1
|
Almulhim F, Hong PY. Evaluation of protein extraction methods to improve meta-proteomics analysis of treated wastewater biofilms. Proteomics 2023; 23:e2300191. [PMID: 37541654 DOI: 10.1002/pmic.202300191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/06/2023]
Abstract
Metaproteomics can be used to study functionally active biofilm-based bacterial populations in reclaimed water distribution systems, which in turn result in bacterial regrowth that impacts the water quality. However, existing protein extraction methods have differences in their protein recovery and have not been evaluated for their efficacies in reclaimed water biofilm samples. In this study, we first evaluated six different protein extraction methods with diverse chemical and physical properties on a mixture of bacterial cell culture. Based on a weighting scores-based evaluation, the extraction protocols in order of decreasing performance are listed as B-PER > RIPA > PreOmics > SDS > AllPrep > Urea. The highest four optimal methods on cell culture were further tested against treated wastewater non-chlorinated and chlorinated effluent biofilms. In terms of protein yield, our findings showed that RIPA performed the best; however, the highest number of proteins were extracted from SDS and PreOmics. Furthermore, SDS and PreOmics worked best to rupture gram-positive and gram-negative bacterial cell walls. Considering the five evaluation factors, PreOmics obtained highest weighted score, indicating its potential effectiveness in extracting proteins from biofilms. This study provides the first insight into evaluating protein extraction methods to facilitate metaproteomics for complex reclaimed water matrices.
Collapse
Affiliation(s)
- Fatimah Almulhim
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Pei-Ying Hong
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Abstract
Here we review the application of molecular biological approaches to mineral precipitation in modern marine microbialites. The review focuses on the nearly two decades of nucleotide sequencing studies of the microbialites of Shark Bay, Australia; and The Bahamas. Molecular methods have successfully characterized the overall community composition of mats, pinpointed microbes involved in key metabolisms, and revealed patterns in the distributions of microbial groups and functional genes. Molecular tools have become widely accessible, and we can now aim to establish firmer links between microbes and mineralization. Two promising future directions include “zooming in” to assess the roles of specific organisms, microbial groups, and surfaces in carbonate biomineralization and “zooming out” to consider broader spans of space and time. A middle ground between the two can include model systems that contain representatives of important microbial groups, processes, and metabolisms in mats and simplify hypothesis testing. These directions will benefit from expanding reference datasets of marine microbes and enzymes and enrichments of representative microbes from mats. Such applications of molecular tools should improve our ability to interpret ancient and modern microbialites and increase the utility of these rocks as long-term recorders of microbial processes and environmental chemistry.
Collapse
|
3
|
Marques da Silva W, Seyffert N, Silva A, Azevedo V. A journey through the Corynebacterium pseudotuberculosis proteome promotes insights into its functional genome. PeerJ 2022; 9:e12456. [PMID: 35036114 PMCID: PMC8710256 DOI: 10.7717/peerj.12456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022] Open
Abstract
Background Corynebacterium pseudotuberculosis is a Gram-positive facultative intracellular pathogen and the etiologic agent of illnesses like caseous lymphadenitis in small ruminants, mastitis in dairy cattle, ulcerative lymphangitis in equines, and oedematous skin disease in buffalos. With the growing advance in high-throughput technologies, genomic studies have been carried out to explore the molecular basis of its virulence and pathogenicity. However, data large-scale functional genomics studies are necessary to complement genomics data and better understating the molecular basis of a given organism. Here we summarize, MS-based proteomics techniques and bioinformatics tools incorporated in genomic functional studies of C. pseudotuberculosis to discover the different patterns of protein modulation under distinct environmental conditions, and antigenic and drugs targets. Methodology In this study we performed an extensive search in Web of Science of original and relevant articles related to methods, strategy, technology, approaches, and bioinformatics tools focused on the functional study of the genome of C. pseudotuberculosis at the protein level. Results Here, we highlight the use of proteomics for understating several aspects of the physiology and pathogenesis of C. pseudotuberculosis at the protein level. The implementation and use of protocols, strategies, and proteomics approach to characterize the different subcellular fractions of the proteome of this pathogen. In addition, we have discussed the immunoproteomics, immunoinformatics and genetic tools employed to identify targets for immunoassays, drugs, and vaccines against C. pseudotuberculosis infection. Conclusion In this review, we showed that the combination of proteomics and bioinformatics studies is a suitable strategy to elucidate the functional aspects of the C. pseudotuberculosis genome. Together, all information generated from these proteomics studies allowed expanding our knowledge about factors related to the pathophysiology of this pathogen.
Collapse
Affiliation(s)
- Wanderson Marques da Silva
- Institute of Agrobiotechnology and Molecular Biology-(INTA/CONICET), Hurlingham, Buenos Aires, Argentina
| | - Nubia Seyffert
- Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Artur Silva
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Para, Belém, Pará, Brazil
| | - Vasco Azevedo
- Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
4
|
Yao Y, Rao S, Habimana O. Active Microbiome Structure and Functional Analyses of Freshwater Benthic Biofilm Samples Influenced by RNA Extraction Methods. Front Microbiol 2021; 12:588025. [PMID: 33935982 PMCID: PMC8085529 DOI: 10.3389/fmicb.2021.588025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/24/2021] [Indexed: 02/01/2023] Open
Abstract
Advances in high-throughput sequencing technologies have enabled extensive studies of freshwater biofilms and significant breakthroughs in biofilm meta-omics. To date, however, no standardized protocols have been developed for the effective isolation of RNA from freshwater benthic biofilms. In this study, we compared column-based kit RNA extraction with five RNAzol-based extractions, differentiated by various protocol modifications. The RNA products were then evaluated to determine their integrity, purity and yield and were subjected to meta-transcriptomic sequencing and analysis. Significant discrepancies in the relative abundance of active communities and structures of eukaryotic, bacterial, archaebacterial, and viral communities were observed as direct outcomes of the tested RNA extraction methods. The column isolation-based group was characterized by the highest relative abundance of Archaea and Eukaryota, while the organic isolation-based groups commonly had the highest relative abundances of Prokaryota (bacteria). Kit extraction methods provided the best outcomes in terms of high-quality RNA yield and integrity. However, these methods were deemed questionable for studies of active bacterial communities and may contribute a significant degree of bias to the interpretation of downstream meta-transcriptomic analyses.
Collapse
Affiliation(s)
- Yuan Yao
- The School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam, Hong Kong
| | - Subramanya Rao
- The School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam, Hong Kong
| | - Olivier Habimana
- The School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam, Hong Kong.,The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| |
Collapse
|
5
|
de Sá MCA, da Silva WM, Rodrigues CCS, Rezende CP, Marchioro SB, Rocha Filho JTR, Sousa TDJ, de Oliveira HP, da Costa MM, Figueiredo HCP, Portela RD, Castro TLDP, Azevedo V, Seyffert N, Meyer R. Comparative Proteomic Analyses Between Biofilm-Forming and Non-biofilm-Forming Strains of Co rynebacterium pseudotuberculosis Isolated From Goats. Front Vet Sci 2021; 8:614011. [PMID: 33665217 PMCID: PMC7921313 DOI: 10.3389/fvets.2021.614011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 01/21/2021] [Indexed: 11/20/2022] Open
Abstract
Caseous lymphadenitis (CLA) is a chronic disease that affects small ruminants and causes economic losses in the associated breeding system. The causative agent of CLA is Corynebacterium pseudotuberculosis, a Gram-positive bacterium that exhibits tropism for external and internal lymph nodes and induces abscess formation in the host. Bacterial communities often produce a biofilm matrix that serves various functions, including protection against hostile environmental conditions, antibiotics, and the host immune response. Although biofilm formation has been reported for C. pseudotuberculosis, not all strains demonstrate this property in culture. In this work, we report the first comparative proteomic analysis of one biofilm-forming (CAPJ4) and one biofilm-non-forming strain (CAP3W) of C. pseudotuberculosis isolated from goats. Bacterial whole cell protein extracts were obtained for mass spectrometry analyses. Using LC-MS/MS, our studies reveal three and four proteins exclusively found in the CAPJ4 and CAP3W proteome, respectively. In addition, label-free quantitative analysis identified 40 proteins showing at-least 2-fold higher values in CAPJ4 compared CAP3W proteome Notably, CAPJ4 differentially synthesized the penicillin-binding protein, which participates in the formation of peptidoglycans. CAPJ4 also exhibited upregulation of N-acetylmuramoyl-L-alanine amidase and galactose-1-phosphate uridylyltransferase, which are involved in biofilm formation and exopolysaccharide biosynthesis. Here, we demonstrate that biofilm formation in C. pseudotuberculosis is likely associated with specific proteins, some of which were previously shown to be associated with virulence and biofilm formation in other organisms. Our findings may drive studies related to the bacterial mechanisms involved in the biofilm formation, in addition to providing targets for the treatment of CLA.
Collapse
Affiliation(s)
| | - Wanderson Marques da Silva
- Instituto de Agrobiotecnología y Biologia Molecular Instituto Nacional de Tecnología Agropecuária/Consejo Nacional de Investigaciones Científicas y Técnicas (IABIMO-INTA/CONICET), Buenos Aires, Argentina
| | | | | | | | | | - Thiago de Jesus Sousa
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nubia Seyffert
- Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Roberto Meyer
- Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
6
|
Terán LC, Distefano M, Bellich B, Petrosino S, Bertoncin P, Cescutti P, Sblattero D. Proteomic Studies of the Biofilm Matrix including Outer Membrane Vesicles of Burkholderia multivorans C1576, a Strain of Clinical Importance for Cystic Fibrosis. Microorganisms 2020; 8:E1826. [PMID: 33228110 PMCID: PMC7699398 DOI: 10.3390/microorganisms8111826] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/28/2022] Open
Abstract
Biofilms are aggregates of microbial cells encased in a highly hydrated matrix made up of self-produced extracellular polymeric substances (EPS) which consist of polysaccharides, proteins, nucleic acids, and lipids. While biofilm matrix polysaccharides are unraveled, there is still poor knowledge about the identity and function of matrix-associated proteins. With this work, we performed a comprehensive proteomic approach to disclose the identity of proteins associated with the matrix of biofilm-growing Burkholderia multivorans C1576 reference strain, a cystic fibrosis clinical isolate. Transmission electron microscopy showed that B. multivorans C1576 also releases outer membrane vesicles (OMVs) in the biofilm matrix, as already demonstrated for other Gram-negative species. The proteomic analysis revealed that cytoplasmic and membrane-bound proteins are widely represented in the matrix, while OMVs are highly enriched in outer membrane proteins and siderophores. Our data suggest that cell lysis and OMVs production are the most important sources of proteins for the B. multivorans C1576 biofilm matrix. Of note, some of the identified proteins are lytic enzymes, siderophores, and proteins involved in reactive oxygen species (ROS) scavenging. These proteins might help B. multivorans C1576 in host tissue invasion and defense towards immune system assaults.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daniele Sblattero
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (L.C.T.); (M.D.); (B.B.); (S.P.); (P.B.); (P.C.)
| |
Collapse
|
7
|
Toushik SH, Mizan MFR, Hossain MI, Ha SD. Fighting with old foes: The pledge of microbe-derived biological agents to defeat mono- and mixed-bacterial biofilms concerning food industries. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Anupama R, Lulu S, Madhusmita R, Vino S, Mukherjee A, Babu S. Insights into the interaction of key biofilm proteins in Pseudomonas aeruginosa PAO1 with TiO 2 nanoparticle: An in silico analysis. J Theor Biol 2019; 462:12-25. [PMID: 30391649 DOI: 10.1016/j.jtbi.2018.10.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 10/27/2022]
Abstract
Pseudomonas aeruginosa is a pathogenic biofilm forming bacteria which exist in wide range of environments such as water, soil and human body. In an earlier study, we used a system biology approach based analysis of biofilm forming genes of P. aeruginosa and their possible role in TiO2 nanoparticle binding. The major protein of P. aeruginosa targeted by TiO2 was found to be KatA, a major catalase required for H2O2 resistance and acute virulence and the direct interacting protein partners of KatA were found to be DnaK, Hfq, RpoA and RpoS. To understand the protein-protein physical interaction characteristic of these key proteins involved in biofilm related processes, homology modeling, docking and molecular dynamic simulation were performed. For all these proteins, physical and chemical properties, amino acid composition, nest and cleft analysis were performed using online tools. The interactions between TiO2NPs-KatA and four protein-protein complexes such as KatA-DnaK, KatA-Hfq, KatA-RpoA and KatA-RpoS were studied. Our results indicate that all four key proteins and TiO2NPs can have stable complexation with KatA. The study has given enough clues to understand the interaction of TiO2NPs with P. aeruginosa biofilm in natural environment. Further investigations could lead to development of TiO2NPs based therapeutic and sanitary interventions to combat this pathogenic bacterium.
Collapse
Affiliation(s)
- Rani Anupama
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Sajitha Lulu
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Rout Madhusmita
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Sundararajan Vino
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Subramanian Babu
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|