is one of the modes of interaction between receptor and donor plants and may exert either positive effects (e.g., for agricultural management, such as weed control, crop protection, or crop re-establishment) or negative effects (e.g., autotoxicity, soil sickness, or biological invasion). To ensure sustainable agricultural development, it is important to exploit cultivation systems that take advantage of the stimulatory/inhibitory influence of allelopathic plants to regulate plant growth and development and to avoid allelopathic autotoxicity. Allelochemicals can potentially be used as growth regulators, herbicides, insecticides, and antimicrobial crop protection products. Here, we reviewed the plant allelopathy management practices applied in agriculture and the underlying allelopathic mechanisms described in the literature. The major points addressed are as follows: (1) Description of management practices related to allelopathy and allelochemicals in agriculture. (2) Discussion of the progress regarding the mode of action of allelochemicals and the physiological mechanisms of allelopathy, consisting of the influence on cell micro- and ultra-structure, cell division and elongation, membrane permeability, oxidative and antioxidant systems, growth regulation systems, respiration, enzyme synthesis and metabolism, photosynthesis, mineral ion uptake, protein and nucleic acid synthesis. (3) Evaluation of the effect of ecological mechanisms exerted by allelopathy on microorganisms and the ecological environment. (4) Discussion of existing problems and proposal for future research directions in this field to provide a useful reference for future studies on plant allelopathy.
Collapse
Affiliation(s)
| | - Zhihui Cheng
- College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|