1
|
Zhang J, Qi Z, He Z, Zhang X, Zhang Q, Su X. Study on the Extraction of Rare Earth Elements (REEs) from Phosphogypsum Using Gluconobacter oxydans Culture Solution. Molecules 2025; 30:674. [PMID: 39942778 PMCID: PMC11820893 DOI: 10.3390/molecules30030674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/20/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
With the rapid development of modern industry, particularly in the fields of electric vehicles and renewable energy technologies, the demand for rare earth elements (REEs) has surged dramatically. Phosphogypsum (PG), which is an industrial waste product generated during the production of phosphoric acid through the sulfuric acid process, is rich in REEs. However, traditional chemical leaching methods pose environmental pollution and resource wastage issues. This study aims to explore the feasibility and optimal conditions for bioleaching REEs from phosphogypsum using Gluconobacter oxydans (G. oxydans). The phase composition and components of phosphogypsum, as well as the growth characteristics and leaching efficiency of G. oxydans, were analyzed in detail using SEM, EDS, XRD, and XRF techniques. Experimental results indicate that G. oxydans can effectively leach REEs from phosphogypsum under conditions of 28 °C, an agitation speed of 150 rpm, and a liquid-to-solid ratio of 4:1, with a maximum leaching efficiency of 24.67%. Moreover, it is revealed in the study that G. oxydans exhibits selectivity in leaching REEs. Specifically, the leaching efficiency for Nd is significantly enhanced at low pH values. This research provides a theoretical basis and practical application example for the efficient and environmentally friendly recovery of REEs from phosphogypsum.
Collapse
Affiliation(s)
- Jiangang Zhang
- Key Laboratory of Light Metal Materials Processing Technology of Guizhou Province, Guizhou Institute of Technology, Guiyang 550025, China; (J.Z.); (Z.H.)
| | - Zhuo Qi
- College of Matterials and Metallurgy, Guizhou University, Guiyang 550025, China;
| | - Zijian He
- Key Laboratory of Light Metal Materials Processing Technology of Guizhou Province, Guizhou Institute of Technology, Guiyang 550025, China; (J.Z.); (Z.H.)
| | - Xinyue Zhang
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China;
| | - Qinglian Zhang
- School of Biology and Environmental Engineering, Guiyang University, Guiyang 550005, China;
| | - Xiangdong Su
- Key Laboratory of Light Metal Materials Processing Technology of Guizhou Province, Guizhou Institute of Technology, Guiyang 550025, China; (J.Z.); (Z.H.)
| |
Collapse
|
2
|
Hegazy AS, Soliman HM, Mowafy AM, Mohamedin AH. Bioleaching of lanthanum from nickel metal hydride dry battery using siderophores produced by Pseudomonas sp. World J Microbiol Biotechnol 2025; 41:39. [PMID: 39821467 PMCID: PMC11739246 DOI: 10.1007/s11274-025-04250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 01/02/2025] [Indexed: 01/19/2025]
Abstract
There is still much to be learned about the properties of siderophores and their applications. This study was designed to characterize and optimize the production of the siderophore produced by a marine bacterium Pseudomonas sp. strain ASA235 and then evaluate their use in bioleaching of rare earth elements (REEs) from spent Nickel-metal hydride (NiMH) batteries. The results of both Tetrazolium and Arnow's tests indicated that the test organism produces a mixed-type siderophore of pyoverdine family, a result that was confirmed by FT-IR and MALDI-TOFF analyses. Optimization of pH, temperature, incubation period, and iron concentration for siderophore production led to a noticeable shift from 44.5% up to 91% siderophore unit when the test bacterium was incubated at 28 °C and pH 7 after 72 h in the absence of iron. The purified siderophore showed the ability to bleach about 14.8% of lanthanum from the anode of the NiMH battery along with other elements, although in lower amounts. This data put siderophores in distinct focus for further prospective studies intending the bioleaching of such precious elements. The scaling up of this process and optimization would make a big difference in such a green bioleaching strategy, allowing us to recover such precious elements in an environmentally friendly way.
Collapse
Affiliation(s)
- Amany S Hegazy
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Hoda M Soliman
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Amr M Mowafy
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
- Department of Biological Sciences, Faculty of Science, New Mansoura University, New Mansoura City, Egypt.
| | - Attiya H Mohamedin
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
3
|
Tuncay G, Yuksekdag A, Mutlu BK, Koyuncu I. A review of greener approaches for rare earth elements recovery from mineral wastes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124379. [PMID: 38885830 DOI: 10.1016/j.envpol.2024.124379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024]
Abstract
The use of rare earth elements (REE) in many various fields, including high-tech products, increases the demand for these materials day by day. The production of REE from primary sources has expanded in response to increasing demand; however, due to its limited, a more sustainable supply is also started to offer for the REE demand by using secondary sources. The most commonly used metallurgical method for REE recovery is hydrometallurgical processes. However, it has some disadvantages, like pyrometallurgical methods. In the review, studies of the environmental impacts of REE production from primary sources and life cycle assessments of products containing REE were investigated. According to the results, it has been seen that those studies in the literature in which hydrometallurgical methods have changed to more environmentally friendly approaches have begun to increase. In this review, mine wastes, which are secondary sources, were defined, conventional methods of recovery of rare earth elements were discussed, greener approaches to the recovery of REE from these sources were comprehensively examined and studies in the literature were evaluated. Furthermore, it was stated that there are limited studies on green approaches and REE recovery from mineral wastes and that this field is developing with an emphasis on the current outlook and future perspectives.
Collapse
Affiliation(s)
- Gizem Tuncay
- Department of Environmental Engineering, Istanbul Technical University, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Istanbul, Turkey; Turkish Energy, Nuclear and Mineral Research Agency (TENMAK) - Rare Earth Elements Research Institute (NATEN), Kahramankazan, 06980, Ankara, Turkey
| | - Ayse Yuksekdag
- Department of Environmental Engineering, Istanbul Technical University, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Istanbul, Turkey
| | - Borte Kose Mutlu
- Department of Environmental Engineering, Istanbul Technical University, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Istanbul, Turkey
| | - Ismail Koyuncu
- Department of Environmental Engineering, Istanbul Technical University, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Istanbul, Turkey.
| |
Collapse
|
4
|
Karimi Darvanjooghi MH, Magdouli S, Brar SK. Recent challenges in biological cyanidation and oxidation of sulfide-based refractory gold ore. World J Microbiol Biotechnol 2024; 40:67. [PMID: 38197973 DOI: 10.1007/s11274-024-03887-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/07/2024] [Indexed: 01/11/2024]
Abstract
In mining industries, biomining (comprising biooxidation and bioleaching) is implemented to extract metals from specific ores and waste streams with less environmental effect and expense. Usually, micron-sized gold particles are held in a crystal lattice of iron sulfide minerals and expensively extracted using common approaches. Researchers and industries are interested in developing recent technology and biologically sustainable methods in both pretreatment and further extraction steps for extracting this valuable metal from ores. Diverse studies in biooxidation, as a conventional pretreatment, and biocyanidation, as a new proposed biotechnological method in the downstream gold extraction step, have addressed scientific and technological issues in the extraction of this metal. These two methods have become economically practical by merging high-throughput microbiological data, extraction and recovery process knowledge, and theory validation. However, there is still a gap in the implementation of both the pretreatment method and extraction method due to the consistency and their compatibility with operational recovery conditions. This review brings out the recent biooxidation and biocyanidation improvements, innovation, industry and academic research, and obstacles to gold extraction with a brief explanation to address the recent developments.
Collapse
Affiliation(s)
| | - Sara Magdouli
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
5
|
Bu N, Wang S, Ma Y, Xia H, Zhao Y, Shi X, Liu Q, Wang S, Gao Y. The lncRNA H19/miR-29a-3p/SNIP1/c-myc regulatory axis is involved in pulmonary fibrosis induced by Nd2O3. Toxicol Sci 2023; 197:27-37. [PMID: 37831906 DOI: 10.1093/toxsci/kfad107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023] Open
Abstract
Some rare earth elements are occupational and environmental toxicants and can cause organ and systemic damage; therefore, they have attracted global attention. Neodymium oxide (Nd2O3) is a rare earth element that is refined and significantly utilized in China. The long noncoding RNA (lncRNA) H19 is encoded by the H19/IGF2 imprinted gene cluster located on human chromosome 11p15.5. H19 has become a research focus due to its ectopic expression leading to the promotion of fibrosis. However, the mechanisms by which it causes pulmonary fibrosis are elusive. This investigation indicates that biologically active Nd2O3 increases H19, SNIP1, and c-myc, decreases miR-29a-3p, accelerates macrophage M2 polarization, and causes pulmonary fibrosis in mice lung tissues. In macrophage-differentiated THP-1 cells, Nd2O3 (25 μg/ml) enhanced H19, SNIP1, and c-myc, reduced miR-29a-3p, accelerated macrophages M2 polarization, and stimulated fibrogenic cytokine (TGF-β1) secretion. Furthermore, the coculturing of Nd2O3-treated macrophage-differentiated THP-1 cells. And human embryonic lung fibroblast cells activated lung fibroblast, which increases the levels of collagen I, α-SMA, p-Smad2/3, and Smad4, whereas H19 knockdown or miR-29a-3p upregulation in macrophages had opposite effects. Moreover, it was revealed that H19/miR-29a-3p/SNIP1/c-myc regulatory axis is involved in pulmonary fibrosis induced by Nd2O3. Therefore, this study provides new molecular insights into the mechanism of pulmonary fibrosis by Nd2O3.
Collapse
Affiliation(s)
- Ning Bu
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Shurui Wang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Yupeng Ma
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Haibo Xia
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Yuhang Zhao
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Xuemin Shi
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Qizhan Liu
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Suhua Wang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Yanrong Gao
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| |
Collapse
|
6
|
Liu C, Shi K, Lyu K, Liu D, Wang X. The toxicity of neodymium and genome-scale genetic screen of neodymium-sensitive gene deletion mutations in the yeast Saccharomyces cerevisiae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:41439-41454. [PMID: 35088271 DOI: 10.1007/s11356-021-18100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
The wide usage of neodymium (Nd) in industry, agriculture, and medicine has made it become an emerging pollutant in the environment. Increasing Nd pollution has potential hazards to plants, animals, and microorganisms. Thus, it is necessary to study the toxicity of Nd and the mechanism of Nd transportation and detoxification in microorganisms. Through genome-scale screening, we identified 70 yeast monogene deletion mutations sensitive to Nd ions. These genes are mainly involved in metabolism, transcription, protein synthesis, cell cycle, DNA processing, protein folding, modification, and cell transport processes. Furthermore, the regulatory networks of Nd toxicity were identified by using the protein interaction group analysis. These networks are associated with various signal pathways, including calcium ion transport, phosphate pathways, vesicular transport, and cell autophagy. In addition, the content of Nd ions in yeast was detected by an inductively coupled plasma mass spectrometry, and most of these Nd-sensitive mutants showed an increased intracellular Nd content. In all, our results provide the basis for understanding the molecular mechanisms of detoxifying Nd ions in yeast cells, which will be useful for future studies on Nd-related issues in the environment, agriculture, and human health.
Collapse
Affiliation(s)
- Chengkun Liu
- School of Life Sciences, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Kailun Shi
- School of Life Sciences, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Keliang Lyu
- School of Life Sciences, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Dongwu Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, China
| | - Xue Wang
- School of Life Sciences, Shandong University of Technology, Zibo, 255049, Shandong, China
| |
Collapse
|
7
|
Syrvatka V, Rabets A, Gromyko O, Luzhetskyy A, Fedorenko V. Scandium-microorganism interactions in new biotechnologies. Trends Biotechnol 2022; 40:1088-1101. [PMID: 35346528 DOI: 10.1016/j.tibtech.2022.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/19/2022]
Abstract
Scandium (Sc) plays a special role in high-tech industries because of its wide application in green, space, and defense technologies. However, Sc mining and purification are problematic due to political, technological, and environmental difficulties. The deficit of this element limits global technological development. One sustainable solution to this problem is to use microorganisms to extract Sc from ore and waste, as well as to concentrate and separate it from other elements. Sc also demonstrates attractive metabolic effects on microbes that is of great interest in white biotechnology. Sc increases the production of proteins and secondary metabolites and activates poorly expressed genes. This review offers a comprehensive analysis of current knowledge on the application of Sc-microorganism interactions in promising biotechnologies, its perspectives, and future challenges.
Collapse
Affiliation(s)
- Vasyl Syrvatka
- Genetics and Biotechnology Department, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Andrii Rabets
- Department of Pharmacy, Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Oleksandr Gromyko
- Genetics and Biotechnology Department, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Andriy Luzhetskyy
- Department of Pharmacy, Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Victor Fedorenko
- Genetics and Biotechnology Department, Ivan Franko National University of Lviv, Lviv, Ukraine.
| |
Collapse
|
8
|
Progress, Challenges, and Perspectives of Bioleaching for Recovering Heavy Metals from Mine Tailings. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/9941979] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The accumulation of mine tailings on Earth is a serious environmental challenge. The importance for the recovery of heavy metals, together with the economic benefits of precious and base metals, is a strong incentive to develop sustainable methods to recover metals from tailings. Currently, researchers are attempting to improve the efficiency of metal recovery from tailings using bioleaching, a more sustainable method compared to traditional methods. In this work, the research status of using biological leaching technologies to recover heavy metals from tailings was reviewed. Furthermore, CiteSpace 5.7.R2 was used to visually analyze the keywords of relevant studies on biological leaching of tailings to intuitively establish the current research hotspots. We found that current research has made recent progress on influencing factors and microbial genetic data, and innovations have also been made regarding the improvement of the rate of metal leaching by biological leaching combined with other technologies. This is of great significance for the development of bioleaching technologies and industrial production of heavy metals in tailings. Finally, challenges and opportunities for bioleaching provide directions for further research by the scientific community.
Collapse
|
9
|
Abstract
Rare earth elements (REE), originally found in various low-grade deposits in the form of different minerals, are associated with gangues that have similar physicochemical properties. However, the production of REE is attractive due to their numerous applications in advanced materials and new technologies. The presence of the radioactive elements, thorium and uranium, in the REE deposits, is a production challenge. Their separation is crucial to gaining a product with minimum radioactivity in the downstream processes, and to mitigate the environmental and safety issues. In the present study, different techniques for separation of the radioactive elements from REE are reviewed, including leaching, precipitation, solvent extraction, and ion chromatography. In addition, the waste management of the separated radioactive elements is discussed with a particular conclusion that such a waste stream can be employed as a valuable co-product.
Collapse
|