1
|
Zou S, Ma Y, Ding W, Jiang Y, Chen X, Chen J, Gao H, Xue Y, Zheng Y. Efficient production of R-2-(4-hydroxyphenoxy) propionic acid by Beauveria bassiana using biofilm-based two-stage fermentation. BIORESOURCE TECHNOLOGY 2024; 399:130588. [PMID: 38490460 DOI: 10.1016/j.biortech.2024.130588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
In this work, a novel biofilm-based fermentation of Beauveria bassiana was employed to convert R-2- phenoxypropionic acid (R-PPA) to R-2-(4-hydroxyphenoxy) propionic acid (R-HPPA). The biofilm culture model of Beauveria bassiana produced a significantly higher R-HPPA titer than the traditional submerged fermentation method. Mannitol dosage, tryptone dosage, and initial pH were the factors that played a significant role in biofilm formation and R-HPPA synthesis. Under the optimal conditions, the maximum R-HPPA titer and productivity approached 22.2 g/L and 3.2 g/(L·d), respectively. A two-stage bioreactor combining agitation and static incubation was developed to further increase R-HPPA production. The process was optimized to achieve 100 % conversion of R-PPA, with a maximum R-HPPA titer of 50 g/L and productivity of 3.8 g/(L·d). This newly developed biofilm-based two-stage fermentation process provides a promising strategy for the industrial production of R-HPPA and related hydroxylated aromatic compounds.
Collapse
Affiliation(s)
- Shuping Zou
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yizhi Ma
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Wei Ding
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yongkang Jiang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xiaomin Chen
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Juan Chen
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Hailing Gao
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yaping Xue
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Yuguo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
2
|
Kong X, Gui Q, Liu H, Qian F, Wang P. Efficient Synthesis of Chiral Aryl Alcohol with a Novel Kosakonia radicincitans Isolate in Tween 20/L-carnitine: Lysine-Containing Synergistic Reaction System. Appl Biochem Biotechnol 2024; 196:1509-1526. [PMID: 37428385 DOI: 10.1007/s12010-023-04641-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
Chiral trifluoromethyl alcohols as vital intermediates are of great interest in fine chemicals and especially in pharmaceutical synthesis. In this work, a novel isolate Kosakonia radicincitans ZJPH202011 was firstly employed as biocatalyst for the synthesis of (R)-1-(4-bromophenyl)-2,2,2-trifluoroethanol ((R)-BPFL) with good enantioselectivity. By optimizing fermentation conditions and bioreduction parameters in aqueous buffer system, the substrate concentration of 1-(4-bromophenyl)-2,2,2-trifluoroethanone (BPFO) was doubled from 10 to 20 mM, and the enantiomeric excess (ee) value for (R)-BPFL increased from 88.8 to 96.4%. To improve biocatalytic efficiency by strengthening the mass-transfer rate, natural deep-eutectic solvents, surfactants and cyclodextrins (CDs) were introduced separately in the reaction system as cosolvent. Among them, L-carnitine: lysine (C: Lys, molar ratio 1:2), Tween 20 and γ-CD manifested higher (R)-BPFL yield compared with other same kind of cosolvents. Furthermore, based on the excellent performance of both Tween 20 and C: Lys (1:2) in enhancing BPFO solubility and ameliorating cell permeability, a Tween 20/C: Lys (1:2)-containing integrated reaction system was then established for efficient bioproduction of (R)-BPFL. After optimizing the critical factors involved in BPFO bioreduction in this synergistic reaction system, BPFO loading increased up to 45 mM and the yield reached 90.0% within 9 h, comparatively only 37.6% yield was acquired in neat aqueous buffer. This is the first report on K. radicincitans cells as new biocatalyst applied in (R)-BPFL preparation, and the developed Tween 20/C: Lys-containing synergistic reaction system has great potential for the synthesis of various chiral alcohols.
Collapse
Affiliation(s)
- Xiangxin Kong
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Qian Gui
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Hanyu Liu
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Feng Qian
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Pu Wang
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
3
|
Oda S, Tanikawa A. A new plate-hanging method for biofilm quantification and its application to evaluate the role of surface hydrophobicity. J Microbiol Methods 2022; 203:106608. [PMID: 36343771 DOI: 10.1016/j.mimet.2022.106608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
A novel procedure for the quantitative analysis of biofilm formation by bacteria and yeasts, the Plate-hanging method, was developed. In this system, various polymer disks were hung from the lid of a 6-well plate, immersed in a cell suspension, and moderately shaken (70 rpm). In order to verify the validity of the procedure, the effects of the solid surface hydrophobicity of the test disks and the cell surface hydrophobicities of microorganisms on biofilm formation were investigated. Biofilm formation of bacteria and yeasts on the solid surface strongly depended on hydrophobic interactions between the solid surface and the cell surface. A positive correlation between the hydrophobic properties of substratum and cell surfaces was observed. On the other hand, hydrophilic yeasts preferentially adsorbed onto relatively hydrophilic surfaces. Moreover, the plate-hanging method coupled with the periodic exchange of the liquid medium enabled the quantification of long-term biofilm growth.
Collapse
Affiliation(s)
- Shinobu Oda
- Genome Biotechnology Laboratory, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan, Ishikawa 924-0838, Japan; Research Laboratory for Integrated Technological Systems, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan, Ishikawa 924-0838, Japan.
| | - Ayami Tanikawa
- Genome Biotechnology Laboratory, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan, Ishikawa 924-0838, Japan
| |
Collapse
|
4
|
Abstract
Within the kingdom of fungi, the division Basidiomycota represents more than 30,000 species, some with huge genomes indicating great metabolic potential. The fruiting bodies of many basidiomycetes are appreciated as food (“mushrooms”). Solid-state and submerged cultivation processes have been established for many species. Specifically, xylophilic fungi secrete numerous enzymes but also form smaller metabolites along unique pathways; both groups of compounds may be of interest to the food processing industry. To stimulate further research and not aim at comprehensiveness in the broad field, this review describes some recent progress in fermentation processes and the knowledge of fungal genetics. Processes with potential for food applications based on lipases, esterases, glycosidases, peptidases and oxidoreductases are presented. The formation and degradation of colourants, the degradation of harmful food components, the formation of food ingredients and particularly of volatile and non-volatile flavours serve as examples. In summary, edible basidiomycetes are foods—and catalysts—for food applications and rich donors of genes to construct heterologous cell factories for fermentation processes. Options arise to support the worldwide trend toward greener, more eco-friendly and sustainable processes.
Collapse
|
5
|
Zhuang W, Liu H, Zhang Y, He J, Wang P. Effective asymmetric preparation of (R)-1-[3-(trifluoromethyl)phenyl]ethanol with recombinant E. coli whole cells in an aqueous Tween-20/natural deep eutectic solvent solution. AMB Express 2021; 11:118. [PMID: 34410519 PMCID: PMC8377109 DOI: 10.1186/s13568-021-01278-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 11/10/2022] Open
Abstract
(R)-1-[3-(Trifluoromethyl)phenyl]ethanol ((R)-MTF-PEL) is an important chiral building block for the synthesis of a neuroprotective compound, (R)-3-(1-(3-(trifluoromethyl)phenyl)ethoxy)azetidine-1-carboxamide. In this work, an effective whole-cell-catalyzed biotransformation was developed to produce (R)-MTF-PEL, and its productivity was increased by medium engineering strategy. The recombinant E. coli BL21(DE3)-pET28a(+)-LXCAR-S154Y variant affording carbonyl reductase was adopted for the reduction of 3'-(trifluoromethyl)acetophenone to (R)-MTF-PEL with enantiomeric excess (ee) > 99.9%. The addition of 0.6% Tween-20 (w/v) boosted the bioreduction, because the substrate concentration was increased by 4.0-fold than that in the neat buffer solution. The biocatalytic efficiency was further enhanced by introducing choline chloride: lysine (ChCl:Lys, molar ratio of 1:1) in the reaction medium, because the product yield reached 91.5% under 200 mM substrate concentration in the established Tween-20/ChCl:Lys-containing system, which is the highest ever reported for (R)-MTF-PEL production. The optimal reduction conditions were as follows: 4% (w/v) ChCl:Lys, 12.6 g (DCW)/L recombinant E. coli cells, pH 7.0, 30 ℃ and 200 rpm, reaction for 18 h. The combined strategy of surfactant and NADES has great potential in the biocatalytic process and the synthesis of chiral alcohols.
Collapse
Affiliation(s)
- Wenjin Zhuang
- Key Laboratory of Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hanyu Liu
- Key Laboratory of Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ying Zhang
- Key Laboratory of Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Junyao He
- Zhejiang Pharmaceutical College, Ningbo, 315100, China
| | - Pu Wang
- Key Laboratory of Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
6
|
Bi S, Liu H, Lin H, Wang P. Integration of natural deep-eutectic solvent and surfactant for efficient synthesis of chiral aromatic alcohol mediated by Cyberlindnera saturnus whole cells. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Dewangan NK, Conrad JC. Bacterial motility enhances adhesion to oil droplets. SOFT MATTER 2020; 16:8237-8244. [PMID: 32935718 DOI: 10.1039/d0sm00944j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Adhesion of bacteria to liquid-liquid interfaces can play a role in the biodegradation of dispersed hydrocarbons and in biochemical and bioprocess engineering. Whereas thermodynamic factors underpinning adhesion are well studied, the role of bacterial activity on adhesion is less explored. Here, we show that bacterial motility enhances adhesion to surfactant-decorated oil droplets dispersed in artificial sea water. Motile Halomonas titanicae adhered to hexadecane droplets stabilized with dioctyl sodium sulfosuccinate (DOSS) more rapidly and at greater surface densities compared to nonmotile H. titanicae, whose flagellar motion was arrested through addition of a proton uncoupler. Increasing the concentration of DOSS reduced the surface density of both motile and nonmotile bacteria as a result of the reduced interfacial tension.
Collapse
Affiliation(s)
- Narendra K Dewangan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| | - Jacinta C Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|