1
|
Newberger DR, Deel HL, Manter DK, Vivanco JM. Effect of intra- and inter-specific plant interactions on the rhizosphere microbiome of a single target plant at different densities. PLoS One 2025; 20:e0316676. [PMID: 39869650 PMCID: PMC11771940 DOI: 10.1371/journal.pone.0316676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/14/2024] [Indexed: 01/29/2025] Open
Abstract
Root and rhizosphere studies often focus on analyzing single-plant microbiomes, with the literature containing minimum empirical information about the shared rhizosphere microbiome of multiple plants. Here, the rhizosphere of individual plants was analyzed in a microcosm study containing different combinations and densities (1-3 plants, 24 plants, and 48 plants) of cover crops: Medicago sativa, Brassica sp., and Fescue sp. Rhizobacterial beta diversity was reduced by increasing plant density for all plant mixtures. Interestingly, plant density had a significant influence over beta diversity while plant diversity was found to be a less important factor since it did not have a significant change. Regardless of plant neighbor identity or density, a low number of rhizobacteria were strongly associated with each target species. Nonetheless, a few bacterial taxa were shown to have conditional associations such as being enriched within only high plant densities, which may alleviate plant competition between these species. Also, we found evidence of bacterial sharing of nitrogen fixers from alfalfa to fescue. Although rhizosphere bacterial networks had overlapping bacterial modules, the modules showing the largest percentage of the network changed depending on plant neighbor. In summary, this study found that for the most part plants maintained their rhizosphere microbiome despite escalating plant-plant competition.
Collapse
Affiliation(s)
- Derek R. Newberger
- Department of Horticulture and Landscape Architecture and Center for Rhizosphere Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Heather L. Deel
- Soil Management and Sugar Beet Research Unit, United States Department of Agriculture Agricultural Research Services, Fort Collins, Colorado, United States of America
| | - Daniel K. Manter
- Soil Management and Sugar Beet Research Unit, United States Department of Agriculture Agricultural Research Services, Fort Collins, Colorado, United States of America
| | - Jorge M. Vivanco
- Department of Horticulture and Landscape Architecture and Center for Rhizosphere Biology, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
2
|
Algammal AM, Eid HM, Alghamdi S, Ghabban H, Alatawy R, Almanzalawi EA, Alqahtani TM, Elfouly SG, Mohammed GM, Hetta HF, El-Tarabili RM. Meat and meat products as potential sources of emerging MDR Bacillus cereus: groEL gene sequencing, toxigenic and antimicrobial resistance. BMC Microbiol 2024; 24:50. [PMID: 38326741 PMCID: PMC10848520 DOI: 10.1186/s12866-024-03204-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Bacillus cereus is implicated in severe foodborne infection in humans. This study intended to assess the occurrence, groEL gene sequencing, biofilm production, and resistance profiles of emerged multidrug resistant (MDR) B. cereus in meat and meat product samples. Moreover, this work highlights the virulence and toxigenic genes (hblABCD complex, nheABC complex, cytK, ces, and pc-plc) and antimicrobial resistance genes (bla1, tetA, bla2, tetB, and ermA). METHODS Consequently, 200 samples (sausage, minced meat, luncheon, beef meat, and liver; n = 40 for each) were indiscriminately collected from commercial supermarkets in Port Said Province, Egypt, from March to May 2021. Subsequently, food samples were bacteriologically examined. The obtained isolates were tested for groEL gene sequence analysis, antibiotic susceptibility, biofilm production, and PCR screening of toxigenic and resistance genes. RESULTS The overall prevalence of B. cereus among the inspected food samples was 21%, where the highest predominance was detected in minced meat (42.5%), followed by beef meat (30%). The phylogenetic analysis of the groEL gene exposed that the examined B. cereus strain disclosed a notable genetic identity with other strains from the USA and China. Moreover, the obtained B. cereus strains revealed β-hemolytic activity, and 88.1% of the recovered strains tested positive for biofilm production. PCR evidenced that the obtained B. cereus strains usually inherited the nhe complex genes (nheA and nheC: 100%, and nheB: 83.3%), followed by cytK (76.2%), hbl complex (hblC and hblD: 59.5%, hblB: 16.6%, and hblA: 11.9%), ces (54.7%), and pc-plc (30.9%) virulence genes. Likewise, 42.9% of the examined B. cereus strains were MDR to six antimicrobial classes and encoded bla1, bla2, ermA, and tetA genes. CONCLUSION In summary, this study highlights the presence of MDR B. cereus in meat and meat products, posing a significant public health risk. The contamination by B. cereus is common in minced meat and beef meat. The molecular assay is a reliable fundamental tool for screening emerging MDR B. cereus strains in meat and meat products.
Collapse
Affiliation(s)
- Abdelazeem M Algammal
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Hamza M Eid
- Department of Microbiology, Faculty of Veterinary Medicine, Ain Shams University, Cairo, 11566, Egypt
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, 24381, Saudi Arabia
| | - Hanaa Ghabban
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Roba Alatawy
- Medical Microbiology Department, School of Medicine, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Enas A Almanzalawi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Tahani M Alqahtani
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sabreen G Elfouly
- Department of Bacteriology, Animal Health Research Institute, Port-Said branch, Port Said, 42511, Egypt
| | - Gihan M Mohammed
- Department of Bacteriology, Animal Health Research Institute, Port-Said branch, Port Said, 42511, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Reham M El-Tarabili
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
3
|
Javed MQ, Kovalchuk I, Yevtushenko D, Yang X, Stanford K. Relationship between Desiccation Tolerance and Biofilm Formation in Shiga Toxin-Producing Escherichia coli. Microorganisms 2024; 12:243. [PMID: 38399647 PMCID: PMC10891874 DOI: 10.3390/microorganisms12020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a major concern in the food industry and requires effective control measures to prevent foodborne illnesses. Previous studies have demonstrated increased difficulty in the control of biofilm-forming STEC. Desiccation, achieved through osmotic stress and water removal, has emerged as a potential antimicrobial hurdle. This study focused on 254 genetically diverse E. coli strains collected from cattle, carcass hides, hide-off carcasses, and processing equipment. Of these, 141 (55.51%) were STEC and 113 (44.48%) were generic E. coli. The biofilm-forming capabilities of these isolates were assessed, and their desiccation tolerance was investigated to understand the relationships between growth temperature, relative humidity (RH), and bacterial survival. Only 28% of the STEC isolates had the ability to form biofilms, compared to 60% of the generic E. coli. Stainless steel surfaces were exposed to different combinations of temperature (0 °C or 35 °C) and relative humidity (75% or 100%), and the bacterial attachment and survival rates were measured over 72 h and compared to controls. The results revealed that all the strains exposed to 75% relative humidity (RH) at any temperature had reduced growth (p < 0.001). In contrast, 35 °C and 100% RH supported bacterial proliferation, except for isolates forming the strongest biofilms. The ability of E. coli to form a biofilm did not impact growth reduction at 75% RH. Therefore, desiccation treatment at 75% RH at temperatures of 0 °C or 35 °C holds promise as a novel antimicrobial hurdle for the removal of biofilm-forming E. coli from challenging-to-clean surfaces and equipment within food processing facilities.
Collapse
Affiliation(s)
- Muhammad Qasim Javed
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (M.Q.J.); (I.K.); (D.Y.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (M.Q.J.); (I.K.); (D.Y.)
| | - Dmytro Yevtushenko
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (M.Q.J.); (I.K.); (D.Y.)
| | - Xianqin Yang
- Agriculture and Agri-Food Canada, Lacombe, AB T4L 1V7, Canada;
| | - Kim Stanford
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (M.Q.J.); (I.K.); (D.Y.)
| |
Collapse
|
4
|
Wang M, Lu J, Qin P, Wang S, Ding W, Fu HH, Zhang YZ, Zhang W. Biofilm formation stabilizes metabolism in a Roseobacteraceae bacterium under temperature increase. Appl Environ Microbiol 2023; 89:e0060123. [PMID: 37768087 PMCID: PMC10617445 DOI: 10.1128/aem.00601-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/25/2023] [Indexed: 09/29/2023] Open
Abstract
Ocean warming profoundly impacts microbes in marine environments; yet, how lifestyle (e.g., free living versus biofilm associated) affects the bacterial response to rising temperature is not clear. Here, we compared transcriptional, enzymatic, and physiological responses of free-living and biofilm-associated Leisingera aquaemixtae M597, a member of the Roseobacteraceae family isolated from marine biofilms, to the increase in temperature from 25℃ to 31℃. Complete genome sequencing and metagenomics revealed the prevalence of M597 in global ocean biofilms. Transcriptomics suggested a significant effect on the expression of genes related to carbohydrate metabolism, nitrogen and sulfur metabolism, and phosphorus utilization of free-living M597 cells due to temperature increase, but such drastic alterations were not observed in its biofilms. In the free-living state, the transcription of the key enzyme participating in the Embden-Meyerhof-Parnas pathway was significantly increased due to the increase in temperature, accompanied by a substantial decrease in the Entner-Doudoroff pathway, but transcripts of these glycolytic enzymes in biofilm-forming strains were independent of the temperature variation. The correlation between the growth condition and the shift in glycolytic pathways under temperature change was confirmed by enzymatic activity assays. Furthermore, the rising temperature affected the growth rate and the production of intracellular reactive oxygen species when M597 cells were free living rather than in biofilms. Thus, biofilm formation stabilizes metabolism in M597 when grown under high temperature and this homeostasis is probably related to the glycolytic pathways.IMPORTANCEBiofilm formation is one of the most successful strategies employed by microbes against environmental fluctuations. In this study, using a marine Roseobacteraceae bacterium, we studied how biofilm formation affects the response of marine bacteria to the increase in temperature. This study enhances our understanding of the function of bacterial biofilms and the microbe-environment interactions in the framework of global climate change.
Collapse
Affiliation(s)
- Meng Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jie Lu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Peng Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Shuaitao Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Wei Ding
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Hui-Hui Fu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Weipeng Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
5
|
Diarra C, Goetz C, Gagnon M, Roy D, Jean J. Biofilm formation by heat-resistant dairy bacteria: multispecies biofilm model under static and dynamic conditions. Appl Environ Microbiol 2023; 89:e0071323. [PMID: 37732743 PMCID: PMC10617596 DOI: 10.1128/aem.00713-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/26/2023] [Indexed: 09/22/2023] Open
Abstract
In the food industry, especially dairy, biofilms can be formed by heat-resistant spoilage and pathogenic bacteria from the farm. Such biofilms may persist throughout the processing chain and contaminate milk and dairy products continuously, increasing equipment cleaning, maintenance costs, and product recalls. Most biofilms are multispecies, yet most studies focus on single-species models. A multispecies model of dairy biofilm was developed under static and dynamic conditions using heat-resistant Bacillus licheniformis, Pseudomonas aeruginosa, Clostridium tyrobutyricum, Enterococcus faecalis, Streptococcus thermophilus, and Rothia kristinae isolated from dairies. C. tyrobutiricum and R. kristinae were weak producers of biofilm, whereas the other four were moderate to strong producers. Based on cross-streaking on agar, P. aeruginosa was found to inhibit B. licheniformis and E. faecalis. In multispecies biofilm formed on stainless steel in a CDC reactor fed microfiltered milk, the strong biofilm producers were dominant while the weak producers were barely detectable. All biofilm matrices were dispersed easily by proteinase K treatment but were less sensitive to DNase or carbohydrases. Further studies are needed to deepen our understanding of multispecies biofilms and interactions within to develop improved preventive strategies to control the proliferation of spoilage and pathogenic bacteria in dairies and other food processing environments. IMPORTANCE A model of multispecies biofilm was created to study biofilm formation by heat-resistant bacteria in the dairy industry. The biofilm formation potential was evaluated under static conditions. A continuous flow version was then developed to study multispecies biofilm formed on stainless steel in microfiltered milk under dynamic conditions encountered in dairy processing equipment. The study of biofilm composition and bacterial interactions therein will lead to more effective means of suppressing bacterial growth on food processing equipment and contamination of products with spoilage and pathogenic bacteria, which represent considerable economic loss.
Collapse
Affiliation(s)
- Carine Diarra
- Département des Sciences des Aliments, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, Canada
- Regroupement de recherche pour un lait de qualité optimale (Op+Lait), Saint-Hyacinthe, Québec, Canada
| | - Coralie Goetz
- Département des Sciences des Aliments, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, Canada
- Regroupement de recherche pour un lait de qualité optimale (Op+Lait), Saint-Hyacinthe, Québec, Canada
| | - Mérilie Gagnon
- Département des Sciences des Aliments, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, Canada
- Regroupement de recherche pour un lait de qualité optimale (Op+Lait), Saint-Hyacinthe, Québec, Canada
| | - Denis Roy
- Département des Sciences des Aliments, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, Canada
- Regroupement de recherche pour un lait de qualité optimale (Op+Lait), Saint-Hyacinthe, Québec, Canada
| | - Julie Jean
- Département des Sciences des Aliments, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, Canada
- Regroupement de recherche pour un lait de qualité optimale (Op+Lait), Saint-Hyacinthe, Québec, Canada
| |
Collapse
|
6
|
Pin Viso ND, Rizzo PF, Young BJ, Gabioud E, Bres P, Riera NI, Merino L, Farber MD, Crespo DC. The Use of Raw Poultry Waste as Soil Amendment Under Field Conditions Caused a Loss of Bacterial Genetic Diversity Together with an Increment of Eutrophic Risk and Phytotoxic Effects. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02119-0. [PMID: 36197502 DOI: 10.1007/s00248-022-02119-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Poultry waste has been used as fertilizer to avoid soil degradation caused by the long-term application of chemical fertilizer. However, few studies have evaluated field conditions where livestock wastes have been used for extended periods of time. In this study, physicochemical parameters, metabarcoding of the 16S rRNA gene, and ecotoxicity indexes were used for the characterization of chicken manure and poultry litter to examine the effect of their application to agricultural soils for 10 years. Poultry wastes showed high concentrations of nutrients and increased electrical conductivity leading to phytotoxic effects on seeds. The bacterial communities were dominated by typical members of the gastrointestinal tract, noting the presence of pathogenic bacteria. Soils subjected to poultry manure applications showed statistically higher values of total and extractable phosphorous, increasing the risk of eutrophication. Moreover, while the soil bacterial community remained dominated by the ones related to the biogeochemical cycles of nutrients and plant growth promotion, losses of alpha diversity were observed on treated soils. Altogether, our work would contribute to understand the effects of common local agricultural practices and support the adoption of the waste treatment process in compliance with environmental sustainability guidelines.
Collapse
Affiliation(s)
- Natalia D Pin Viso
- Instituto de Agrobiotecnología y Biología Molecular, IABiMo, INTA-CONICET, Calle Las Cabañas y Los Reseros s/n, Casilla de Correo 25, 1712, Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, 1425, Ciudad Autónoma de Buenos Aires, Argentina
- Universidad Nacional de Hurlingham, Tte. Origone 151, 1688, Hurlingham, Buenos Aires, Argentina
| | - Pedro F Rizzo
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola (IMyZA), Calle Las Cabañas y Los Reseros S/N, Casilla de Correo 25, 1712, Hurlingham, Buenos Aires, Argentina
| | - Brian J Young
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola (IMyZA), Calle Las Cabañas y Los Reseros S/N, Casilla de Correo 25, 1712, Hurlingham, Buenos Aires, Argentina
| | - Emmanuel Gabioud
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Paraná, Ruta 11 Km 12.5, 3101, Oro Verde, Entre Ríos, Argentina
| | - Patricia Bres
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola (IMyZA), Calle Las Cabañas y Los Reseros S/N, Casilla de Correo 25, 1712, Hurlingham, Buenos Aires, Argentina
| | - Nicolás I Riera
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola (IMyZA), Calle Las Cabañas y Los Reseros S/N, Casilla de Correo 25, 1712, Hurlingham, Buenos Aires, Argentina
| | - Lina Merino
- Universidad Nacional de Hurlingham, Tte. Origone 151, 1688, Hurlingham, Buenos Aires, Argentina
| | - Marisa D Farber
- Instituto de Agrobiotecnología y Biología Molecular, IABiMo, INTA-CONICET, Calle Las Cabañas y Los Reseros s/n, Casilla de Correo 25, 1712, Hurlingham, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, 1425, Ciudad Autónoma de Buenos Aires, Argentina.
- Universidad Nacional de Hurlingham, Tte. Origone 151, 1688, Hurlingham, Buenos Aires, Argentina.
| | - Diana C Crespo
- Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, 1425, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola (IMyZA), Calle Las Cabañas y Los Reseros S/N, Casilla de Correo 25, 1712, Hurlingham, Buenos Aires, Argentina
| |
Collapse
|
7
|
Algammal AM, Alfifi KJ, Mabrok M, Alatawy M, Abdel-moneam DA, Alghamdi S, Azab MM, Ibrahim RA, Hetta HF, El-Tarabili RM. Newly Emerging MDR B. cereus in Mugil seheli as the First Report Commonly Harbor nhe, hbl, cytK, and pc-plc Virulence Genes and bla1, bla2, tetA, and ermA Resistance Genes. Infect Drug Resist 2022; 15:2167-2185. [PMID: 35498633 PMCID: PMC9052338 DOI: 10.2147/idr.s365254] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/15/2022] [Indexed: 01/23/2023] Open
Abstract
Background Bacillus cereus is a common food poisoning pathogen in humans. This study aimed to investigate the prevalence, molecular typing, antibiogram profile, pathogenicity, dissemination of virulence and antibiotic resistance genes associated with natural B. cereus infection among Mugil seheli. Methods Consequently, 120 M. seheli (40 healthy and 80 diseased) were obtained from private fish farms in Port-said Governorate, Egypt. Afterward, samples were processed for clinical, post-mortem, and bacteriological examinations. The recovered isolates were tested for antimicrobial susceptibility, phenotypic assessment of virulence factors, pathogeneicity, and PCR-based detection of virulence and antibiotic resistance genes. Results B. cereus was isolated from 30 (25%) examined fish; the highest prevalence was noticed in the liver (50%). The phylogenetic and sequence analyses of the gyrB gene revealed that the tested B. cereus isolate displayed a high genetic similarity with other B. cereus strains from different origins. All the recovered B. cereus isolates (n =60, 100%) exhibited β-hemolytic and lecithinase activities, while 90% (54/60) of the tested isolates were biofilm producers. Using PCR, the tested B. cereus isolates harbor nhe, hbl, cytK, pc-plc, and ces virulence genes with prevalence rates of 91.6%, 86.6%, 83.4%, 50%, and 33.4%, respectively. Moreover, 40% (24/60) of the tested B. cereus isolates were multidrug-resistant (MDR) to six antimicrobial classes and carried the bla1, bla2, tetA, and ermA genes. The experimentally infected fish with B. cereus showed variable mortality in direct proportion to the inoculated doses. Conclusion As far as we know, this is the first report that emphasized the existence of MDR B. cereus in M. seheli that reflects a threat to the public health and the aquaculture sector. Newly emerging MDR B. cereus in M. seheli commonly carried virulence genes nhe, hbl, cytK, and pc-plc, as well as resistance genes bla1, bla2, tetA, and ermA.
Collapse
Affiliation(s)
- Abdelazeem M Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Khyreyah J Alfifi
- Biology Department, Faculty of Science, Tabuk University, Tabuk, 71421, Saudi Arabia
| | - Mahmoud Mabrok
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Marfat Alatawy
- Biology Department, Faculty of Science, Tabuk University, Tabuk, 71421, Saudi Arabia
| | - Dalia A Abdel-moneam
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Cairo, 12613, Egypt
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Marwa M Azab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Reham A Ibrahim
- Marine Environmental Division- National Institute of Oceanography and Fisheries (NIOF), Suez, 43511, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Reham M El-Tarabili
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
8
|
Identification and characterization of Bacillus coagulans strains for probiotic activity and safety. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
Wongbunmak A, Panthongkham Y, Suphantharika M, Pongtharangkul T. A fixed-film bioscrubber of Microbacterium esteraromaticum SBS1-7 for toluene/styrene biodegradation. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126287. [PMID: 34126384 DOI: 10.1016/j.jhazmat.2021.126287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/22/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
In the present study, a fixed-film bioscrubber (FFBS) of BTEX-degrading bacterium Microbacterium esteraromaticum SBS1-7 with 'AQUAPOROUSGEL® or APG' supporting material was continuously fed with toluene- or styrene-contaminated gas stream for 172 days. Response Surface Methodology (RSM) was used to optimize the biofilm formation on APG as well as the toluene biodegradation in mineral salt medium (MM). The results suggested that 1000 ppm of yeast extract (YE) was necessary for biofilm formation of SBS1-7. The optimized combination of YE and toluene concentration exhibiting the highest biofilm formation and toluene removal was further employed in an up-scale FFBS operation. The maximum Elimination Capacity (ECmax) of 203 g·m-3·h-1 was obtained at the toluene Inlet Loading Rate (ILR) of 295 g·m-3·h-1. FFBS of SBS1-7 was able to withstand a 5-day shutdown and required only 24 h to recover. Moreover, when the inlet Volatile Organic Compound was shifted to styrene, FFBS required only 24 h for adaptation and the system was able to efficiently remove ~95% of styrene after that. Finally, the performance of the bioscrubber when operated in 2 different modes of operation (FFBS vs Biotricking Filter or BTF) were compared. This study evidently demonstrated the robustness and stability of FFBS with M. esteraromaticum SBS1-7.
Collapse
Affiliation(s)
- Akanit Wongbunmak
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Yanisa Panthongkham
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Manop Suphantharika
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
10
|
High-strength potato starch/hectorite clay-based nanocomposite film: synthesis and characterization. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-021-00907-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Exopolysaccharide of Anoxybacillus pushchinoensis G11 has antitumor and antibiofilm activities. Arch Microbiol 2021; 203:2101-2118. [PMID: 33604750 DOI: 10.1007/s00203-021-02185-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/12/2021] [Accepted: 01/28/2021] [Indexed: 12/23/2022]
Abstract
Exopolysaccharides (EPS/EPSs) possess several various applications in the food and pharmaceutical industries. This study was performed to investigate the biological (antibiofilm and antitumor), rheological (temperature, shear rate, and density) and chemical (solubility, carbohydrate and protein content, composition, molecular weight, functional group analysis, thermal analysis, X-ray diffraction pattern and scanning electron microscopy) properties of the EPS, which was purified from the locally isolated thermophilic bacterium Anoxybacillus pushchinoensis G11 (MN720646). EPS was found to have antibiofilm and antitumor [lung (A-549) and colon (Caco-2 and HT-29) cancer] activities. The viscosity of EPS showing Newtonian flow was temperature dependent. As chemical properties, the EPS was found to be a heteropolysaccharide containing arabinose (57%), fructose (26%), glucose (12%), and galactose (5%). EPS contained 93% carbohydrates and 1.08% protein. The molecular weight of EPS was determined as 75.5 kDa. The FTIR analysis confirmed the presence of sulfate ester (band at 1217 cm-1), an indication of the antitumor effect. The EPS was semi-crystalline. It could maintain 36% of its weight at 800 °C and crystallization and melting temperatures were 221 and 255.6 °C. This is the first report on the EPS production potential and the biological activity of A. pushchinoensis.
Collapse
|
12
|
Kİlİc T. Biofilm-Forming Ability and Effect of Sanitation Agents on Biofilm-Control of Thermophile Geobacillus sp. D413 and Geobacillus toebii E134. Pol J Microbiol 2021; 69:411-419. [PMID: 33574869 PMCID: PMC7812365 DOI: 10.33073/pjm-2020-042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 01/12/2023] Open
Abstract
Geobacillus sp. D413 and Geobacillus toebii E134 are aerobic, non-pathogenic, endospore-forming, obligately thermophilic bacilli. Gram-positive thermophilic bacilli can produce heat-resistant spores. The bacteria are indicator organisms for assessing the manufacturing process’s hygiene and are capable of forming biofilms on surfaces used in industrial sectors. The present study aimed to determine the biofilm-forming properties of Geobacillus isolates and how to eliminate this formation with sanitation agents. According to the results, extracellular DNA (eDNA) was interestingly not affected by the DNase I, RNase A, and proteinase K. However, the genomic DNA (gDNA) was degraded by only DNase I. It seemed that the eDNA had resistance to DNase I when purified. It is considered that the enzymes could not reach the target eDNA. Moreover, the eDNA resistance may result from the conserved folded structure of eDNA after purification. Another assumption is that the eDNA might be protected by other extracellular polymeric substances (EPS) and/or extracellular membrane vesicles (EVs) structures. On the contrary, DNase I reduced unpurified eDNA (mature biofilms). Biofilm formation on surfaces used in industrial areas was investigated in this work: the D413 and E134 isolates adhered to all surfaces. Various sanitation agents could control biofilms of Geobacillus isolates. The best results were provided by nisin for D413 (80%) and α-amylase for E134 (98%). This paper suggests that sanitation agents could be a solution to control biofilm structures of thermophilic bacilli.
Collapse
Affiliation(s)
- Tugba Kİlİc
- Graduate School of Natural and Applied Sciences, Ankara University, Ankara, Turkey.,Vocational School of Health Services, Medical Laboratory Techniques Program, Gazi University, Ankara, Turkey
| |
Collapse
|
13
|
Dettling A, Wedel C, Huptas C, Hinrichs J, Scherer S, Wenning M. High counts of thermophilic spore formers in dairy powders originate from persisting strains in processing lines. Int J Food Microbiol 2020; 335:108888. [DOI: 10.1016/j.ijfoodmicro.2020.108888] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/03/2020] [Accepted: 09/05/2020] [Indexed: 12/15/2022]
|
14
|
Kilic T, Coleri Cihan A. Biofilm Formation of the Facultative Thermophile Bacillus pumilus D194A and Affects of Sanitation Agents on Its Biofilms. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720010087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Hou X, Dai C, Tang Y, Xing Z, Mintah BK, Dabbour M, Ding Q, He R, Ma H. Thermophilic solid-state fermentation of rapeseed meal and analysis of microbial community diversity. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108520] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Experimental adhesion of Geobacillus stearothermophilus and Anoxybacillus flavithermus to stainless steel compared with predictions from interaction models. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00880-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Biofilms: The Microbial "Protective Clothing" in Extreme Environments. Int J Mol Sci 2019; 20:ijms20143423. [PMID: 31336824 PMCID: PMC6679078 DOI: 10.3390/ijms20143423] [Citation(s) in RCA: 498] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023] Open
Abstract
Microbial biofilms are communities of aggregated microbial cells embedded in a self-produced matrix of extracellular polymeric substances (EPS). Biofilms are recalcitrant to extreme environments, and can protect microorganisms from ultraviolet (UV) radiation, extreme temperature, extreme pH, high salinity, high pressure, poor nutrients, antibiotics, etc., by acting as "protective clothing". In recent years, research works on biofilms have been mainly focused on biofilm-associated infections and strategies for combating microbial biofilms. In this review, we focus instead on the contemporary perspectives of biofilm formation in extreme environments, and describe the fundamental roles of biofilm in protecting microbial exposure to extreme environmental stresses and the regulatory factors involved in biofilm formation. Understanding the mechanisms of biofilm formation in extreme environments is essential for the employment of beneficial microorganisms and prevention of harmful microorganisms.
Collapse
|
18
|
Osman KM, Kappell AD, Orabi A, Al-Maary KS, Mubarak AS, Dawoud TM, Hemeg HA, Moussa IMI, Hessain AM, Yousef HMY, Hristova KR. Poultry and beef meat as potential seedbeds for antimicrobial resistant enterotoxigenic Bacillus species: a materializing epidemiological and potential severe health hazard. Sci Rep 2018; 8:11600. [PMID: 30072706 PMCID: PMC6072766 DOI: 10.1038/s41598-018-29932-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 07/18/2018] [Indexed: 12/17/2022] Open
Abstract
Although Bacillus cereus is of particular concern in food safety and public health, the role of other Bacillus species was overlooked. Therefore, we investigated the presence of eight enterotoxigenic genes, a hemolytic gene and phenotypic antibiotic resistance profiles of Bacillus species in retail meat samples. From 255 samples, 124 Bacillus isolates were recovered, 27 belonged to B. cereus and 97 were non-B. cereus species. Interestingly, the non-B. cereus isolates carried the virulence genes and exhibited phenotypic virulence characteristics as the B. cereus. However, correlation matrix analysis revealed the B. cereus group positively correlates with the presence of the genes hblA, hblC, and plc, and the detection of hemolysis (p < 0.05), while the other Bacillus sp. groups are negatively correlated. Tests for antimicrobial resistance against ten antibiotics revealed extensive drug and multi-drug resistant isolates. Statistical analyses didn't support a correlation of antibiotic resistance to tested virulence factors suggesting independence of these phenotypic markers and virulence genes. Of special interest was the isolation of Paenibacillus alvei and Geobacillus stearothermophilus from the imported meat samples being the first recorded. The isolation of non-B. cereus species carrying enterotoxigenic genes in meat within Egypt, suggests their impact on food safety and public health and should therefore not be minimised, posing an area that requires further research.
Collapse
Affiliation(s)
- Kamelia M Osman
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Anthony D Kappell
- Department of Civil, Construction, and Environmental Engineering, Marquette University, Milwaukee, WI, USA
| | - Ahmed Orabi
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Khalid S Al-Maary
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ayman S Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Turki M Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hassan A Hemeg
- Department of Clinical Laboratory sciences, college of Applied Medical sciences, Taibah University, Taibah, Saudi Arabia
| | - Ihab M I Moussa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ashgan M Hessain
- Department of Health Science, College of Applied Studies and Community Service, King Saud University, Riyadh, Saudi Arabia
| | - Hend M Y Yousef
- Central Administration of Preventive Medicine, General Organization for Veterinary Service, Giza, Egypt.
| | | |
Collapse
|