1
|
Pathan SK, Shelar A, Deshmukh S, Kalam Khan FA, Ansari SA, Ansari IA, Patil RB, Arote R, Bhusnure O, Patil RH, Sangshetti JN. Exploring antibiofilm potential of some new imidazole analogs against C. albicans: synthesis, antifungal activity, molecular docking and molecular dynamics studies. J Biomol Struct Dyn 2025; 43:3099-3115. [PMID: 38174407 DOI: 10.1080/07391102.2023.2296604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
A series of 1, 2, 4, 5-tetrasubstituted imidazole derivatives were synthesized and their antibiofilm potential against Candida albicans was evaluated in vitro. Two of the synthesized derivatives 5e (IC50 = 25 µg/mL) and 5m (IC50 = 6 µg/mL),displayed better antifungal and antibiofilm potential than the standard drug Fluconazole (IC50 = 40 µg/mL) against C. albicans. Based on the in vitro results, we escalated the real time polymerase chain reaction (RT-PCR) analysis to gain knowledge of the enzymes expressed in the generation and maintenance of biofilms and the mechanism of biofilm inhibition by the synthesized analogues. We then investigated the possible interactions of the synthesized compounds in inhibiting agglutinin-like proteins, namely Als3, Als4 and Als6 were prominently down-regulated using in-silico molecular docking analysis against the previously available crystal structure of Als3 and constructed structure of Als4 and Als6 using the SWISS-MODEL server. The stability and energy of the agglutinin-like proteins-ligand complexes were evaluated using molecular dynamics simulations (MDS). According to the 100 ns MDS, all the compounds remained stable, formed a maximum of 3, and on average 2 hydrogen bonds, and Gibb's free energy landscape analysis suggested greater affinity of the compounds 5e and 5m toward Als4 protein.
Collapse
Affiliation(s)
- Shahebaaz K Pathan
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Baugh, Aurangabad, India
| | - Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune, India
| | | | | | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Rajesh B Patil
- Sinhgad Technical Education Society's Sinhgad College of Pharmacy, Pune, India
| | - Rohidas Arote
- Center for Nano Materials and Science (CNMS), Jain University, Bangalore, India
| | - Omprakash Bhusnure
- Channabasweshwar Channabasweshwar Pharmacy College (Degree), Latur, India
| | - Rajendra H Patil
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | | |
Collapse
|
2
|
Wang B, Wang S, Li C, Li J, Yi M, Lyu JW, Gu B, Kwok RT, Lam JW, Qin A, Tang BZ. An AIE fungal vacuole membrane probe toward species differentiation, vacuole formation visualization, and targeted photodynamic therapy. Mater Today Bio 2024; 29:101329. [PMID: 39582780 PMCID: PMC11585821 DOI: 10.1016/j.mtbio.2024.101329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
Vacuoles are unique organelles of fungi. The development of probes targeting the vacuoles membrane will enable visualization of physiological processes and precise diagnosis and therapy. Herein, a zwitterionic molecule, MXF-R, comprising of an aggregation-induced emission (AIE) photosensitizing unit and an antibiotic moxifloxacin, was found capable of specifically imaging vacuole membrane and using for targeted antifungal therapy. MXF-R demonstrated a higher signal-to-noise ratio, stronger targeting capability, and better biocompatibility than the commercial probe FM4-64. By using MXF-R, real-time visualization of vacuole formation during Candida albicans (C. albicans) proliferation was achieved. More importantly, owing to its varying staining ability towards different fungus, MXF-R could be used to quickly identify C. albicans in mixed strains by fluorescence imaging. Moreover, MXF-R exhibits a remarkable ability to generate reactive oxygen species under white light, effectively eradicating C. albicans by disrupting membrane structure. This antifungal therapy of membrane damage is more effective than clinical drug fluconazole. Therefore, this work not only presents the initial discovery of a probe targeting vacuolar membrane, but also provides a way to develop novel materials to realize integrated diagnosis and therapy.
Collapse
Affiliation(s)
- Bingnan Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China
- Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, 999077, Hong Kong, China
| | - Siyuan Wang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, (CUHK-Shenzhen), 518172, China
| | - Chunyang Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China
| | - Jianqing Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China
| | - Meixi Yi
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China
| | - Jing-Wen Lyu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Bing Gu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Ryan T.K. Kwok
- Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, 999077, Hong Kong, China
| | - Jacky W.Y. Lam
- Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, 999077, Hong Kong, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, (CUHK-Shenzhen), 518172, China
- Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, 999077, Hong Kong, China
| |
Collapse
|
3
|
Kumbhar V, Gaiki S, Shelar A, Nikam V, Patil R, Kumbhar A, Gugale G, Pawar R, Khairnar B. Mining for antifungal agents to inhibit biofilm formation of Candida albicans: A study on green synthesis, antibiofilm, cytotoxicity, and in silico ADME analysis of 2-amino-4H-pyran-3-carbonitrile derivatives. Microb Pathog 2024; 196:106926. [PMID: 39270755 DOI: 10.1016/j.micpath.2024.106926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/17/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Candida albicans (C. albicans) biofilm infections are quite difficult to manage due to their resistance against conventional antifungal drugs. To address this issue, there is a desperate need for new therapeutic drugs. In the present study, a green and efficient protocol has been developed for the synthesis of 2-amino-4H-pyran-3-carbonitrile scaffolds 4a-i, 6a-j, and 8a-g by Knoevenagel-Michael-cyclocondensation reaction between aldehydes, malononitrile, and diverse enolizable C-H activated acidic compounds using guanidinium carbonate as a catalyst either under grinding conditions or by stirring at room temperature. This protocol is operationally simple, rapid, inexpensive, has easy workup and column-free purification. A further investigation of the synthesized compounds was conducted to examine their antifungal potential and their ability to inhibit the growth and development of biofilm-forming yeasts like fungus C. albicans. According to our findings, 4b, 4d, 4e, 6e, 6f, 6g, 6i, 8c, 8d, and 8g were found to be active and potential inhibitors for biofilm infection causing C. albicans. The inhibition of biofilm by active compounds were observed using field emission scanning electron microscopy (FESEM). Biofilm inhibiting compounds were also tested for in vitro toxicity by using 3T3-L1 cell line, and 4b, 6e, 6f, 6g, 6i, 8c, and 8d were found to be biocompatible. Furthermore, the in silico ADME descriptors revealed drug-like properties with no violation of Lipinski's rule of five. Hence, the result suggested that synthesized derivatives could serve as a useful aid in the development of novel antifungal compounds for the treatment of fungal infections and virulence in C. albicans.
Collapse
Affiliation(s)
- Vikrant Kumbhar
- Department of Chemistry, PDEA's Prof. Ramkrishna More College, Pune, 411044, India; Interdisciplinary School of Science (IDSS), Savitribai Phule Pune University, Pune 411007, India.
| | - Sagar Gaiki
- Interdisciplinary School of Science (IDSS), Savitribai Phule Pune University, Pune 411007, India.
| | - Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune, 411007, India.
| | - Vandana Nikam
- Department of Pharmacology, STES's Smt. Kashibai Navale College of Pharmacy, Pune, 411048, India.
| | - Rajendra Patil
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411007, India.
| | - Avinash Kumbhar
- Interdisciplinary School of Science (IDSS), Savitribai Phule Pune University, Pune 411007, India.
| | - Gulab Gugale
- Department of Chemistry, PDEA's Prof. Ramkrishna More College, Pune, 411044, India.
| | - Ramdas Pawar
- Department of Chemistry, PDEA's Prof. Ramkrishna More College, Pune, 411044, India.
| | - Bhushan Khairnar
- Department of Chemistry, PDEA's Prof. Ramkrishna More College, Pune, 411044, India; Interdisciplinary School of Science (IDSS), Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
4
|
Thammasut W, Rojviriya C, Chaiya P, Phaechamud T, Limsitthichaikoon S. Moxifloxacin HCl -loaded Cellulose Acetate Butylate In Situ Forming Gel for Periodontitis Treatment. AAPS PharmSciTech 2024; 25:242. [PMID: 39402367 DOI: 10.1208/s12249-024-02960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Periodontitis presents significant treatment challenges due to its complexity and potential complications. In response, an in situ forming gel (ISG) loaded with moxifloxacin HCl (Mx) and cellulose acetate butyrate (CAB) was developed for targeted periodontitis therapy. Mx-loaded 10-45% CAB-based ISGs were developed, and their physicochemical properties such as rheology, viscosity, contact angle, gel morphology and gel formation, interface interaction were investigated. Moreover, the formulation performance studies including drug release and kinetics, in vitro degradation, and antimicrobial activities were also evaluated. The Mx-loaded ISGs containing 25-45% CAB demonstrated rapid matrix formation in both macroscopic and microscopic examinations and presented plastic deformation matrix. Tracking with sodium fluorescein and Nile red fluorescence probes indicated delayed solvent movement owing to CAB matrix formation. Adequate CAB content sustained Mx release for one week, following Peppas-Sahlin model and indicating a predominantly Fickian diffusion mechanism. Higher CAB content likely contributed to a denser matrix structure, leading to a slower in vitro degradation rate. Synchrotron radiation X-ray tomographic and SEM imaging provided insights into the CAB matrix structure and porous network formation. These ISG formulations effectively inhibited Staphylococcus aureus, Escherichia coli, Candida albicans, and Porphyromonas gingivalis. The Mx-loaded 40% CAB-based ISG shows promise as a dosage form for treating periodontitis. Further clinical trials are necessary to ensure the safety of this new ISG formulation, despite existing safety data for other medicinal uses of CAB. HIGHLIGHTS: Moxifloxacin HCl-loaded 10-45% cellulose acetate butyrate (CAB)-based in situ forming gels (ISG) were developed. They were evaluated for physicochemical properties, drug release, in vitro degradation, and antimicrobial activities. ISGs with 25-45% CAB showed swift matrix formation and plastic deformation Adequate CAB content sustained Mx release with Fickian diffusion mechanism They promise for periodontitis treatment because of effective inhibition of related pathogens.
Collapse
Affiliation(s)
- Warakon Thammasut
- Program of Pharmaceutical Engineering, Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Catleya Rojviriya
- Synchrotron Light Research Institute, Nakhon Ratchasima, 30000, Thailand
| | - Pornsit Chaiya
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Thawatchai Phaechamud
- Program of Pharmaceutical Engineering, Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
- Natural Products Center (NPRC), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | - Sucharat Limsitthichaikoon
- Department of Pharmaceutical Technology, College of Pharmacy, Rangsit University, Pathum Thani, 12000, Thailand.
| |
Collapse
|
5
|
Li H, Hou ZJ, Zhang WG, Qu J, Yao HB, Chen Y. Prediction of potential drug-microbe associations based on matrix factorization and a three-layer heterogeneous network. Comput Biol Chem 2023; 104:107857. [PMID: 37018909 DOI: 10.1016/j.compbiolchem.2023.107857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Microbes in the human body are closely linked to many complex human diseases and are emerging as new drug targets. These microbes play a crucial role in drug development and disease treatment. Traditional methods of biological experiments are not only time-consuming but also costly. Using computational methods to predict microbe-drug associations can effectively complement biological experiments. In this experiment, we constructed heterogeneity networks for drugs, microbes, and diseases using multiple biomedical data sources. Then, we developed a model with matrix factorization and a three-layer heterogeneous network (MFTLHNMDA) to predict potential drug-microbe associations. The probability of microbe-drug association was obtained by a global network-based update algorithm. Finally, the performance of MFTLHNMDA was evaluated in the framework of leave-one-out cross-validation (LOOCV) and 5-fold cross-validation (5-fold CV). The results showed that our model performed better than six state-of-the-art methods that had AUC of 0.9396 and 0.9385 + /- 0.0000, respectively. This case study further confirms the effectiveness of MFTLHNMDA in identifying potential drug-microbe associations and new drug-microbe associations.
Collapse
|
6
|
Almeida MA, Bernardes-Engemann AR, Coelho RA, Lugones CJG, de Andrade IB, Corrêa-Junior D, de Oliveira SSC, Dos Santos ALS, Frases S, Rodrigues ML, Valente RH, Zancopé-Oliveira RM, Almeida-Paes R. Mebendazole Inhibits Histoplasma capsulatum In Vitro Growth and Decreases Mitochondrion and Cytoskeleton Protein Levels. J Fungi (Basel) 2023; 9:jof9030385. [PMID: 36983553 PMCID: PMC10051957 DOI: 10.3390/jof9030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Histoplasmosis is a frequent mycosis in people living with HIV/AIDS and other immunocompromised hosts. Histoplasmosis has high rates of mortality in these patients if treatment is unsuccessful. Itraconazole and amphotericin B are used to treat histoplasmosis; however, both antifungals have potentially severe pharmacokinetic drug interactions and toxicity. The present study determined the minimal inhibitory and fungicidal concentrations of mebendazole, a drug present in the NIH Clinical Collection, to establish whether it has fungicidal or fungistatic activity against Histoplasma capsulatum. Protein extracts from H. capsulatum yeasts, treated or not with mebendazole, were analyzed by proteomics to understand the metabolic changes driven by this benzimidazole. Mebendazole inhibited the growth of 10 H. capsulatum strains, presenting minimal inhibitory concentrations ranging from 5.0 to 0.08 µM. Proteomics revealed 30 and 18 proteins exclusively detected in untreated and mebendazole-treated H. capsulatum yeast cells, respectively. Proteins related to the tricarboxylic acid cycle, cytoskeleton, and ribosomes were highly abundant in untreated cells. Proteins related to the nitrogen, sulfur, and pyrimidine metabolisms were enriched in mebendazole-treated cells. Furthermore, mebendazole was able to inhibit the oxidative metabolism, disrupt the cytoskeleton, and decrease ribosomal proteins in H. capsulatum. These results suggest mebendazole as a drug to be repurposed for histoplasmosis treatment.
Collapse
Affiliation(s)
- Marcos Abreu Almeida
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Andrea Reis Bernardes-Engemann
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Rowena Alves Coelho
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Camila Jantoro Guzman Lugones
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Iara Bastos de Andrade
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Dario Corrêa-Junior
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Simone Santiago Carvalho de Oliveira
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - André Luis Souza Dos Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Rede Micologia RJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-901, Brazil
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Rede Micologia RJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-901, Brazil
| | | | - Richard Hemmi Valente
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Rosely Maria Zancopé-Oliveira
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
- Rede Micologia RJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-901, Brazil
| |
Collapse
|
7
|
Kondaka K, Gabriel I. Targeting DNA Topoisomerase II in Antifungal Chemotherapy. Molecules 2022; 27:molecules27227768. [PMID: 36431868 PMCID: PMC9698242 DOI: 10.3390/molecules27227768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Topoisomerase inhibitors have been in use clinically for the treatment of several diseases for decades. Although those enzymes are significant molecular targets in antibacterial and anticancer chemotherapy very little is known about the possibilities to target fungal topoisomerase II (topo II). Raising concern for the fungal infections, lack of effective drugs and a phenomenon of multidrug resistance underlie a strong need to expand the range of therapeutic options. In this review paper, we discussed the usefulness of fungal topo II as a molecular target for new drug discovery. On the basis of previously published data, we described structural and biochemical differences between fungal and human enzymes as well as a molecular basis of differential sensitivity to known anticancer drugs targeting the latter. This review focuses especially on highlighting the differences that may underlie the selectivity of action of new inhibitors. Distinct sites within fungal topo II in comparison with human counterparts are observed and should be further studied to understand the significance of those sites and their possible usage in design of new drugs.
Collapse
Affiliation(s)
| | - Iwona Gabriel
- Correspondence: ; Tel.: +48-58-348-6078; Fax: +48-58-347-1144
| |
Collapse
|
8
|
Verma N, Arora V, Awasthi R, Chan Y, Jha NK, Thapa K, Jawaid T, Kamal M, Gupta G, Liu G, Paudel KR, Hansbro PM, George Oliver BG, Singh SK, Chellappan DK, Dureja H, Dua K. Recent developments, challenges and future prospects in advanced drug delivery systems in the management of tuberculosis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Kasabe UI, Kale KB, Rode NR, Shelar AV, Patil RH, Mhaske PC, Chaskar MG. Synthesis and antifungal screening of tetramethyl hexahydro-1 H-xanthene-1,8(2 H)-dione derivatives as potential inhibitors of morphogenesis and biofilm formation in Candida albicans. NEW J CHEM 2022; 46:2128-2139. [DOI: 10.1039/d1nj04168a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
A series of hexahydro-1H-xanthene-1,8(2H)-dione derivatives were synthesized. All the derivatives were screened for their anti-virulence properties againstCandida albicans.In silicostudies were performed to corroborate the experimentally observed facts.
Collapse
Affiliation(s)
- Umesh I. Kasabe
- Department of Chemistry, Baburaoji Gholap College (Affiliated to Savitribai Phule Pune University, Pune), Sangvi, Pune-411027, India
| | - Kishor B. Kale
- Department of Chemistry, Nowrosjee Wadia College (Affiliated to Savitribai Phule Pune University, Pune), Pune-411001, India
| | - Nitin R. Rode
- Department of Chemistry, Nowrosjee Wadia College (Affiliated to Savitribai Phule Pune University, Pune), Pune-411001, India
| | - Amruta V. Shelar
- Department of Technology, Savitribai Phule Pune University, Pune-411007, India
| | - Rajendra H. Patil
- Department of Biotechnology, Savitribai Phule Pune University, Pune-411007, India
| | - Pravin C. Mhaske
- Department of Chemistry, Sir Parashurambhau College (Affiliated to Savitribai Phule Pune University, Pune), Pune-411030, India
| | - Manohar G. Chaskar
- Department of Chemistry, Baburaoji Gholap College (Affiliated to Savitribai Phule Pune University, Pune), Sangvi, Pune-411027, India
- Dean, Science and Technology, Savitribai Phule Pune University, Pune-411007, India
| |
Collapse
|
10
|
Topoisomerase II as a target for repurposed antibiotics in Candida albicans: an in silico study. In Silico Pharmacol 2021; 9:24. [PMID: 33868894 DOI: 10.1007/s40203-021-00082-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 03/09/2021] [Indexed: 10/21/2022] Open
Abstract
Fluoroquinolines, the widely used antibacterial antibiotics, have been shown to interact with human DNA topoisomerases supporting their use as repurposed cancer drugs in humans. In this communication molecular docking of eleven Fluoroquinolines against predicted structure of Candida albicans DNA Topoisomerase II is reported for the first time. C. albicans topoisomerase II structure prediction was done by using homology modeling tool. Ligand preparation and molecular docking with C. albicans topoisomerase II were done by using Autodock tool. These antibiotics formed hydrogen bond with good binding affinity at ARG 841, GLN803, ALA840 amino acid residues in the active site of C. albicans Topoisomerase II. We hypothesize that DNA toposiomerases may be the targets of Fluroquinoline group of antibiotics in C. albicans causing inhibition of growth.
Collapse
|
11
|
Scorzoni L, Fuchs BB, Junqueira JC, Mylonakis E. Current and promising pharmacotherapeutic options for candidiasis. Expert Opin Pharmacother 2021; 22:867-887. [PMID: 33538201 DOI: 10.1080/14656566.2021.1873951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Candida spp. are commensal yeasts capable of causing infections such as superficial, oral, vaginal, or systemic infections. Despite medical advances, the antifungal pharmacopeia remains limited and the development of alternative strategies is needed.Areas covered: We discuss available treatments for Candida spp. infections, highlighting advantages and limitations related to pharmacokinetics, cytotoxicity, and antimicrobial resistance. Moreover, we present new perspectives to improve the activity of the available antifungals, discussing their immunomodulatory potential and advances on drug delivery carriers. New therapeutic approaches are presented including recent synthesized antifungal compounds (Enchochleated-Amphotericin B, tetrazoles, rezafungin, enfumafungin, manogepix and arylamidine); drug repurposing using a diversity of antibacterial, antiviral and non-antimicrobial drugs; combination therapies with different compounds or photodynamic therapy; and innovations based on nano-particulate delivery systems.Expert opinion: With the lack of novel drugs, the available assets must be leveraged to their best advantage through modifications that enhance delivery, efficacy, and solubility. However, these efforts are met with continuous challenges presented by microbes in their infinite plight to resist and survive therapeutic drugs. The pharmacotherapeutic options in development need to focus on new antimicrobial targets. The success of each antimicrobial agent brings strategic insights to the next phased approach in treatingCandida spp. infections.
Collapse
Affiliation(s)
- Liliana Scorzoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, SP Brazil
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, RI USA
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, SP Brazil
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, RI USA
| |
Collapse
|
12
|
Rossato L, Camargo Dos Santos M, Vitale RG, de Hoog S, Ishida K. Alternative treatment of fungal infections: Synergy with non-antifungal agents. Mycoses 2020; 64:232-244. [PMID: 33098146 DOI: 10.1111/myc.13203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
Fungal infections are responsible for high mortality rates in immunocompromised and high-risk surgical patients. Therapy failures during the last decades due to increasing multidrug resistance demand innovative strategies for novel and effective antifungal drugs. Synergistic combinations of antifungals with non-antifungal agents highlight a pragmatic strategy to reduce the development of drug resistance and potentially repurpose known compounds with other functions to bypass costly and time-consuming novel drug development.
Collapse
Affiliation(s)
- Luana Rossato
- Faculdade de Ciências da Saúde, Federal University of Grande Dourados, Mato Grosso do Sul, Brazil
| | | | - Roxana G Vitale
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) and Hospital JM Ramos Mejía, Ciudad Autónoma de Buenos Aires, Argentina
| | - Sybren de Hoog
- Center of Expertise in Mycology of Radboud University Medical Center, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Kelly Ishida
- Laboratory of Antifungal Chemotherapy, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Liu Y, Wang W, Yan H, Wang D, Zhang M, Sun S. Anti- Candida activity of existing antibiotics and their derivatives when used alone or in combination with antifungals. Future Microbiol 2019; 14:899-915. [PMID: 31394935 DOI: 10.2217/fmb-2019-0076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Fungal infections are a growing challenge in immunocompromised patients, especially candidiasis. The prolonged use of traditional antifungals to treat Candida infection has caused the emergence of drug resistance, especially fluconazole. Therefore, new therapeutic strategies for Candida infection are warranted. Recently, attention has been paid to the anti-Candida activity of antibiotics and their derivatives. Studies revealed that a series of antibiotics/derivatives displayed potential anti-Candida activity and some of them could significantly increase the susceptibility of antifungals. Interestingly, the derivatives of aminoglycosides were even more active than fluconazole/itraconazole/posaconazole. This article reviews the anti-Candida activities and mechanisms of antibiotics/derivatives used alone or in combination with antifungals. This review will helpfully provide novel insights for overcoming Candida resistance and discovering new antifungals.
Collapse
Affiliation(s)
- Yaxin Liu
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, People's Republic of China
- Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Weixin Wang
- Department of Pharmacy, Taishan hospital of Shandong Province, Taian, Shandong Province, People's Republic of China
| | - Haiying Yan
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan 250014, People's Republic of China
| | - Decai Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, People's Republic of China
| | - Min Zhang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, People's Republic of China
- Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Shujuan Sun
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan 250014, People's Republic of China
| |
Collapse
|
14
|
Tavares GS, Mendonça DV, Lage DP, Antinarelli LM, Soyer TG, Senna AJ, Matos GF, Dias DS, Ribeiro PA, Batista JP, Poletto JM, Brandão GC, Chávez-Fumagalli MA, Pereira GR, Coimbra ES, Coelho EA. In vitro and in vivo antileishmanial activity of a fluoroquinoline derivate against Leishmania infantum and Leishmania amazonensis species. Acta Trop 2019; 191:29-37. [PMID: 30586571 DOI: 10.1016/j.actatropica.2018.12.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/19/2018] [Accepted: 12/21/2018] [Indexed: 01/09/2023]
Abstract
New therapeutics against leishmaniasis are desirable, since the current drugs applied against this disease complex presents problems, such as the toxicity, high cost and/or parasite resistance. In the present study, a new fluoroquinoline derivate, namely 7-chloro-N-(4-fluorophenethyl)quinolin-4-amine or GF1061, was evaluated regarding to its in vitro antileishmanial action against Leishmania infantum and L. amazonensis species, as well as by its toxicity in mammalian cells and efficacy in the treatment of infected macrophages. The mechanism of action of this molecule in L. amazonensis and the therapeutic efficacy in infected BALB/c mice were also evaluated. Results showed that GF1061 was effective against both parasite species, showing selectivity index (SI) of 38.7 and 42.7 against L. infantum and L. amazonensis promastigotes, respectively, and of 45.0 and 48.9 against the amastigotes, respectively. Amphotericin B (AmpB), used as control, showed SI values of 6.6 and 8.8 against L. infantum and L. amazonensis promastigotes, respectively, and of 2.2 and 2.7 against the amastigotes, respectively. The molecule was effective in treat infected macrophages, as well as it induced alterations in the mitochondrial membrane potential, increase in the reactive oxygen species production, and in the cell integrity of the parasites. Regarding to the in vivo experiments, BALB/c mice (n = 8 per group) were subcutaneously infected with 106L. amazonensis stationary promastigotes and, 60 days post-infection, they received saline or were treated during 10 days, once a day, with AmpB (1 mg/kg body weight) or GF1061 (5 mg/kg body weight). One day after the treatment, the infected tissue, spleen, liver, and draining lymph node (dLN) of the animals were collected, and the parasite load was evaluated. GF1061-treated mice, as compared to the saline and AmpB groups, showed significant reductions in the parasitism in the infected tissue (66% and 62%, respectively), liver (69% and 44%, respectively), spleen (71% and 38%, respectively), and dLN (72% and 48%, respectively). In conclusion, results suggested that GF1061 may be considered as a possible therapeutic target to be evaluated against leishmaniasis in other mammalian hosts.
Collapse
|
15
|
Schuler J, Hudson ML, Schwartz D, Samudrala R. A Systematic Review of Computational Drug Discovery, Development, and Repurposing for Ebola Virus Disease Treatment. Molecules 2017; 22:E1777. [PMID: 29053626 PMCID: PMC6151658 DOI: 10.3390/molecules22101777] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/30/2022] Open
Abstract
Ebola virus disease (EVD) is a deadly global public health threat, with no currently approved treatments. Traditional drug discovery and development is too expensive and inefficient to react quickly to the threat. We review published research studies that utilize computational approaches to find or develop drugs that target the Ebola virus and synthesize its results. A variety of hypothesized and/or novel treatments are reported to have potential anti-Ebola activity. Approaches that utilize multi-targeting/polypharmacology have the most promise in treating EVD.
Collapse
Affiliation(s)
- James Schuler
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14203, USA.
| | - Matthew L Hudson
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14203, USA.
| | - Diane Schwartz
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14203, USA.
| | - Ram Samudrala
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14203, USA.
| |
Collapse
|
16
|
Jadhav AK, Karuppayil SM. Molecular docking studies on thirteen fluoroquinolines with human topoisomerase II a and b. In Silico Pharmacol 2016; 5:4. [PMID: 28667488 PMCID: PMC5493602 DOI: 10.1007/s40203-017-0024-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/13/2017] [Indexed: 12/14/2022] Open
Abstract
DNA relaxation is an important step in DNA replication. DNA topoisomerases play a major role in DNA relaxation. Hence these enzymes are important targets for cancer drugs. DNA topoisomerase inhibitors bind to the transient enzyme-DNA complex and inhibit DNA replication. Various inhibitors of topoisomerase I and II are prescribed as drugs. Topoisomerase II is considered as an important target for the development of anticancer drugs. In this study we have demonstrated molecular docking of thirteen fluoroquinolines with human DNA topoisomerase II alpha (a) and beta (b). Fluoroquinolines are broad spectrum antibacterial antibiotics and it is highly effective against various bacterial infections. Some of the fluoroquinolines like moxifloxacin exert antifungal as well as anti-cancer activity. It forms complexes with topoisomerase II a and are responsible for stoppage DNA replication. Molecular docking studies showed that fluoroquinolines has shown formation of hydrogen bond and good binding affinity with human Topo2a and Topo2b. Hence FQs may inhibit the activity of enzyme topoisomerase by binding at its active site. Ofloxacin, sparafloxacin, ciprofloxacin and moxifloxacin are predicted to be the most potent inhibitors among the thirteen FQs docked. GLN773, ASN770, LYS723 and TRP931 amino acid residues of Topo2a are involved in binding with FQs while ASP479, SER480, ARG820, ARG503, LYS456 and GLN778 amino acid residues of Topo2b are involved in binding with FQs. Our in silico study suggests that fluoroquinolines could be repositioned as DNA topoisomerase II inhibitors hence can be used as anticancer drugs. In vitro and in vivo experiments need to be done to confirm their efficacy.
Collapse
Affiliation(s)
- Ashwini Khanderao Jadhav
- School of Life Sciences (DST-FIST and UGC-SAP Sponsored), SRTM University (NAAC Accredited with 'A' Grade), Nanded, Maharashtra, 431606, India
| | - Sankunny Mohan Karuppayil
- School of Life Sciences (DST-FIST and UGC-SAP Sponsored), SRTM University (NAAC Accredited with 'A' Grade), Nanded, Maharashtra, 431606, India.
| |
Collapse
|