1
|
Kumar Y, Singh S, Saxena DC. Controlling the properties of starch from rice brokens by crosslinking with citric acid and sodium trimetaphosphate. STARCH-STARKE 2022. [DOI: 10.1002/star.202200094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yogesh Kumar
- Department of Food Engineering and Technology Sant Longowal Institute of Engineering and Technology Longowal Punjab India
| | - Sukhcharn Singh
- Department of Food Engineering and Technology Sant Longowal Institute of Engineering and Technology Longowal Punjab India
| | - D C Saxena
- Department of Food Engineering and Technology Sant Longowal Institute of Engineering and Technology Longowal Punjab India
| |
Collapse
|
2
|
Brojanigo S, Alvarado-Morales M, Basaglia M, Casella S, Favaro L, Angelidaki I. Innovative co-production of polyhydroxyalkanoates and methane from broken rice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153931. [PMID: 35183640 DOI: 10.1016/j.scitotenv.2022.153931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/12/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Broken rice, a low-cost starchy residue of the rice industry, can be an interesting substrate to reduce the polyhydroxyalkanoates (PHAs) production cost. However, since the most common PHAs-producing strains lack amylases, this waste must be firstly hydrolysed by additional commercial enzymes. In this work, the acidogenesis phase of the anaerobic digestion was exploited as efficient hydrolysis step to convert broken rice into volatile fatty acids (VFAs) to be used as PHAs carbon source by Cupriavidus necator DSM 545, one of the most promising PHAs-producing microbes. Broken rice, both non-hydrolysed and enzymatically hydrolysed, was processed in two continuous stirred tank reactors, at hydraulic retention times (HRT) of 5, 4 and, 3 days, to produce VFAs. The highest VFAs levels were obtained from non-hydrolysed broken rice which was efficiently exploited for PHAs accumulation by C. necator DSM 545. PHAs contents were higher after 96 h of incubation and, noteworthy, reached the highest value of 0.95 g/L in the case of 4 days HRT without any chemicals supplementation, except vitamins. Moreover, in view of a biorefinery approach, the residual solid fraction was used for methane production resulting in promising CH4 levels. Methane yields were very promising again for 4 days HRT. As such, this HRT resulted to be the most suitable to obtain effluents with high promise in terms of both PHAs accumulation and CH4 production. In addition, these results demonstrate that broken rice could be efficiently processed into two valuable products without any costly enzymatic pre-treatment and pave the way for future biorefining approaches where this by-product can be converted in a cluster of added-value compounds. Techno-economical estimations are in progress to assess the feasibility of the entire process, in view of supporting the low-cost conversion of organic waste into valuable products.
Collapse
Affiliation(s)
- Silvia Brojanigo
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Università degli Studi di Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Merlin Alvarado-Morales
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark.
| | - Marina Basaglia
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Università degli Studi di Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Sergio Casella
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Università degli Studi di Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Lorenzo Favaro
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Università degli Studi di Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark.
| |
Collapse
|
3
|
Mohsin A, Hussain MH, Zaman WQ, Mohsin MZ, Zhang J, Liu Z, Tian X, Salim-Ur-Rehman, Khan IM, Niazi S, Zhuang Y, Guo M. Advances in sustainable approaches utilizing orange peel waste to produce highly value-added bioproducts. Crit Rev Biotechnol 2021; 42:1284-1303. [PMID: 34856847 DOI: 10.1080/07388551.2021.2002805] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Orange peel waste (OPW), a discarded part of orange fruit, is a rich source of essential constituents that can be transformed into highly value-added bioproducts. OPW is being generated in million tonnes globally and returns to the environment without complete benefit. Thus, a high volume of annually produced OPW in the industry requires effective valorization. In this regard, limited data is available that summarizes the broader spectrum for the sustainable fate of OPW to produce value-added bioproducts. The main objective of this treatise is to explore the sustainable production of bioproducts from OPW. Therefore, this review covers all the aspects of OPW, from its production to complete valorization. The review encompasses the extraction technologies employed for extracting different valuable bioactive compounds, such as: essential oil (EO), pectin, and carotenoids, from OPW. Furthermore, the suitability of bioconversion technologies (digestion/fermentation) in transforming OPW to other useful bioproducts, such as: biochemicals (lactic acid and succinic acid), biopolysaccharides (xanthan and curdlan gum), and bioenergy (biomethane and bioethanol) is discussed. Also, it includes the concept of OPW-based biorefineries and their development that shall play a definite role in future to cover demands for: food, chemicals, materials, fuels, power, and heat. Lastly, this review focuses on OPW-supplemented functional food products such as: beverages, yogurts, and extruded products. In conclusion, insights provided in this review maximize the potential of OPW for commercial purposes, leading to a safe, and waste-free environment.
Collapse
Affiliation(s)
- Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Muhammad Hammad Hussain
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Waqas Qamar Zaman
- Institute of Environment Science and Engineering, School of Civil and Environment Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Zubair Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Junhong Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Zebo Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Xiwei Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Salim-Ur-Rehman
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Imran Mehmood Khan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China
| | - Sobia Niazi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Lomthong T, Saelee K, Trakarnpaiboon S, Siripornvisal S, Kitpreechavanich V. Potential of Recombinant Raw Starch‐Degrading Enzyme from
Escherichia coli
for Sugar Syrup and Bioethanol Productions Using Broken Rice Powder as Substrate. STARCH-STARKE 2021. [DOI: 10.1002/star.202100201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Thanasak Lomthong
- Division of Biology Faculty of Science and Technology Rajamangala University of Technology Thanyaburi Pathumthani 12110 Thailand
| | - Kittiphong Saelee
- Department of Microbiology Faculty of Science Kasetsart University Bangkok 10900 Thailand
| | - Srisakul Trakarnpaiboon
- Enzyme Technology Team Biorefnery and Bioproduct Technology Research Group National Center for Genetic Engineering and Biotechnology Pathum Thani Thailand
| | - Sirirat Siripornvisal
- Department of Microbiology Faculty of Science and Technology Phranakhon Si Ayutthaya Rajabhat University Ayutthaya Thailand
| | | |
Collapse
|
5
|
Carpinelli Macedo JV, de Barros Ranke FF, Escaramboni B, Campioni TS, Fernández Núñez EG, de Oliva Neto P. Cost-effective lactic acid production by fermentation of agro-industrial residues. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Brojanigo S, Parro E, Cazzorla T, Favaro L, Basaglia M, Casella S. Conversion of Starchy Waste Streams into Polyhydroxyalkanoates Using Cupriavidus necator DSM 545. Polymers (Basel) 2020; 12:polym12071496. [PMID: 32635554 PMCID: PMC7407217 DOI: 10.3390/polym12071496] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 01/23/2023] Open
Abstract
Due to oil shortage and environmental problems, synthetic plastics have to be replaced by different biodegradable materials. A promising alternative could be polyhydroxyalkanoates (PHAs), and the low-cost abundant agricultural starchy by-products could be usefully converted into PHAs by properly selected and/or developed microbes. Among the widely available starchy waste streams, a variety of residues have been explored as substrates, such as broken, discolored, unripe rice and white or purple sweet potato waste. Cupriavidus necator DSM 545, a well-known producer of PHAs, was adopted in a simultaneous saccharification and fermentation (SSF) process through an optimized dosage of the commercial amylases cocktail STARGEN™ 002. Broken rice was found to be the most promising carbon source with PHAs levels of up to 5.18 g/L. This research demonstrates that rice and sweet potato waste are low-cost feedstocks for PHAs production, paving the way for the processing of other starchy materials into bioplastics.
Collapse
|
7
|
High-titer and productivity of l-(+)-lactic acid using exponential fed-batch fermentation with Bacillus coagulans arr4, a new thermotolerant bacterial strain. 3 Biotech 2018; 8:213. [PMID: 29651378 DOI: 10.1007/s13205-018-1232-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/03/2017] [Indexed: 10/17/2022] Open
Abstract
Bacillus coagulans arr4 is a thermotolerant microorganism with great biotechnological potential for l-(+)-lactic acid production from granulated sugar and yeast extract. The highest l-(+)-lactic acid production was obtained with Ca(OH)2. The maximum production of l-(+)-lactic acid (206.81 g/L) was observed in exponential feeding using granulated sugar solution (900 g/L) and yeast extract (1%) at 50 °C, pH 6.5, and initial granulated sugar concentration of 100 g/L at 39 h. 5.3 g/L h productivity and 97% yield were observed, and no sugar remained. Comparing the simple batch with exponential fed-batch fermentation, the l(+) lactic acid production was improved in 133.22% and dry cell weight was improved in 83.29%, using granulated sugar and yeast extract. This study presents the highest productivity of lactic acid ever observed in the literature, on the fermentation of thermotolerant Bacillus sp. as well as an innovative and high-efficiency purification technology, using low-cost substances as Celite and charcoal. The recovery of lactic acid was 86%, with 100% protein removal, and the fermentation medium (brown color) became a colorless solution.
Collapse
|
8
|
Heins AL, Weuster-Botz D. Population heterogeneity in microbial bioprocesses: origin, analysis, mechanisms, and future perspectives. Bioprocess Biosyst Eng 2018. [PMID: 29541890 DOI: 10.1007/s00449-018-1922-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Population heterogeneity is omnipresent in all bioprocesses even in homogenous environments. Its origin, however, is only so well understood that potential strategies like bet-hedging, noise in gene expression and division of labour that lead to population heterogeneity can be derived from experimental studies simulating the dynamics in industrial scale bioprocesses. This review aims at summarizing the current state of the different parts of single cell studies in bioprocesses. This includes setups to visualize different phenotypes of single cells, computational approaches connecting single cell physiology with environmental influence and special cultivation setups like scale-down reactors that have been proven to be useful to simulate large-scale conditions. A step in between investigation of populations and single cells is studying subpopulations with distinct properties that differ from the rest of the population with sub-omics methods which are also presented here. Moreover, the current knowledge about population heterogeneity in bioprocesses is summarized for relevant industrial production hosts and mixed cultures, as they provide the unique opportunity to distribute metabolic burden and optimize production processes in a way that is impossible in traditional monocultures. In the end, approaches to explain the underlying mechanism of population heterogeneity and the evidences found to support each hypothesis are presented. For instance, population heterogeneity serving as a bet-hedging strategy that is used as coordinated action against bioprocess-related stresses while at the same time spreading the risk between individual cells as it ensures the survival of least a part of the population in any environment the cells encounter.
Collapse
Affiliation(s)
- Anna-Lena Heins
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany.
| | - Dirk Weuster-Botz
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany
| |
Collapse
|