1
|
Pontet NGM, Fernández C, Botté SE. Novel method of removing metals from estuarine water using whole microbial mats. Biometals 2024; 37:877-894. [PMID: 38270738 DOI: 10.1007/s10534-023-00578-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
This study addresses the limited understanding of chromium-microbial mat interactions in estuarine tidal flats. The aims were to evaluate (1) the efficiency of the microbial consortium in Cr(III) removal from seawater; (2) the elemental and mineralogical composition of the microbial mat as a natural system in the Cr removal, (3) the effects of metal on microphytobenthos, and (4) possible interactions of Cr with other metals present in the consortium. Microbial mats were exposed to Cr(III) solutions at different concentrations (2-30 mg Cr/L). Analysis such as metal concentration, organic matter content, chlorophyll a and phaeopigment concentrations, abundance of diatoms and cyanobacteria, SEM-EDS, and XRD were performed. Most of the Cr(III) was deposited, as chromium oxide/hydroxide, on the surface of all microbial mat components. The complete microbial mat, comprising sediments, detritus, EPS, and diverse microorganism communities, exhibited a remarkable capacity to accumulate Cr(III), retaining over 87% in the solution.
Collapse
Affiliation(s)
- Natalia Gabriela Morales Pontet
- Argentine Institute of Oceanography, CONICET - National University of the South (UNS), Carrindanga 7.5 km Road, B8000FWB , Bahía Blanca, Argentina.
- Department of Biology, Biochemistry, and Pharmacy, National University of the South (UNS), San Juan 670, B8000ICN, Bahía Blanca, Argentina.
| | - Carolina Fernández
- Institute of Biochemical Research of Bahía Blanca, CONICET - National University of the South (UNS), Carrindanga 7.5 km Road, B8000FWB, Bahía Blanca, Argentina
- Center for Entrepreneurship and Sustainable Territorial Development (CEDETS), Provincial University of the Southwest (UPSO) - Commission of Scientific Research of the Province of Buenos Aires (CIC), Cali 320 city, B8003FTH, Bahía Blanca, Argentina
| | - Sandra Elizabeth Botté
- Argentine Institute of Oceanography, CONICET - National University of the South (UNS), Carrindanga 7.5 km Road, B8000FWB , Bahía Blanca, Argentina
- Department of Biology, Biochemistry, and Pharmacy, National University of the South (UNS), San Juan 670, B8000ICN, Bahía Blanca, Argentina
| |
Collapse
|
2
|
Martínez-Rodríguez P, Sánchez-Castro I, Ojeda JJ, Abad MM, Descostes M, Merroun ML. Effect of different phosphate sources on uranium biomineralization by the Microbacterium sp. Be9 strain: A multidisciplinary approach study. Front Microbiol 2023; 13:1092184. [PMID: 36699588 PMCID: PMC9868770 DOI: 10.3389/fmicb.2022.1092184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Industrial activities related with the uranium industry are known to generate hazardous waste which must be managed adequately. Amongst the remediation activities available, eco-friendly strategies based on microbial activity have been investigated in depth in the last decades and biomineralization-based methods, mediated by microbial enzymes (e.g., phosphatase), have been proposed as a promising approach. However, the presence of different forms of phosphates in these environments plays a complicated role which must be thoroughly unraveled to optimize results when applying this remediation process. Methods In this study, we have looked at the effect of different phosphate sources on the uranium (U) biomineralization process mediated by Microbacterium sp. Be9, a bacterial strain previously isolated from U mill tailings. We applied a multidisciplinary approach (cell surface characterization, phosphatase activity, inorganic phosphate release, cell viability, microscopy, etc.). Results and Discussion It was clear that the U removal ability and related U interaction mechanisms by the strain depend on the type of phosphate substrate. In the absence of exogenous phosphate substrate, the cells interact with U through U phosphate biomineralization with a 98% removal of U within the first 48 h. However, the U solubilization process was the main U interaction mechanism of the cells in the presence of inorganic phosphate, demonstrating the phosphate solubilizing potential of the strain. These findings show the biotechnological use of this strain in the bioremediation of U as a function of phosphate substrate: U biomineralization (in a phosphate free system) and indirectly through the solubilization of orthophosphate from phosphate (P) containing waste products needed for U precipitation.
Collapse
Affiliation(s)
- Pablo Martínez-Rodríguez
- Department of Microbiology, University of Granada, Granada, Spain,*Correspondence: Pablo Martínez-Rodríguez, ✉
| | | | - Jesús J. Ojeda
- Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - María M. Abad
- Centro de Instrumentación Científica (CIC), University of Granada, Granada, Spain
| | - Michael Descostes
- Environmental R&D Department, ORANO Mining, Chatillon, France,Centre de Géosciences, MINES Paris, PSL University, Fontainebleau, France
| | | |
Collapse
|
3
|
Ares Á, Sakai S, Sasaki T, Shimamura S, Mitarai S, Nunoura T. Sequestration and efflux largely account for cadmium and copper resistance in the deep-sea Nitratiruptor sp. SB155-2 (phylum Campylobacterota). Environ Microbiol 2022; 24:6144-6163. [PMID: 36284406 PMCID: PMC10092412 DOI: 10.1111/1462-2920.16255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/20/2022] [Indexed: 01/12/2023]
Abstract
In deep-sea hydrothermal vent environments, metal-enriched fluids and sediments abound, making these habitats ideal to study metal resistance in prokaryotes. In this investigation, we employed transcriptomics and shotgun proteomics with scanning transmission electron microscopy and energy-dispersive x-ray spectroscopy (STEM-EDX) to better understand mechanisms of tolerance for cadmium (Cd) and copper (Cu) at stress-inducing concentrations in Nitratiruptor sp. SB155-2 (phylum Campylobacterota). Transcriptomic profiles were remarkably different in the presence of these two metals, displaying 385 (19%) and 629 (31%) differentially transcribed genes (DTG) in the presence of Cd(II) and Cu(II), respectively, while only 7% of differentially transcribed (DT) genes were shared, with genes for non-specific metal transporters and genes involved in oxidative stress-response predominating. Transcriptomic and proteomic analyses confirmed that metal-specific DT pathways under Cu(II) stress, including those involving sulfur, cysteine, and methionine, are likely required for high-affinity efflux systems, while flagella formation and chemotaxis were over-represented under Cd(II) stress. Consistent with these differences, STEM-EDX analysis revealed that polyphosphate-like granules (pPLG), the formation of CdS particles, and the periplasmic space are crucial for Cd(II) sequestration. Overall, this study provides new insights regarding metal-specific adaptations of Campylobacterota to deep-sea hydrothermal vent environments.
Collapse
Affiliation(s)
- Ángela Ares
- Marine Biophysics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Sanae Sakai
- Super-Cutting-Edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Toshio Sasaki
- Imaging section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Shigeru Shimamura
- Super-Cutting-Edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Satoshi Mitarai
- Marine Biophysics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Takuro Nunoura
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| |
Collapse
|
4
|
Villagrasa E, Bonet-Garcia N, Solé A. Ultrastructural evidences for chromium(III) immobilization by Escherichia coli K-12 depending on metal concentration and exposure time. CHEMOSPHERE 2021; 285:131500. [PMID: 34265708 DOI: 10.1016/j.chemosphere.2021.131500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Microorganisms can mediate in heavy metal sequestration through several cellular strategies and pathways. This offers an efficient way to remediate heavy metal polluted environments. This paper describes the ability of Escherichia coli K-12 to capture chromium(III) (Cr(III)) and the ultrastructural effects of this metal on cells, as well as the cellular metal localization and the possible sequestration strategy uses for it. The study was mainly performed by using several electron microscopy techniques and is based on the chromium trivalent concentration and the related exposure time. Transmission electron microscopy (TEM) assay was performed along with field emission scanning electron microscopy (FESEM) for morphological responses. Furthermore, TEM was coupled with an energy dispersive X-ray (TEM-EDX) and TEM with selected area electron diffraction (TEM-SAED) to conduct analytical assays. The exposed cultures to 10 and 12 mM Cr(III) at 12 h and to 5, 7, 10, 12, 13, and 15 mM of Cr(III) at 24 h indicated the presence of multiple electrodense granules that were significantly enriched in chromium and phosphorus content via EDX analysis. Moreover, these granules were observed to be attached to external membrane and/or surrounding cells in the respective ultrathin sections analyzed under TEM. According to these results, E. coli K-12 possesses the ability to immobilize Cr(III) in external polyphosphate granules through a strategy of accumulation, where cell response to Cr(III) toxicity seems to have a dose-dependent and time-dependent relation, thereby offering significant potential for bioremediation in Cr(III)-contaminated areas.
Collapse
Affiliation(s)
- Eduard Villagrasa
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Neus Bonet-Garcia
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Antonio Solé
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.
| |
Collapse
|
5
|
Villagrasa E, Palet C, López-Gómez I, Gutiérrez D, Esteve I, Sánchez-Chardi A, Solé A. Cellular strategies against metal exposure and metal localization patterns linked to phosphorus pathways in Ochrobactrum anthropi DE2010. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123808. [PMID: 33254804 DOI: 10.1016/j.jhazmat.2020.123808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/07/2020] [Accepted: 08/24/2020] [Indexed: 06/12/2023]
Abstract
Cytotoxic, chemical, biochemical, compositional, and morphometric responses were analyzed against heavy metal exposure in Ochrobactrum anthropi DE2010, an heterotrophic bacterium isolated from Ebro Delta microbial mats (Tarragona, NE Spain). Several parameters of effect and exposure were evaluated to determine tolerance to a range of cadmium (Cd), lead (Pb(II)), copper (Cu(II)), chromium (Cr(III)), and zinc (Zn) concentrations. Additionally, removal efficiency, polyphosphate production and metal localization patterns were also analyzed. O. anthropi DE2010 showed high resistance to the tested metals, supporting concentrations of up to 20 mM for Zn and 10 mM for the rest of the elements. The bacterium also demonstrated a high removal capacity of metals-up to 90 % and 40 % for Pb(II) and Cr(III), respectively. Moreover, polyphosphate production was strongly correlated with heavy metal concentration, and three clear cell localization patterns of metals were evidenced using compositional and imaging techniques: (i) extracellular in polyphosphate granules for Cu(II); (ii) in periplasmic space forming crystals with phosphorus for Pb(II); and (iii) intracytoplasmic in polyphosphate inclusions for Pb(II), Cr(III), and Zn. The high resistance and metal sequestration capacity of O. anthropi DE2010 both highlight its great potential for bioremediation strategies, especially in Pb and Cr polluted areas.
Collapse
Affiliation(s)
- Eduard Villagrasa
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Cristina Palet
- GTS-UAB Research Group, Department of Chemistry, Facultat de Ciències. Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Irene López-Gómez
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Diana Gutiérrez
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Isabel Esteve
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Alejandro Sánchez-Chardi
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| | - Antonio Solé
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| |
Collapse
|