1
|
Buarque FS, Sales JCS, Lobo LC, Chrisman ECAN, Ribeiro BD, Coelho MAZ. Asphaltenes biodegradation from heavy crude oils by the yeast Yarrowia lipolytica. Bioprocess Biosyst Eng 2025; 48:381-394. [PMID: 39648210 DOI: 10.1007/s00449-024-03114-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 11/25/2024] [Indexed: 12/10/2024]
Abstract
Heavy crude oil reserves are characterized by their high viscosity and density, largely due to significant quantities of asphaltenes. The removal of asphaltene precipitates from oil industry installations is crucial, as they can contaminate catalysts and obstruct pipelines. Therefore, this study aimed to bio-transform heavy oil asphaltenes into smaller molecules using the yeast Yarrowia lipolytica, known for its ability to efficiently degrade hydrophobic substrates. For this purpose, asphaltenes were extracted from crude oil samples, and yeast growth was assessed in a mineral medium containing 2, 5, or 10 g L-1 of asphaltenes. After 168 h of incubation, liquid-liquid extraction was conducted on samples from the Yarrowia lipolytica growth medium using chloroform. The extracted fractions were then quantified by gas chromatography. The results indicated that the yeast could utilize the asphaltenes as a carbon source for growth, though there was a delay in growth compared to the control (glucose as the carbon source), with a maximum biomass concentration of 2.26 g L-1 achieved at 144 h. From the experimental design, it was determined that a higher concentration of aromatic compounds was achieved under the conditions of 115 rpm, 2 g L-1 of asphaltenes, and 0.5 g L-1 of cell inoculum. Conversely, to obtain a higher concentration of saturated compounds, the optimal conditions were 160 rpm, 5 g L-1 of asphaltenes, and 1.0 g L-1 of cell inoculum. Molecular docking results indicated that asphaltenes have a high affinity for cytochrome P450, laccase, and Lip2, with interactions observed with their catalytic triads, suggesting a significant role for these enzymes in asphaltene bioconversion.
Collapse
Affiliation(s)
- Filipe Smith Buarque
- Biochemical Engineering Department, School of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149. Ilha Do Fundão, Rio de Janeiro, 21941-909, Brazil.
| | - Júlio Cesar Soares Sales
- Biochemical Engineering Department, School of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149. Ilha Do Fundão, Rio de Janeiro, 21941-909, Brazil
| | - Lívia Cabral Lobo
- Biochemical Engineering Department, School of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149. Ilha Do Fundão, Rio de Janeiro, 21941-909, Brazil
| | - Erika Christina Ashton Nunes Chrisman
- Organic Processes Department, School of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149. Ilha do Fundão, Rio de Janeiro, 21941-909, Brazil
| | - Bernardo Dias Ribeiro
- Biochemical Engineering Department, School of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149. Ilha Do Fundão, Rio de Janeiro, 21941-909, Brazil
| | - Maria Alice Zarur Coelho
- Biochemical Engineering Department, School of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149. Ilha Do Fundão, Rio de Janeiro, 21941-909, Brazil
| |
Collapse
|
2
|
Zhang Z, Wang J, Li J, Wang Y, Yin K, Fei X. Impacts of regional socioeconomic statuses and global events on solid waste research reflected in six waste-focused journals. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 182:113-123. [PMID: 38648689 DOI: 10.1016/j.wasman.2024.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
The research pertaining to solid waste is undergoing extensive advancement, thereby necessitating a consolidation and analysis of its research trajectories. The existing biblio-studies on solid waste research (SWR) lack thorough analyses of the factors influencing its trends. This article presents an innovative categorization framework that categorizes publications from six SWR journals utilizing Source Latent Dirichlet Allocation. First analyse changes in publication numbers across main categories, subcategories, journals, and regions, providing a macro-level study of SWR. Temporal analysis of keywords supplements a micro-level study of SWR, which highlights that emerging technologies with low Technology Readiness Level receive significant attention, while studies on widespread technologies are diminishing. Additionally, this study demonstrates the substantial influence of socioeconomic factors and previous SWR publications on current and future SWR trends. Finally, the article confirms the impact of global events on SWR trends by examining the structural breakpoints of SWR and their correlation with global events.
Collapse
Affiliation(s)
- Zhibo Zhang
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Ave 639798, Singapore
| | - Jingyi Wang
- Department of Statistics and Data Science, National University of Singapore, Science Drive 2 117546, Singapore
| | - Jiuwei Li
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Ave 639798, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, 1 Cleantech Loop 637141, Singapore
| | - Yao Wang
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Ave 639798, Singapore
| | - Ke Yin
- Department of Environmental Engineering, School of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Xunchang Fei
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Ave 639798, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, 1 Cleantech Loop 637141, Singapore.
| |
Collapse
|
3
|
Ren T, Zhan H, Xu H, Chen L, Shen W, Xu Y, Zhao D, Shao Y, Wang Y. Recycling and high-value utilization of polyethylene terephthalate wastes: A review. ENVIRONMENTAL RESEARCH 2024; 249:118428. [PMID: 38325788 DOI: 10.1016/j.envres.2024.118428] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Polyethelene terephthalate (PET) is a well-known thermoplastic, and recycling PET waste is important for the natural environment and human health. This study provides a comprehensive overview of the recycling and reuse of PET waste through energy recovery and physical, chemical, and biological recycling. This article summarizes the recycling methods and the high-value products derived from PET waste, specifically detailing the research progress on regenerated PET prepared by the mechanical recycling of fiber/yarn, fabric, and composite materials, and introduces the application of PET nanofibers recycled by physical dissolution and electrospinning in fields such as filtration, adsorption, electronics, and antibacterial materials. This article explains the energy recovery of PET through thermal decomposition and comprehensively discusses various chemical recycling methods, including the reaction mechanisms, catalysts, conversion efficiencies, and reaction products, with a brief introduction to PET biodegradation using hydrolytic enzymes provided. The analysis and comparison of various recycling methods indicated that the mechanical recycling method yielded PET products with a wide range of applications in composite materials. Electrospinning is a highly promising recycling strategy for fabricating recycled PET nanofibers. Compared to other methods, physical recycling has advantages such as low cost, low energy consumption, high value, simple processing, and environmental friendliness, making it the preferred choice for the recycling and high-value utilization of waste PET.
Collapse
Affiliation(s)
- Tianxiang Ren
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Zhejiang Sub-center of National Carbon Fiber Engineering Technology Research Center, Shaoxing Sub-center of National Engineering Research Center for Fiber-based Composites, Shaoxing Key Laboratory of High Performance fibers & products, College of Textile and Garment, Shaoxing University, Shaoxing, 312000, China
| | - Haihua Zhan
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Zhejiang Sub-center of National Carbon Fiber Engineering Technology Research Center, Shaoxing Sub-center of National Engineering Research Center for Fiber-based Composites, Shaoxing Key Laboratory of High Performance fibers & products, College of Textile and Garment, Shaoxing University, Shaoxing, 312000, China
| | - Huaizhong Xu
- Department of Biobased Materials Science, Kyoto Institute of Technology, Matsugasaki, Sakyo-Ku, Kyoto, 606-8585, Japan
| | - Lifeng Chen
- Shaoxing Baojing Composite Materials Co., Ltd., Shaoxing, 312000, China
| | - Wei Shen
- Shaoxing Baojing Composite Materials Co., Ltd., Shaoxing, 312000, China
| | - Yudong Xu
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, China
| | - Defang Zhao
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Zhejiang Sub-center of National Carbon Fiber Engineering Technology Research Center, Shaoxing Sub-center of National Engineering Research Center for Fiber-based Composites, Shaoxing Key Laboratory of High Performance fibers & products, College of Textile and Garment, Shaoxing University, Shaoxing, 312000, China; School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China; Hailiang Group Co., Ltd., Hangzhou, 310000, China.
| | - Yuanyi Shao
- College of Textiles, Donghua University, Shanghai, 201620, China.
| | - Yongtao Wang
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
4
|
Shi C, Quinn EC, Diment WT, Chen EYX. Recyclable and (Bio)degradable Polyesters in a Circular Plastics Economy. Chem Rev 2024; 124:4393-4478. [PMID: 38518259 DOI: 10.1021/acs.chemrev.3c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Polyesters carrying polar main-chain ester linkages exhibit distinct material properties for diverse applications and thus play an important role in today's plastics economy. It is anticipated that they will play an even greater role in tomorrow's circular plastics economy that focuses on sustainability, thanks to the abundant availability of their biosourced building blocks and the presence of the main-chain ester bonds that can be chemically or biologically cleaved on demand by multiple methods and thus bring about more desired end-of-life plastic waste management options. Because of this potential and promise, there have been intense research activities directed at addressing recycling, upcycling or biodegradation of existing legacy polyesters, designing their biorenewable alternatives, and redesigning future polyesters with intrinsic chemical recyclability and tailored performance that can rival today's commodity plastics that are either petroleum based and/or hard to recycle. This review captures these exciting recent developments and outlines future challenges and opportunities. Case studies on the legacy polyesters, poly(lactic acid), poly(3-hydroxyalkanoate)s, poly(ethylene terephthalate), poly(butylene succinate), and poly(butylene-adipate terephthalate), are presented, and emerging chemically recyclable polyesters are comprehensively reviewed.
Collapse
Affiliation(s)
- Changxia Shi
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Ethan C Quinn
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Wilfred T Diment
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
5
|
Hankamer B, Pregelj L, O'Kane S, Hussey K, Hine D. Delivering impactful solutions for the bioeconomy. TRENDS IN PLANT SCIENCE 2023; 28:583-596. [PMID: 36941134 DOI: 10.1016/j.tplants.2023.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 05/22/2023]
Abstract
We are increasingly challenged to operate within our planetary boundaries, while delivering on United Nations (UN) Sustainable Development Goal (SDG) 2030 targets, and net-zero emissions by 2050. Failure to solve these challenges risks economic, social, political, climate, food, water, and fuel security. Therefore, new, scalable, and adoptable circular economy solutions are urgently required. The ability of plants to use light, capture CO2, and drive complex biochemistry is pivotal to delivering these solutions. However, harnessing this capability efficiently also requires robust accompanying economic, financial, market, and strategic analytics. A framework for this is presented here in the Commercialization Tourbillon. It supports the delivery of emerging plant biotechnologies and bio-inspired light-driven industry solutions within the critical 2030-2050 timeframe, to achieve validated economic, social, and environmental benefits.
Collapse
Affiliation(s)
- Ben Hankamer
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lisette Pregelj
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Shane O'Kane
- Treble Cone Advisory Brisbane Qld, Suite 75, 12 Welsby Street, New Farm, QLD 4005, Australia
| | - Karen Hussey
- Centre for Policy Futures, Faculty of Humanities and Social Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Damian Hine
- Queensland Alliance for Agriculture and Food innovation, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
6
|
Tournier V, Duquesne S, Guillamot F, Cramail H, Taton D, Marty A, André I. Enzymes' Power for Plastics Degradation. Chem Rev 2023; 123:5612-5701. [PMID: 36916764 DOI: 10.1021/acs.chemrev.2c00644] [Citation(s) in RCA: 137] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Plastics are everywhere in our modern way of living, and their production keeps increasing every year, causing major environmental concerns. Nowadays, the end-of-life management involves accumulation in landfills, incineration, and recycling to a lower extent. This ecological threat to the environment is inspiring alternative bio-based solutions for plastic waste treatment and recycling toward a circular economy. Over the past decade, considerable efforts have been made to degrade commodity plastics using biocatalytic approaches. Here, we provide a comprehensive review on the recent advances in enzyme-based biocatalysis and in the design of related biocatalytic processes to recycle or upcycle commodity plastics, including polyesters, polyamides, polyurethanes, and polyolefins. We also discuss scope and limitations, challenges, and opportunities of this field of research. An important message from this review is that polymer-assimilating enzymes are very likely part of the solution to reaching a circular plastic economy.
Collapse
Affiliation(s)
- Vincent Tournier
- Carbios, Parc Cataroux-Bâtiment B80, 8 rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Sophie Duquesne
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France, 135, avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Frédérique Guillamot
- Carbios, Parc Cataroux-Bâtiment B80, 8 rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Henri Cramail
- Université Bordeaux, CNRS, Bordeaux INP, LCPO, 16 Avenue Pey-Berland, 33600 Pessac, France
| | - Daniel Taton
- Université Bordeaux, CNRS, Bordeaux INP, LCPO, 16 Avenue Pey-Berland, 33600 Pessac, France
| | - Alain Marty
- Carbios, Parc Cataroux-Bâtiment B80, 8 rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Isabelle André
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France, 135, avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| |
Collapse
|
7
|
Wang S, Muiruri JK, Soo XYD, Liu S, Thitsartarn W, Tan BH, Suwardi A, Li Z, Zhu Q, Loh XJ. Bio-Polypropylene and Polypropylene-based Biocomposites: Solutions for a Sustainable Future. Chem Asian J 2023; 18:e202200972. [PMID: 36461701 DOI: 10.1002/asia.202200972] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Polypropylene (PP) is among the most widely used commodity plastics in our everyday life due to its low cost, lightweight, easy processability, and exceptional chemical, thermo-mechanical characteristics. The growing awareness on energy and environmental crisis has driven global efforts for creating a circular economy via developing sustainable and eco-friendly alternatives to traditional plastics produced from fossil fuels for a variety of end-use applications. This review paper presents a brief outline of the emerging bio-based PP derived from renewable natural resources, covering its production routes, market analysis and potential utilizations. This contribution also provides a comprehensive review of the PP-based biocomposites produced with diverse green fillers generated from agro-industrial wastes, with particular emphasis on the structural modification, processing techniques, mechanical properties, and practical applications. Furthermore, given that the majority of PP products are currently destined for landfills, research progress on enhancing the degradation of PP and its biocomposites is also presented in light of the environmental concerns. Finally, a brief conclusion with discussions on challenges and future perspectives are provided.
Collapse
Affiliation(s)
- Suxi Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore
| | - Joseph Kinyanjui Muiruri
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Xiang Yun Debbie Soo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore
| | - Songlin Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore
| | - Warintorn Thitsartarn
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore
| | - Beng Hoon Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore
| | - Ady Suwardi
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore.,Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore.,Department of Material Science and Engineering, National University of Singapore, 9 Engineering Drive 1, #03-09 EA, Singapore, 117575, Singapore
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore.,Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore.,School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore.,Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore.,Department of Material Science and Engineering, National University of Singapore, 9 Engineering Drive 1, #03-09 EA, Singapore, 117575, Singapore
| |
Collapse
|
8
|
Meramo S, Fantke P, Sukumara S. Advances and opportunities in integrating economic and environmental performance of renewable products. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:144. [PMID: 36550529 PMCID: PMC9783408 DOI: 10.1186/s13068-022-02239-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
There is a growing global need to transition from a fossil-based to a bio-based economy to produce fuels, chemicals, food, and materials. In the specific context of industrial biotechnology, a successful transition toward a sustainable development requires not only steering investment toward a bioeconomy, but also responsibly introducing bio-based products with lower footprints and competitive market prices. A comprehensive sustainability assessment framework applied along various research stages to guide bio-based product development is urgently needed but currently missing. To support holistic approaches to strengthen the global bioeconomy, the present study discusses methodologies and provides perspectives on the successful integration of economic and environmental performance aspects to guide product innovation in biotechnology. Efforts on quantifying the economic and environmental performance of bio-based products are analyzed to highlight recent trends, challenges, and opportunities. We critically analyze methods to integrate Techno-Economic Assessment (TEA) and Life Cycle Assessment (LCA) as example tools that can be used to broaden the scope of assessing biotechnology systems performance. We highlight the lack of social assessment aspects in existing frameworks. Data need for jointly applying TEA and LCA of succinic acid as example commodity chemical are assessed at various Technology readiness levels (TRLs) to illustrate the relevance of the level of integration and show the benefits of the use of combined assessments. The analysis confirms that the implementation of integrated TEA and LCA at lower TRLs will provide more freedom to improve bio-based product's sustainability performance. Consequently, optimizing the system across TRLs will guide sustainability-driven innovation in new biotechnologies transforming renewable feedstock into valuable bio-based products.
Collapse
Affiliation(s)
- Samir Meramo
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs. Lyngby, Denmark
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark
| | - Sumesh Sukumara
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
9
|
Golmohammadi M, Fatemeh Musavi S, Habibi M, Maleki R, Golgoli M, Zargar M, Dumée LF, Baroutian S, Razmjou A. Molecular mechanisms of microplastics degradation: A review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Sales JCS, de Castro AM, Ribeiro BD, Coelho MAZ. Post-Consumer Poly(ethylene terephthalate) (PET) Depolymerization by Yarrowia lipolytica: A Comparison between Hydrolysis Using Cell-Free Enzymatic Extracts and Microbial Submerged Cultivation. Molecules 2022; 27:7502. [PMID: 36364329 PMCID: PMC9655755 DOI: 10.3390/molecules27217502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 09/08/2024] Open
Abstract
Several microorganisms have been reported as capable of acting on poly(ethylene terephthalate) (PET) to some extent, such as Yarrowia lipolytica, which is a yeast known to produce various hydrolases of industrial interest. The present work aims to evaluate PET depolymerization by Y. lipolytica using two different strategies. In the first one, biocatalysts were produced during solid-state fermentation (SSF-YL), extracted and subsequently used for the hydrolysis of PET and bis(2-hydroxyethyl terephthalate) (BHET), a key intermediate in PET hydrolysis. Biocatalysts were able to act on BHET, yielding terephthalic acid (TPA) (131.31 µmol L-1), and on PET, leading to a TPA concentration of 42.80 µmol L-1 after 168 h. In the second strategy, PET depolymerization was evaluated during submerged cultivations of Y. lipolytica using four different culture media, and the use of YT medium ((w/v) yeast extract 1%, tryptone 2%) yielded the highest TPA concentration after 96 h (65.40 µmol L-1). A final TPA concentration of 94.3 µmol L-1 was obtained on a scale-up in benchtop bioreactors using YT medium. The conversion obtained in bioreactors was 121% higher than in systems with SSF-YL. The results of the present work suggest a relevant role of Y. lipolytica cells in the depolymerization process.
Collapse
Affiliation(s)
- Julio Cesar Soares Sales
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149. Ilha do Fundão, Rio de Janeiro 21941-909, Brazil
| | - Aline Machado de Castro
- Divisão de Biotecnologia, Centro de Pesquisa e Desenvolvimento, PETROBRAS, Av. Horácio Macedo, 950. Ilha do Fundão, Rio de Janeiro 21941-915, Brazil
| | - Bernardo Dias Ribeiro
- Departamento de Engenharia Bioquímica, Escola de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149. Ilha do Fundão, Rio de Janeiro 21941-909, Brazil
| | - Maria Alice Zarur Coelho
- Departamento de Engenharia Bioquímica, Escola de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149. Ilha do Fundão, Rio de Janeiro 21941-909, Brazil
| |
Collapse
|
11
|
García JL. Enzymatic recycling of polyethylene terephthalate through the lens of proprietary processes. Microb Biotechnol 2022; 15:2699-2704. [PMID: 35857573 PMCID: PMC9618317 DOI: 10.1111/1751-7915.14114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- José L García
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| |
Collapse
|
12
|
An NMR look at an engineered PET depolymerase. Biophys J 2022; 121:2882-2894. [PMID: 35794828 PMCID: PMC9388554 DOI: 10.1016/j.bpj.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 12/30/2022] Open
Abstract
Plastic environmental pollution is a major issue that our generation must face to protect our planet. Plastic recycling has the potential not only to reduce the pollution but also to limit the need for fossil-fuel-based production of new plastics. Enzymes capable of breaking down plastic could thereby support such a circular economy. Polyethylene terephthalate (PET) degrading enzymes have recently attracted considerable interest and have been subjected to intensive enzyme engineering to improve their characteristics. A quadruple mutant of Leaf-branch Compost Cutinase (LCC) was identified as a most efficient and promising enzyme. Here, we use NMR to follow the initial LCC enzyme through its different mutations that lead to its improved performance. We experimentally define the two calcium-binding sites and show their importance on the all-or-nothing thermal unfolding process, which occurs at a temperature of 72°C close to the PET glass transition temperature. Using various NMR probes such as backbone amide, methyl group, and histidine side-chain resonances, we probe the interaction of the enzymes with mono-(2-hydroxyethyl)terephthalic acid. The latter experiments are interpreted in terms of accessibility of the active site to the polymer chain.
Collapse
|
13
|
Carniel A, Waldow VDA, Castro AMD. A comprehensive and critical review on key elements to implement enzymatic PET depolymerization for recycling purposes. Biotechnol Adv 2021; 52:107811. [PMID: 34333090 DOI: 10.1016/j.biotechadv.2021.107811] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 11/25/2022]
Abstract
Plastics production and recycling chains must be refitted to a circular economy. Poly(ethylene terephthalate) (PET) is especially suitable for recycling because of its hydrolysable ester bonds and high environmental impact due to employment in single-use packaging, so that recycling processes utilizing enzymes are a promising biotechnological route to monomer recovery. However, enzymatic PET depolymerization still faces challenges to become a competitive route at an industrial level. In this review, PET characteristics as a substrate for enzymes are discussed, as well as the analytical methods used to evaluate the reaction progress. A comprehensive view on the biocatalysts used is discussed. Subsequently, different strategies pursued to improve enzymatic PET depolymerization are presented, including enzyme modification through mutagenesis, utilization of multiple enzymes, improvement of the interaction between enzymes and the hydrophobic surface of PET, and various reaction conditions (e.g., particle size, reaction medium, agitation, and additives). All scientific developments regarding these different aspects of PET depolymerization are crucial to offer a scalable and competitive technology. However, they must be integrated into global processes from upstream to downstream, discussed here at the final sections, which must be evaluated for their economic feasibility and life cycle assessment to check if PET recycling chains can be broadly incorporated into the future circular economy.
Collapse
Affiliation(s)
- Adriano Carniel
- School of Chemistry, Federal University of Rio de Janeiro (UFRJ) - Cidade Universitária, Rio de Janeiro, RJ CEP 21949-900, Brazil
| | - Vinicius de Abreu Waldow
- Petrobras Research, Development and Innovation Center (Cenpes), Av. Horácio Macedo, n° 950 - Cidade Universitária, Rio de Janeiro, RJ CEP 21941-915, Brazil
| | - Aline Machado de Castro
- Petrobras Research, Development and Innovation Center (Cenpes), Av. Horácio Macedo, n° 950 - Cidade Universitária, Rio de Janeiro, RJ CEP 21941-915, Brazil.
| |
Collapse
|