1
|
Araujo JMM, Monteiro JM, Silva DHDS, Veira AK, Silva MRC, Ferraz FA, Braga FHR, de Siqueira EP, Monteiro ADS. Candida krusei M4CK Produces a Bioemulsifier That Acts on Melaleuca Essential Oil and Aids in Its Antibacterial and Antibiofilm Activity. Antibiotics (Basel) 2023; 12:1686. [PMID: 38136720 PMCID: PMC10740703 DOI: 10.3390/antibiotics12121686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 12/24/2023] Open
Abstract
Surface-active compounds (SACs) of microbial origin are an active group of biomolecules with potential use in the formulation of emulsions. In this sense, the present study aimed to isolate and select yeasts from fruits that could produce SACs for essential oil emulsions. The Candida krusei M4CK was isolated from the Byrsonima crassifolia fruit to make SACs. This emulsification activity (E24) was equal to or greater 50% in all carbon sources, such as olive oil, sunflower oil, kerosene, hexane, and hexadecane. E24 followed exponential growth according to the growth phase. The stability of emulsions was maintained over a wide range of temperatures, pH, and salinity. The OMBE4CK (melaleuca essential oil emulsion) had better and more significant inhibitory potential for biofilm reduction formation. In addition, bioemulsifier BE4CK alone on Escherichia coli and Pseudomonas aeruginosa biofilm showed few effective results, while there was a significant eradication for Staphylococcus aureus biofilms. The biofilms formed by S. aureus were eradicated in all concentrations of OMBE4CK. At the same time, the preformed biofilm by E. coli and P. aeruginosa were removed entirely at concentrations of 25 mg/mL, 12.5 mg/mL, and 6.25 mg/mL. The results show that the bioemulsifier BE4CK may represent a new potential for antibiofilm application.
Collapse
Affiliation(s)
- Jéssica Mayra Mendes Araujo
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal, BIONORTE, Saint Louis 65055-310, Brazil; (J.M.M.A.); (J.M.M.)
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, Saint Louis 65075-120, Brazil; (D.H.d.S.S.); (A.K.V.); (F.A.F.)
| | - Joveliane Melo Monteiro
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal, BIONORTE, Saint Louis 65055-310, Brazil; (J.M.M.A.); (J.M.M.)
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, Saint Louis 65075-120, Brazil; (D.H.d.S.S.); (A.K.V.); (F.A.F.)
| | | | - Amanda Karoline Veira
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, Saint Louis 65075-120, Brazil; (D.H.d.S.S.); (A.K.V.); (F.A.F.)
| | - Maria Raimunda Chagas Silva
- Laboratório de Ciências do Ambiente, Universidade CEUMA, Saint Louis 65075-120, Brazil; (M.R.C.S.); (F.H.R.B.)
| | - Fernanda Avelino Ferraz
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, Saint Louis 65075-120, Brazil; (D.H.d.S.S.); (A.K.V.); (F.A.F.)
| | - Fábio H. Ramos Braga
- Laboratório de Ciências do Ambiente, Universidade CEUMA, Saint Louis 65075-120, Brazil; (M.R.C.S.); (F.H.R.B.)
| | - Ezequias Pessoa de Siqueira
- Laboratório de Química de Produtos Naturais, Centro de Pesquisas René Rachou Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil;
| | - Andrea de Souza Monteiro
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal, BIONORTE, Saint Louis 65055-310, Brazil; (J.M.M.A.); (J.M.M.)
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, Saint Louis 65075-120, Brazil; (D.H.d.S.S.); (A.K.V.); (F.A.F.)
| |
Collapse
|
2
|
Li M, Yu J, Cao L, Yin Y, Su Z, Chen S, Li G, Ma T. Facultative anaerobic conversion of lignocellulose biomass to new bioemulsifier by thermophilic Geobacillus thermodenitrificans NG80-2. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130210. [PMID: 36308930 DOI: 10.1016/j.jhazmat.2022.130210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/06/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Heavy oil has hindered crude oil exploitation and pollution remediation due to its high density and viscosity. Bioemulsifiers efficiently facilitate the formation and stabilization of oil-in-water emulsions in low concentrations thus eliminating the above bottleneck. Despite their potential benefits, various obstacles had still impeded the practical applications of bioemulsifiers, including high purification costs and poor adaptability to extreme environments such as high temperature and oxygen deficiency. Herein, thermophilic facultative anaerobic Geobacillus thermodenitrificans NG80-2 was proved capable of emulsifying heavy oils and reducing their viscosity. An exocelluar bioemulsifier could be produced by NG80-2 using low-cost lignocellulose components as carbon sources even under anaerobic condition. The purified bioemulsifier was proved to be polysaccharide-protein complexes, and both components contributed to its emulsifying capability. In addition, it displayed excellent stress tolerance over wide ranges of temperatures, salinities, and pHs. Meanwhile, the bioemulsifier significantly improved oil recovery and degradation efficiency. An eps gene cluster for polysaccharide biosynthesis and genes for the covalently bonded proteins was further certificated. Therefore, the bioemulsifier produced by G. thermodenitrificans NG80-2 has immense potential for applications in bioremediation and EOR, and its biosynthesis pathway revealed here provides a theoretical basis for increasing bioemulsifier output.
Collapse
Affiliation(s)
- Mingchang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiaqi Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lu Cao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yujun Yin
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhaoying Su
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shuai Chen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; Tianjin Engineering Technology Center of Green Manufacturing Biobased Materials, Tianjin 300071, China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; Tianjin Engineering Technology Center of Green Manufacturing Biobased Materials, Tianjin 300071, China.
| |
Collapse
|
3
|
Wei F, Xu R, Rao Q, Zhang S, Ma Z, Ma Y. Biodegradation of asphaltenes by an indigenous bioemulsifier-producing Pseudomonas stutzeri YWX-1 from shale oil in the Ordos Basin: Biochemical characterization and complete genome analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114551. [PMID: 36669280 DOI: 10.1016/j.ecoenv.2023.114551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Crude oil pollution is environmentally ubiquitous and has become a global public concern about its impact on human health. Asphaltenes are the key components of heavy crude oil (HCO) that are underutilized due to their high viscosity and density, and yet, the associated information about biodegradation is extremely limited in the literature. In the present study, an indigenous bacterium with effective asphaltene-degrading activity was isolated from oil shale and identified as Pseudomonas stutzeri by a polyphasic taxonomic approach, named YWX-1. Supplemented with 75 g L-1 heavy crude oil as the sole carbon source for growth in basic mineral salts liquid medium (MSM), strain YWX-1 was able to remove 49% of asphaletene fractions within 14 days, when it was cultivated with an initial inoculation size of 1%. During the degradation process, the bioemulsifier produced by strain YWX-1 could emulsify HCO obviously into particles, as well as it had the ability to solubilize asphaletenes. The bioemulsifier was identified to be a mixture of polysaccharide and protein through Fourier transform infrared spectroscopy (FT-IR). The genome of strain YWX-1 contains one circular chromosome of 4488441 bp with 63.98% GC content and 4145 protein coding genes without any plasmid. Further genome annotation indicated that strain YWX-1 possesses a serial of genes involved in bio-emulsification and asphaltenes biodegradation. This work suggested that P. stutzeri YWX-1 could be a promising species for bioremediation of HCO and its genome analysis provided insight into the molecular basis of asphaltene biodegradation and bioemulsifier production.
Collapse
Affiliation(s)
- Fengdan Wei
- College of Life Science, Northwest University, Xi´an, China
| | - Rui Xu
- College of Life Science, Northwest University, Xi´an, China
| | - Qingyan Rao
- College of Life Science, Northwest University, Xi´an, China
| | - Shuqi Zhang
- College of Life Science, Northwest University, Xi´an, China
| | - Zhiwei Ma
- College of Life Science, Northwest University, Xi´an, China
| | - Yanling Ma
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi´an, Shaanxi 710069, China; College of Life Science, Northwest University, 229 Tai bai North Rd, Xi´an, Shaanxi 710069, China.
| |
Collapse
|
4
|
Surface-Active Compounds Produced by Microorganisms: Promising Molecules for the Development of Antimicrobial, Anti-Inflammatory, and Healing Agents. Antibiotics (Basel) 2022; 11:antibiotics11081106. [PMID: 36009975 PMCID: PMC9404966 DOI: 10.3390/antibiotics11081106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
Surface-active compounds (SACs), biomolecules produced by bacteria, yeasts, and filamentous fungi, have interesting properties, such as the ability to interact with surfaces as well as hydrophobic or hydrophilic interfaces. Because of their advantages over other compounds, such as biodegradability, low toxicity, antimicrobial, and healing properties, SACs are attractive targets for research in various applications in medicine. As a result, a growing number of properties related to SAC production have been the subject of scientific research during the past decade, searching for potential future applications in biomedical, pharmaceutical, and therapeutic fields. This review aims to provide a comprehensive understanding of the potential of biosurfactants and emulsifiers as antimicrobials, modulators of virulence factors, anticancer agents, and wound healing agents in the field of biotechnology and biomedicine, to meet the increasing demand for safer medical and pharmacological therapies.
Collapse
|
5
|
Using Large-Scale Multi-Module NRPS to Heterologously Prepare Highly Efficient Lipopeptide Biosurfactants in Recombinant Escherichia coli. Enzyme Microb Technol 2022; 159:110068. [DOI: 10.1016/j.enzmictec.2022.110068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/23/2022]
|
6
|
Production of the biosurfactant serrawettin W1 by Serratia marcescens S-1 improves hydrocarbon degradation. Bioprocess Biosyst Eng 2021; 44:2541-2552. [PMID: 34514513 DOI: 10.1007/s00449-021-02625-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
With the frequent occurrence of oil spills, the bioremediation of petroleum hydrocarbons pollution has attracted more and more attention. In this study, we investigated the biodegradation of crude oil by the biosurfactant-producing strain S-1. The strain was isolated from petroleum-contaminated soil and identified as Serratia marcescens according to partial 16S rDNA gene analysis. It was able to effectively degrade hydrocarbons with the concomitant production of biosurfactants at 20-30 °C, while there was no biosurfactant production and the degradation rate was lower at 37 °C. The biosurfactant was identified as serrawettin W1 by UPLC-ESI-MS, and was found to reduce the surface tension of water to 30 mN/m, with stable surface activity and emulsion activity at temperatures from 20 to 100 °C, pH of 2-10 and NaCl concentrations of 0-50 g/L. Serrawettin W1 significantly increased the cell surface hydrophobicity (CSH) and enhanced the bioavailability of hydrocarbon pollutants, which was conducive to the degradation of crude oil, including long-chain alkanes and aromatic hydrocarbons. Serratia marcescens S-1 has potential applications in bioremediation at low temperature.
Collapse
|
7
|
Bhaumik M, Dhanarajan G, Chopra J, Kumar R, Hazra C, Sen R. Production, partial purification and characterization of a proteoglycan bioemulsifier from an oleaginous yeast. Bioprocess Biosyst Eng 2020; 43:1747-1759. [DOI: 10.1007/s00449-020-02361-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/22/2020] [Indexed: 11/28/2022]
|
8
|
Tao W, Lin J, Wang W, Huang H, Li S. Designer bioemulsifiers based on combinations of different polysaccharides with the novel emulsifying esterase AXE from Bacillus subtilis CICC 20034. Microb Cell Fact 2019; 18:173. [PMID: 31601224 PMCID: PMC6786282 DOI: 10.1186/s12934-019-1221-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/27/2019] [Indexed: 12/19/2022] Open
Abstract
Background Bioemulsifiers are surface-active compounds, which exhibit advantages including low toxicity, higher biodegradability and biocompatibility over synthetic chemical surfactants. Despite their potential benefits, some obstacles impede the practical applications of bioemulsifiers, including low yields and high purification costs. Here, we aimed to exploit a novel protein bioemulsifier with efficient emulsifying activity and low-production cost, as well as proposed a design-bioemulsifier system that meets different requirements of industrial emulsification in the most economical way. Results The esterase AXE was first reported for its efficient emulsifying activity and had been studied for possible application as a protein bioemulsifier. AXE showed an excellent emulsification effect with different hydrophobic substrates, especially short-chain aliphatic and benzene derivatives, as well as excellent stability under extreme conditions such as high temperature (85 °C) and acidic conditions. AXE also exhibited good stability over a range of NaCl, MgSO4, and CaCl2 concentrations from 0 to 1000 mM, and the emulsifying activity even showed a slight increase at salt concentrations over 500 mM. A design-bioemulsifier system was proposed that uses AXE in combination with a variety of polysaccharides to form efficient bioemulsifier, which enhanced the emulsifying activity and further lowered the concentration of AXE needed in the complex. Conclusions AXE showed a great application potential as a novel bioemulsifier with excellent emulsifying ability. The AXE-based-designer bioemulsifier could be obtained in the most economical way and open broad new fields for low-cost, environmentally friendly bioemulsifiers.![]()
Collapse
Affiliation(s)
- Weiyi Tao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Junzhang Lin
- Oil Production Research Institute, Shengli Oil Field Ltd. Co. SinoPEC, Dongying, China
| | - Weidong Wang
- Oil Production Research Institute, Shengli Oil Field Ltd. Co. SinoPEC, Dongying, China
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Shuang Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
9
|
Zhang X, Ren H, He A. Facile scalable fabrication of ultra-thin freestanding SiO 2-based hybrid nanosheets with multifunctional properties. NANOSCALE 2018; 10:19351-19359. [PMID: 30307011 DOI: 10.1039/c8nr06591h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Two-dimensional (2D) nanomaterials with unique features like a large surface-to-volume ratio and the quantum confinement effect have attracted great attention for applications in energy storage, catalysis, sensing, membranes, etc. Silica (SiO2)-based nanosheets, as members of the 2D material family, are extremely intriguing because of their unique electronic insulation, bio-compatibility and profound chemical and thermal stability. However, there is still a lack of available approaches for fabricating SiO2 nanosheets in a simple, large-scale and cost-effective fashion. In the present research, we have proposed a facile and mass fabrication method for ultra-thin freestanding SiO2-based hybrid nanosheets (SS) with a uniform thickness by crashing hollow microcapsules through ultrasonication treatment. The morphology, composition, and application of the hybrid nanosheets are investigated in detail. The experimental results demonstrate that SS nanosheets with an inorganic-organic hybrid structure display a Janus-type composition with double bonds residing on one side and hydroxyl groups on the other. Additionally, the SS nanosheets could be easily modified by introducing various functional components such as aluminium hydroxide (AH). The as-prepared SS nanosheets and AH modified nanosheets (SS-AH) could considerably enhance the thermal stability of silicone rubber with remarkably increased thermal decomposition temperatures and residues compared with the reference samples. SS and SS-AH sheets are highly superior in usage as polymer thermal stability fillers because of the following aspects: the hybrid nature of SS and SS-AH is advantageous to facilitate the filler-polymer interaction, so these particles could be readily dispersed into silicone without any hydrophobicity modification; these fillers could improve the thermal stability of elastomers at a much lower filler loading (<8%) than the previously reported filler system (e.g. >20 wt%). Furthermore, the nanosheets are also proved to be efficient in usage as emulsifiers for the immiscible oil-water system with a higher efficiency and emulsion stability than the commonly used emulsifiers. Consequently, the hybrid nanosheets fabricated in this work will not only enrich the family of ultra-thin 2D materials but also attract more interest in potential applications in functional nanocomposites and solid emulsifiers.
Collapse
Affiliation(s)
- Xinping Zhang
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | | | | |
Collapse
|