1
|
Medjahdi K, Didouh N, Araujo R. Pasteurized milk: A highlight on potential sources of contamination by aerobic spore-forming bacteria. Food Control 2025; 171:111134. [DOI: 10.1016/j.foodcont.2025.111134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
|
2
|
Sheng K, Huang J, Chen J, Huang T, Huang M. Synergistic inactivation and mechanism of thermosonication treatment combined with germinants and licorice extracts against Paraclostridium bifermentans. Food Res Int 2025; 202:115751. [PMID: 39967068 DOI: 10.1016/j.foodres.2025.115751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 02/20/2025]
Abstract
Spore contamination is a critical factor that contributes to food spoilage and economic losses in the food industry. In this study, we employed a "germination-inactivation-inhibition" strategy to effectively inactivate Paraclostridium bifermentans spores. We systematically screened and optimized the germinants, thermosonication conditions, and inhibitors to determine the most effective combination for spore inactivation. We found that the optimal conditions were germinant "A" GFNa-60 (90 mmol/L L-alanine, 10 mmol/L D-glucose, 10 mmol/L D-fructose, and 60 mmol/L NaCl), thermosonication (40 KHz, 480 W) at 80 °C for 60 min, and licorice extract (6.25 mg/mL) as an inhibitor. This combination was highly effective in deactivating P. bifermentans spores, resulting in a reduction of approximately 3.59 log CFU/mL. Detailed analyses, including particle size analysis, fluorescence microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM), provided insights into the mechanisms underlying spore inactivation. Specifically, germinants decreased spore resistance, thermosonication induced spore surface expansion and perforation, and licorice extract facilitated spore dispersion while exacerbating thermosonication-induced inner membrane damage and nucleic acid leakage, leading to synergistic spore inactivation. Additionally, licorice extract continued to inhibit the growth and reproduction of the remaining spores. A spore inactivation rate of 99.97 % was achieved. These findings offer valuable insights into improved sterilization practices in the food industry, particularly for the management of spore contamination. The proposed "germination-inactivation-inhibition" strategy demonstrates potential as an effective approach for controlling spores in industrial applications.
Collapse
Affiliation(s)
- Kairan Sheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 China
| | - Jichao Huang
- College of Engineering, Nanjing Agricultural University, Nanjing 210095 China
| | - Jiacheng Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 China
| | - Tianran Huang
- Jiangsu Research Center for Livestock and Poultry Products Processing Engineering Technology, Nanjing Huangjiaoshou Food Science and Technology Co., Ltd., Nanjing 211200 China
| | - Ming Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 China.
| |
Collapse
|
3
|
Blau K, Gallert C. Efficacy of UV-C 254 nm Light and a Sporicidal Surface Disinfectant in Inactivating Spores from Clostridioides difficile Ribotypes In Vitro. Pathogens 2024; 13:965. [PMID: 39599518 PMCID: PMC11597166 DOI: 10.3390/pathogens13110965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
Clostridioides difficile is widely recognised as one of the most common causes of healthcare-associated C. difficile infections due to the ability of spores to survive for prolonged periods in the hospital environment. This study aimed to evaluate the efficacy of UV-C 254 nm light in the inactivation of the spores of different C. difficile ribotypes on brain heart infusion (BHI) agar plates or in phosphate-buffered saline (PBS) with varying spore densities. Furthermore, the effectiveness of a sporicidal surface disinfectant against C. difficile spores was determined on different surfaces. Spore suspensions of different C. difficile strains in the range of 105-107 colony-forming units (CFUs) mL-1 were inoculated on BHI agar plates or in PBS and exposed to UV-C light for up to 30 min. Additionally, a spore suspension of 103-105 CFUs was spread over a 1 cm2 test area on different surfaces, and sporicidal surface wipes were used according to the manufacturer's instructions. The findings demonstrated that spores of C. difficile ribotypes exhibited a complete reduction in log10 CFU on BHI agar plates and PBS following 20 min of exposure to a UV-C dose of 2208 mJ cm-2. The surface wipes with sporicidal properties demonstrated efficacy in reducing the number of C. difficile spores on the Formica, stainless steel, and plastic surfaces by 2.03-3.53 log10. The present study demonstrates that moist surfaces or liquids can enhance the efficacy of UV-C treatment in reducing C. difficile spores. This approach may be applicable to the surfaces of healthcare facilities and to water disinfection systems.
Collapse
Affiliation(s)
| | - Claudia Gallert
- Department of Microbiology–Biotechnology, Faculty of Technology, University of Applied Sciences Emden/Leer, 26723 Emden, Germany;
| |
Collapse
|
4
|
Hu X, Ge P, Wang X, Liao X, Feng J, Lv R, Ding T. Characterization of the Bacillus cereus spore killed by plasma-activated water (PAW). Food Res Int 2024; 196:115058. [PMID: 39614493 DOI: 10.1016/j.foodres.2024.115058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 12/01/2024]
Abstract
Bacillus cereus (B. cereus) spore is one of the most easily contaminated bacterial spores. Plasma-activated water (PAW) has emerged as a potential method for microbial inactivation. The exterior pyridine-2,6-dicarboxylic acid (DPA) of spores was released after PAW oxidative stresses. The broken inner membrane and partially hydrolyzed cortex were represented. Some spores' architecture changed from a full and plump surface to these with wrinkles and indentations and even the shape shifted from oval to partly elongated irregular contraction. The detached exosporium, the devoid content, and the distinctly ruptured multilayer structure were exhibited. Young's modulus indicated that PAW may cause a body with reduced elasticity. The multiple resistances toward NaClO, NaCl, heat, UV, H2O2, and lysozyme uncovered that the compromise in the spore coat, the loss of the integrity of inner membrane permeability, the denatured proteins, the unsaturated DNA, the degradation of α/β-type small acid-soluble proteins (SASPs) and part inactivation of cortex lytic enzymes occurred. The changes in fatty acid compositions, lipid peroxidation, protein loss, and the inhibited activity of ATPase as well as the degraded and collapsed representative DNA/DPA/proteins Raman spectrum peaks also further confirmed the potential sites for spore death by PAW.
Collapse
Affiliation(s)
- Xiao Hu
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Pengfei Ge
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaomeng Wang
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Liao
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Jinsong Feng
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ruiling Lv
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China.
| | - Tian Ding
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China.
| |
Collapse
|
5
|
Heckler C, Vale MG, Canales HDS, Stradiotto GC, Giordano ALPL, Schreiber AZ, Sant'Ana AS. Spore-forming bacteria in gelatin: Characterization, identification by 16S rRNA and MALDI-TOF mass spectrometry (MS), and presence of heat resistance and virulence genes. Int J Food Microbiol 2024; 422:110813. [PMID: 38970997 DOI: 10.1016/j.ijfoodmicro.2024.110813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
Gelatin, a versatile protein derived from collagen, is widely used in the food, pharmaceutical and medical sectors. However, bacterial contamination by spore-forming bacteria during gelatin processing represents a significant concern for product safety and quality. In this study, an investigation was carried out to explore the heat and chemical resistance, as well as the identification and characterization of spore-forming bacteria isolated from gelatin processing. The methodologies involved chemical resistance tests with drastic pH in microplates and thermal resistance tests in capillary tubes of various isolates obtained at different processing stages. In addition, phenotypic and genotypic analyses were carried out to characterize the most resistant isolates of spore-forming bacteria. The findings of this study revealed the presence of several species, including Bacillus cereus, Bacillus licheniformis, Bacillus sonorensis, Bacillus subtilis, Geobacillus stearothermophilus, and Clostridium sporogenes, with some isolates exhibiting remarkable chemical and heat resistances. In addition, a significant proportion of the most resistant isolates showed gelatinase activity (n = 19/21; 90.5 %) and the presence of heat resistance (n = 5/21; 23.8 %), and virulence genes (n = 11/21; 52.4 %). The results of this study suggest that interventions should be done in quality control practices and that process parameter adjustments and effective contamination reduction strategies should be implemented through gelatin processing.
Collapse
Affiliation(s)
- Caroline Heckler
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Matheus G Vale
- Department of Integrated Systems, Faculty of Mechanical Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Héctor D S Canales
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Graziele C Stradiotto
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Ana Luisa P L Giordano
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Angelica Z Schreiber
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
6
|
Rodd AM, Mawhinney WM, Brumer H. A scalable, chromatography-free, biocatalytic method to produce the xyloglucan heptasaccharide XXXG. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:116. [PMID: 39164748 PMCID: PMC11337882 DOI: 10.1186/s13068-024-02563-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Xyloglucan oligosaccharides (XyGOs) are highly branched, complex carbohydrates with a variety of chemical and biotechnological applications. Due to the regular repeating pattern of sidechain substitution of the xyloglucan backbone, well-defined XyGOs are readily accessed for analytical and preparative purposes by specific hydrolysis of the polysaccharide with endo-glucanases. To broaden the application potential of XyGOs, we present here an optimized, scalable method to access large quantities of galactosylated XyGOs by treatment of the bulk agricultural by-product, tamarind kernel powder (TKP), with a highly specific endo-xyloglucanase at high-solids content. Subsequent β-galactosidase treatment reduced XyGO complexity to produce exclusively the branched heptasaccharide XXXG (Xyl3Glc4: [α-D-Xylp-(1 → 6)]-β-D-Glcp-(1 → 4)-[α-D-Xylp-(1 → 6)]-β-D-Glcp-(1 → 4)-[α-D-Xylp-(1 → 6)]-β-D-Glcp-(1 → 4)-D-Glcp). The challenge of removing the co-product galactose was overcome by fermentation with baker's yeast, thereby avoiding chromatography and other fractionation steps to yield highly pure XXXG. This simplified approach employs many of the core concepts of green chemistry and engineering, enables facile production of 100 g quantities of XyGOs and XXXG for laboratory use, and serves as a guide to further production scale-up for applications, including as prebiotics, plant growth effectors and elicitors, and building blocks for glycoconjugate synthesis.
Collapse
Affiliation(s)
- Andrew M Rodd
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - William M Mawhinney
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
- BioProducts Institute, University of British Columbia, 2385 East Mall, BC, V6T 1Z4, Vancouver, Canada.
| |
Collapse
|
7
|
Shymialevich D, Wójcicki M, Sokołowska B. The Novel Concept of Synergically Combining: High Hydrostatic Pressure and Lytic Bacteriophages to Eliminate Vegetative and Spore-Forming Bacteria in Food Products. Foods 2024; 13:2519. [PMID: 39200446 PMCID: PMC11353811 DOI: 10.3390/foods13162519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
The article focuses on the ongoing challenge of eliminating vegetative and spore-forming bacteria from food products that exhibit resistance to the traditional preservation methods. In response to this need, the authors highlight an innovative approach based on the synergistic utilization of high-hydrostatic-pressure (HHP) and lytic bacteriophages. The article reviews the current research on the use of HHP and lytic bacteriophages to combat bacteria in food products. The scope includes a comprehensive review of the existing literature on bacterial cell damage following HHP application, aiming to elucidate the synergistic effects of these technologies. Through this in-depth analysis, the article aims to contribute to a deeper understanding of how these innovative techniques can improve food safety and quality. There is no available research on the use of HHP and bacteriophages in the elimination of spore-forming bacteria; however, an important role of the synergistic effect of HHP and lytic bacteriophages with the appropriate adjustment of the parameters has been demonstrated in the more effective elimination of non-spore-forming bacteria from food products. This suggests that, when using this approach in the case of spore-forming bacteria, there is a high chance of the effective inactivation of this biological threat.
Collapse
Affiliation(s)
- Dziyana Shymialevich
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (M.W.); (B.S.)
| | | | | |
Collapse
|
8
|
Singh SK, Ali MM, Mok JH, Korza G, Setlow P, Sastry SK. Mechanistic insight into roles of α/β-type small acid-soluble proteins, RecA, and inner membrane proteins during bacterial spore inactivation by ohmic heating. J Appl Microbiol 2024; 135:lxae151. [PMID: 38906847 DOI: 10.1093/jambio/lxae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024]
Abstract
AIM Ohmic heating (OH) (i.e. heating by electric field) more effectively kills bacterial spores than traditional wet heating, yet its mechanism remains poorly understood. This study investigates the accelerated spore inactivation mechanism using genetically modified spores. METHODS AND RESULTS We investigated the effects of OH and conventional heating (CH) on various genetically modified strains of Bacillus subtilis: isogenic PS533 (wild type_1), PS578 [lacking spores' α/β-type small acid-soluble proteins (SASP)], PS2318 (lacking recA, encoding a DNA repair protein), isogenic PS4461 (wild type_2), and PS4462 (having the 2Duf protein in spores, which increases spore wet heat resistance and decreases spore inner membrane fluidity). Removal of SASP brought the inactivation profiles of OH and CH closer, suggesting the interaction of these proteins with the field. However, the reemergence of a difference between CH and OH killing for SASP-deficient spores at the highest tested field strength suggested there is also interaction of the field with another spore core component. Additionally, RecA-deficient spores yielded results like those with the wild-type spores for CH, while the OH resistance of this mutant increased at the lower tested temperatures, implying that RecA or DNA are a possible additional target for the electric field. Addition of the 2Duf protein markedly increased spore resistance both to CH and OH, although some acceleration of killing was observed with OH at 50 V/cm. CONCLUSIONS In summary, both membrane fluidity and interaction of the spore core proteins with electric field are key factors in enhanced spore killing with electric field-heat combinations.
Collapse
Affiliation(s)
- Shyam K Singh
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Mohamed Medhat Ali
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Jin Hong Mok
- Department of Food Science and Technology, Pukyong National University, Busan 48513, South Korea
| | - George Korza
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06030, United States
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06030, United States
| | - Sudhir K Sastry
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
9
|
Pedraza-Reyes M, Abundiz-Yañez K, Rangel-Mendoza A, Martínez LE, Barajas-Ornelas RC, Cuéllar-Cruz M, Leyva-Sánchez HC, Ayala-García VM, Valenzuela-García LI, Robleto EA. Bacillus subtilis stress-associated mutagenesis and developmental DNA repair. Microbiol Mol Biol Rev 2024; 88:e0015823. [PMID: 38551349 PMCID: PMC11332352 DOI: 10.1128/mmbr.00158-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
SUMMARYThe metabolic conditions that prevail during bacterial growth have evolved with the faithful operation of repair systems that recognize and eliminate DNA lesions caused by intracellular and exogenous agents. This idea is supported by the low rate of spontaneous mutations (10-9) that occur in replicating cells, maintaining genome integrity. In contrast, when growth and/or replication cease, bacteria frequently process DNA lesions in an error-prone manner. DNA repairs provide cells with the tools needed for maintaining homeostasis during stressful conditions and depend on the developmental context in which repair events occur. Thus, different physiological scenarios can be anticipated. In nutritionally stressed bacteria, different components of the base excision repair pathway may process damaged DNA in an error-prone approach, promoting genetic variability. Interestingly, suppressing the mismatch repair machinery and activating specific DNA glycosylases promote stationary-phase mutations. Current evidence also suggests that in resting cells, coupling repair processes to actively transcribed genes may promote multiple genetic transactions that are advantageous for stressed cells. DNA repair during sporulation is of interest as a model to understand how transcriptional processes influence the formation of mutations in conditions where replication is halted. Current reports indicate that transcriptional coupling repair-dependent and -independent processes operate in differentiating cells to process spontaneous and induced DNA damage and that error-prone synthesis of DNA is involved in these events. These and other noncanonical ways of DNA repair that contribute to mutagenesis, survival, and evolution are reviewed in this manuscript.
Collapse
Affiliation(s)
- Mario Pedraza-Reyes
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Karen Abundiz-Yañez
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Alejandra Rangel-Mendoza
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Lissett E. Martínez
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Rocío C. Barajas-Ornelas
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Mayra Cuéllar-Cruz
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | | | | | - Luz I. Valenzuela-García
- Department of Sustainable Engineering, Advanced Materials Research Center (CIMAV), Arroyo Seco, Durango, Mexico
| | | |
Collapse
|
10
|
Liu S, Zhu Y, Zhao L, Li M, Liang D, Li M, Zhao G, Ma Y, Tu Q. Characteristic substance analysis and rapid detection of bacteria spores in cooked meat products by surface enhanced Raman scattering based on Ag@AuNP array substrate. Anal Chim Acta 2024; 1308:342616. [PMID: 38740451 DOI: 10.1016/j.aca.2024.342616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/13/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Bacterial spores are the main potential hazard in medium- and high-temperature sterilized meat products, and their germination and subsequent reproduction and metabolism can lead to food spoilage. Moreover, the spores of some species pose a health and safety threat to consumers. The rapid detection, prevention, and control of bacterial spores has always been a scientific problem and a major challenge for the medium and high-temperature meat industry. Early and sensitive identification of spores in meat products is a decisive factor in contributing to consumer health and safety. RESULTS In this study, we developed a novel and stable Ag@AuNP array substrate by using a two-step synthesis approach and a liquid-interface self-assembly method that can directly detect bacterial spores in actual meat product samples without the need for additional in vitro bacterial culture. The results indicate that the Ag@AuNP array substrate exhibits high reproducibility and Raman enhancement effects (1.35 × 105). The differentiation in the Surface enhanced Raman scattering (SERS) spectra of five bacterial spores primarily arises from proteins in the spore coat and inner membrane, peptidoglycan of cortex, and Ca2⁺-DPA within the spore core. The correct recognition rate of linear discriminant analysis for spores in the meat product matrix can reach 100 %. The average recovery accuracy of the SERS quantitative model was at around 101.77 %, and the limit of detection can reach below 10 CFU/mL. SIGNIFICANCE It provides a promising technological strategy for the characteristic substance analysis and timely monitoring of spores in meat products.
Collapse
Affiliation(s)
- Shijie Liu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Yaodi Zhu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Lijun Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Miaoyun Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China.
| | - Dong Liang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Mengya Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Gaiming Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Yangyang Ma
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Qiancheng Tu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| |
Collapse
|
11
|
Freire V, Del Río J, Gómara P, Salvador M, Condón S, Gayán E. Comparative study on the impact of equally stressful environmental sporulation conditions on thermal inactivation kinetics of B. subtilis spores. Int J Food Microbiol 2023; 405:110349. [PMID: 37591013 DOI: 10.1016/j.ijfoodmicro.2023.110349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/30/2023] [Accepted: 07/29/2023] [Indexed: 08/19/2023]
Abstract
Control of bacterial spores continues to be one of the main challenges for the food industry due to their wide dissemination and extremely high resistance to processing methods. Furthermore, the large variability in heat resistance in spores that contaminate foods makes it difficult to establish general processing conditions. Such heterogeneity not only derives from inherent differences among species and strains, but also from differences in sporulation environments that are generally ignored in spores encountered in foods. We evaluated heat inactivation kinetics and the thermodependency of resistance parameters in B. subtilis 168 spores sporulated at adverse temperatures, water activity (aw), and pH, applying an experimental approach that allowed us to quantitatively compare the impact of each condition. Reduction of incubation temperature from the optimal temperature dramatically reduced thermal resistance, and it was the most influential factor, especially at the highest treatment temperatures. These spores were also more sensitive to chemicals presumably acting in the inner membrane. Reducing sporulation aw increased heat resistance, although the magnitude of that effect depended on the solute and the treatment temperature. Thus, changes in sporulation environments varied 3D100°C values up to 10.4-fold and z values up to 1.7-fold, highlighting the relevance of taking such a source of variability into account when setting heat processing conditions. UV-C treatment and sodium hypochlorite efficiently inactivated all spore populations, including heat-resistant ones produced at low aw.
Collapse
Affiliation(s)
- Víctor Freire
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Javier Del Río
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Paula Gómara
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Maika Salvador
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Santiago Condón
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Elisa Gayán
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain.
| |
Collapse
|
12
|
Ahmed H, Joshi LT. Clostridioides difficile spores tolerate disinfection with sodium hypochlorite disinfectant and remain viable within surgical scrubs and gown fabrics. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001418. [PMID: 37988292 PMCID: PMC10710845 DOI: 10.1099/mic.0.001418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
Clostridioides difficile is the most common cause of antibiotic-associated diarrhoea globally. Its spores have been implicated in the prevalence of C. difficile infection due to their resistance and transmission ability between surfaces. Currently, disinfectants such as chlorine-releasing agents (CRAs) and hydrogen peroxide are used to decontaminate and reduce the incidence of infections in clinical environments. Our previous research demonstrated the ability of C. difficile spores to survive exposure to recommended concentrations of sodium dichloroisocyanurate in liquid form and within personal protective fabrics such as surgical gowns; however, the present study examined the spore response to clinical in-use concentrations of sodium hypochlorite. Spores were exposed to a 10 min contact time of 1000, 5000 and 10 000 p.p.m. sodium hypochlorite, and spore recovery was determined. To understand whether biocide-exposed spores transmitted across clinical surfaces in vitro , biocide-exposed spores were spiked onto surgical scrubs and patient gowns and recovery was determined by a plate transfer assay. Scanning electron microscopy was used to establish if there were any morphological changes to the outer spore coat. The results revealed that viable biocide-exposed C. difficile spores can be recovered from surgical scrubs and patient gowns, with no observable changes to spore morphology, highlighting the potential of these fabrics as vectors of spore transmission. This study demonstrates that alternative strategies should be urgently sought to disinfect C. difficile spores to break the chain of transmission in clinical environments.
Collapse
Affiliation(s)
- Humaira Ahmed
- Peninsula Medical School, Faculty of Health, University of Plymouth, Devon, PL4 8AA, UK
| | - Lovleen Tina Joshi
- Peninsula Dental School, Faculty of Health, University of Plymouth, Devon, PL4 8AA, UK
| |
Collapse
|
13
|
Moir A, Christie G. A coating of lipoproteins provides a stabilizing environment on the inner membrane of Bacillus subtilis spores. J Bacteriol 2023; 205:e0016723. [PMID: 37730539 PMCID: PMC10601610 DOI: 10.1128/jb.00167-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
A new study by M. J. Flores, K. Duricy, S. Choudhary, M. Laue, and D. L. Popham (J Bacteriol 205:e00142-23, 2023, https://doi.org/10.1128/jb.00142-23) demonstrates a role for the YlaJ/YhcN family of lipoproteins in the immobilization of the spore's inner membrane. In the absence of these lipoproteins, membrane fluidity increases and membrane-associated proteins like the GerA receptor complexes are more exposed to inimical conditions. The role of these proteins in stabilizing the Bacillus spore inner membrane is now being explored.
Collapse
Affiliation(s)
- Anne Moir
- School of Biosciences, University of Sheffield, Firth Court, Sheffield, United Kingdom
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Nilsson DPG, Jonsmoen UL, Malyshev D, Öberg R, Wiklund K, Andersson M. Physico-chemical characterization of single bacteria and spores using optical tweezers. Res Microbiol 2023; 174:104060. [PMID: 37068697 DOI: 10.1016/j.resmic.2023.104060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
Spore-forming pathogenic bacteria are adapted for adhering to surfaces, and their endospores can tolerate strong chemicals making decontamination difficult. Understanding the physico-chemical properties of bacteria and spores is therefore essential in developing antiadhesive surfaces and disinfection techniques. However, measuring physico-chemical properties in bulk does not show the heterogeneity between cells. Characterizing bacteria on a single-cell level can thereby provide mechanistic clues usually hidden in bulk measurements. This paper shows how optical tweezers can be applied to characterize single bacteria and spores, and how physico-chemical properties related to adhesion, fluid dynamics, biochemistry, and metabolic activity can be assessed.
Collapse
Affiliation(s)
| | - Unni Lise Jonsmoen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Norway.
| | - Dmitry Malyshev
- Department of Physics, Umeå University, Västerbotten 901 87 Sweden.
| | - Rasmus Öberg
- Department of Physics, Umeå University, Västerbotten 901 87 Sweden.
| | - Krister Wiklund
- Department of Physics, Umeå University, Västerbotten 901 87 Sweden.
| | - Magnus Andersson
- Department of Physics, Umeå University, Västerbotten 901 87 Sweden; Umeå Center for Microbial Research (UCMR), 901 87 Sweden.
| |
Collapse
|
15
|
Setlow P, Christie G. New Thoughts on an Old Topic: Secrets of Bacterial Spore Resistance Slowly Being Revealed. Microbiol Mol Biol Rev 2023; 87:e0008022. [PMID: 36927044 PMCID: PMC10304885 DOI: 10.1128/mmbr.00080-22] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The quest for bacterial survival is exemplified by spores formed by some Firmicutes members. They turn up everywhere one looks, and their ubiquity reflects adaptations to the stresses bacteria face. Spores are impactful in public health, food safety, and biowarfare. Heat resistance is the hallmark of spores and is countered principally by a mineralized gel-like protoplast, termed the spore core, with reduced water which minimizes macromolecular movement/denaturation/aggregation. Dry heat, however, introduces mutations into spore DNA. Spores have countermeasures to extreme conditions that are multifactorial, but the fact that spore DNA is in a crystalline-like nucleoid in the spore core, likely due to DNA saturation with small acid-soluble spore proteins (SASPs), suggests that reduced macromolecular motion is also critical in spore dry heat resistance. SASPs are also central in the radiation resistance characteristic of spores, where the contributions of four spore features-SASP; Ca2+, with pyridine-2,6-dicarboxylic acid (CaDPA); photoproduct lyase; and low water content-minimize DNA damage. Notably, the spore environment steers UV photochemistry toward a product that germinated spores can repair without significant mutagenesis. This resistance extends to chemicals and macromolecules that could damage spores. Macromolecules are excluded by the spore coat which impedes the passage of moieties of ≥10 kDa. Additionally, damaging chemicals may be degraded or neutralized by coat enzymes/proteins. However, the principal protective mechanism here is the inner membrane, a compressed structure lacking lipid fluidity and presenting a barrier to the diffusion of chemicals into the spore core; SASP saturation of DNA also protects against genotoxic chemicals. Spores are also resistant to other stresses, including high pressure and abrasion. Regardless, overarching mechanisms associated with resistance seem to revolve around reduced molecular motion, a fine balance between rigidity and flexibility, and perhaps efficient repair.
Collapse
Affiliation(s)
- Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
16
|
Guerrero M. GG. Sporulation, Structure Assembly, and Germination in the Soil Bacterium Bacillus thuringiensis: Survival and Success in the Environment and the Insect Host. MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Bacillus thuringiensis (Bt) is a rod-shaped, Gram-positive soil bacterium that belongs to the phylum Firmicutes and the genus Bacillus. It is a spore-forming bacterium. During sporulation, it produces a wide range of crystalline proteins that are toxic to different orders of insects. Sporulation, structure assembly, and germination are essential stages in the cell cycle of B. thuringiensis. The majority of studies on these issues have focused on the model organism Bacillus subtilis, followed by Bacillus cereus and Bacillus anthracis. The machinery for sporulation and germination extrapolated to B. thuringiensis. However, in the light of recent findings concerning the role of the sporulation proteins (SPoVS), the germination receptors (Gr), and the cortical enzymes in Bt, the theory strengthened that conservation in sporulation, structure assembly, and germination programs drive the survival and success of B. thuringiensis in the environment and the insect host. In the present minireview, the latter pinpointed and reviewed.
Collapse
Affiliation(s)
- Gloria G. Guerrero M.
- Unidad Académica de Ciencias Biológicas, Laboratorio de Immunobiología, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Col. Agronomicas, Zacatecas 98066, Mexico
| |
Collapse
|
17
|
Rezaie M, Choi S. Moisture-Enabled Germination of Heat-Activated Bacillus Endospores for Rapid and Practical Bioelectricity Generation: Toward Portable, Storable Bacteria-Powered Biobatteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301135. [PMID: 36932936 DOI: 10.1002/smll.202301135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Small-scale battery-like microbial fuel cells (MFCs) are a promising alternative power source for future low-power electronics. Controllable microbial electrocatalytic activity in a miniaturized MFC with unlimited biodegradable energy resources would enable simple power generation in various environmental settings. However, the short shelf-life of living biocatalysts, few ways to activate the stored biocatalysts, and extremely low electrocatalytic capabilities render the miniature MFCs unsuitable for practical use. Here, heat-activated Bacillus subtilis spores are revolutionarily used as a dormant biocatalyst that can survive storage and rapidly germinate when exposed to special nutrients that are preloaded in the device. A microporous, graphene hydrogel allows the adsorption of moisture from the air, moves the nutrients to the spores, and triggers their germination for power generation. In particular, forming a CuO-hydrogel anode and an Ag2 O-hydrogel cathode promotes superior electrocatalytic activities leading to an exceptionally high electrical performance in the MFC. The battery-type MFC device is readily activated by moisture harvesting, producing a maximum power density of 0.4 mW cm-2 and a maximum current density of 2.2 mA cm-2 . The MFC configuration is readily stackable in series and a three-MFC pack produces enough power for several low-power applications, demonstrating its practical feasibility as a sole power source.
Collapse
Affiliation(s)
- Maryam Rezaie
- Bioelectronics and Microsystems Laboratory, Department of Electrical and Computer Engineering, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Seokheun Choi
- Bioelectronics and Microsystems Laboratory, Department of Electrical and Computer Engineering, State University of New York at Binghamton, Binghamton, NY, 13902, USA
- Center for Research in Advanced Sensing Technologies and Environmental Sustainability, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| |
Collapse
|
18
|
Korza G, DePratti S, Fairchild D, Wicander J, Kanaan J, Shames H, Nichols FC, Cowan A, Brul S, Setlow P. Expression of the 2Duf protein in wild-type Bacillus subtilis spores stabilizes inner membrane proteins and increases spore resistance to wet heat and hydrogen peroxide. J Appl Microbiol 2023; 134:lxad040. [PMID: 36841229 PMCID: PMC10035073 DOI: 10.1093/jambio/lxad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 02/27/2023]
Abstract
AIMS This work aimed to characterize spore inner membrane (IM) properties and the mechanism of spore killing by wet heat and H2O2 with spores overexpressing the 2Duf protein, which is naturally encoded from a transposon found only in some Bacillus strains with much higher spore resistance than wild-type spores. METHODS AND RESULTS Killing of Bacillus subtilis spores by wet heat or hydrogen peroxide (H2O2) was slower when 2Duf was present, and Ca-dipicolinic acid release was slower than killing. Viabilities on rich plates of wet heat- or H2O2 -treated spores +/- 2Duf were lower when NaCl was added, but higher with glucose. Addition of glucose but not Casamino acids addition increased treated spores' viability on minimal medium plates. Spores with 2Duf required higher heat activation for germination, and their germination was more wet-heat resistant than that of wild-type spores, processes that involve IM proteins. IM permeability and lipid mobility were lower in spores with 2Duf, although IM phospholipid composition was similar in spores +/- 2Duf. CONCLUSIONS These results and previous work suggests that wet heat and H2O2 kill spores by damaging an IM enzyme or enzymes involved in oxidative phosphorylation.
Collapse
Affiliation(s)
- George Korza
- Department of Molecular Biology and Biophysics, Farmington, CT 06030-3305, USA
| | - Sarah DePratti
- Department of Molecular Biology and Biophysics, Farmington, CT 06030-3305, USA
| | - Daniel Fairchild
- Department of Molecular Biology and Biophysics, Farmington, CT 06030-3305, USA
| | - James Wicander
- Department of Molecular Biology and Biophysics, Farmington, CT 06030-3305, USA
| | - Julia Kanaan
- Department of Molecular Biology and Biophysics, Farmington, CT 06030-3305, USA
| | - Hannah Shames
- Department of Molecular Biology and Biophysics, Farmington, CT 06030-3305, USA
| | - Frank C Nichols
- Division of Periodontology, UConn Health, Farmington, CT 06030-3305, USA
| | - Ann Cowan
- Department of Molecular Biology and Biophysics, Farmington, CT 06030-3305, USA
| | - Stanley Brul
- Molecular Biology & Microbial Food Safety, Swammerdam Institute for Life Science, University of Amsterdam, 1098XH Amsterdam, UK
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, Farmington, CT 06030-3305, USA
| |
Collapse
|
19
|
Rasmussen TS, Koefoed AK, Deng L, Muhammed MK, Rousseau GM, Kot W, Sprotte S, Neve H, Franz CMAP, Hansen AK, Vogensen FK, Moineau S, Nielsen DS. CRISPR-Cas provides limited phage immunity to a prevalent gut bacterium in gnotobiotic mice. THE ISME JOURNAL 2023; 17:432-442. [PMID: 36631688 PMCID: PMC9938214 DOI: 10.1038/s41396-023-01358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Many bacteria and archaea harbor the adaptive CRISPR-Cas system, which stores small nucleotide fragments from previous invasions of nucleic acids via viruses or plasmids. This molecular archive blocks further invaders carrying identical or similar nucleotide sequences. However, few of these systems have been confirmed experimentally to be active in gut bacteria. Here, we demonstrate experimentally that the type I-C CRISPR-Cas system of the prevalent gut bacterium Eggerthella lenta can specifically target and cleave foreign DNA in vitro by using a plasmid transformation assay. We also show that the CRISPR-Cas system acquires new immunities (spacers) from the genome of a virulent E. lenta phage using traditional phage assays in vitro but also in vivo using gnotobiotic (GB) mice. Both high phage titer and an increased number of spacer acquisition events were observed when E. lenta was exposed to a low multiplicity of infection in vitro, and three phage genes were found to contain protospacer hotspots. Fewer new spacer acquisitions were detected in vivo than in vitro. Longitudinal analysis of phage-bacteria interactions showed sustained coexistence in the gut of GB mice, with phage abundance being approximately one log higher than the bacteria. Our findings show that while the type I-C CRISPR-Cas system is active in vitro and in vivo, a highly virulent phage in vitro was still able to co-exist with its bacterial host in vivo. Taken altogether, our results suggest that the CRISPR-Cas defense system of E. lenta provides only partial immunity in the gut.
Collapse
Affiliation(s)
- Torben Sølbeck Rasmussen
- Section of Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen, 1958, Frederiksberg, Denmark.
| | - Anna Kirstine Koefoed
- Section of Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen, 1958, Frederiksberg, Denmark
| | - Ling Deng
- Section of Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen, 1958, Frederiksberg, Denmark
| | - Musemma K Muhammed
- Section of Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen, 1958, Frederiksberg, Denmark
| | - Geneviève M Rousseau
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de 1enie, Université Laval, Québec, QC, G1V 0A6, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Witold Kot
- Section of Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark
| | - Sabrina Sprotte
- Department of Microbiology and Biotechnology, Max Rubner-Institut, 24103, Kiel, Germany
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, 24103, Kiel, Germany
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, 24103, Kiel, Germany
| | - Axel Kornerup Hansen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark
| | - Finn Kvist Vogensen
- Section of Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen, 1958, Frederiksberg, Denmark
| | - Sylvain Moineau
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de 1enie, Université Laval, Québec, QC, G1V 0A6, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC, G1V 0A6, Canada
- Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Dennis Sandris Nielsen
- Section of Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen, 1958, Frederiksberg, Denmark.
| |
Collapse
|
20
|
Yu B, Kanaan J, Shames H, Wicander J, Aryal M, Li Y, Korza G, Brul S, Kramer G, Li YQ, Nichols FC, Hao B, Setlow P. Identification and characterization of new proteins crucial for bacterial spore resistance and germination. Front Microbiol 2023; 14:1161604. [PMID: 37113233 PMCID: PMC10126465 DOI: 10.3389/fmicb.2023.1161604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
2Duf, named after the presence of a transmembrane (TM) Duf421 domain and a small Duf1657 domain in its sequence, is likely located in the inner membrane (IM) of spores in some Bacillus species carrying a transposon with an operon termed spoVA 2mob. These spores are known for their extreme resistance to wet heat, and 2Duf is believed to be the primary contributor to this trait. In this study, we found that the absence of YetF or YdfS, both Duf421 domain-containing proteins and found only in wild-type (wt) B. subtilis spores with YetF more abundant, leads to decreased resistance to wet heat and agents that can damage spore core components. The IM phospholipid compositions and core water and calcium-dipicolinic acid levels of YetF-deficient spores are similar to those of wt spores, but the deficiency could be restored by ectopic insertion of yetF, and overexpression of YetF increased wt spore resistance to wet heat. In addition, yetF and ydfS spores have decreased germination rates as individuals and populations with germinant receptor-dependent germinants and increased sensitivity to wet heat during germination, potentially due to damage to IM proteins. These data are consistent with a model in which YetF, YdfS and their homologs modify IM structure to reduce IM permeability and stabilize IM proteins against wet heat damage. Multiple yetF homologs are also present in other spore forming Bacilli and Clostridia, and even some asporogenous Firmicutes, but fewer in asporogenous species. The crystal structure of a YetF tetramer lacking the TM helices has been reported and features two distinct globular subdomains in each monomer. Sequence alignment and structure prediction suggest this fold is likely shared by other Duf421-containing proteins, including 2Duf. We have also identified naturally occurring 2duf homologs in some Bacilli and Clostridia species and in wt Bacillus cereus spores, but not in wt B. subtilis. Notably, the genomic organization around the 2duf gene in most of these species is similar to that in spoVA 2mob, suggesting that one of these species was the source of the genes on this operon in the extremely wet heat resistant spore formers.
Collapse
Affiliation(s)
- Benjamin Yu
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Julia Kanaan
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Hannah Shames
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - James Wicander
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Makunda Aryal
- Department of Physics, East Carolina University, Greenville, NC, United States
| | - Yunfeng Li
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - George Korza
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Stanley Brul
- Molecular Biology and Microbial Food Safety, University of Amsterdam, Amsterdam, Netherlands
| | - Gertjan Kramer
- Laboratory for Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Science, University of Amsterdam, Amsterdam, Netherlands
| | - Yong-qing Li
- Department of Physics, East Carolina University, Greenville, NC, United States
| | - Frank C. Nichols
- Division of Periodontology, UConn Health, Farmington, CT, United States
| | - Bing Hao
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
- Bing Hao,
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
- *Correspondence: Peter Setlow,
| |
Collapse
|
21
|
Kuwana R, Yamazawa R, Asada R, Ito K, Furuta M, Takamatsu H. Excessive ultraviolet C irradiation causes spore protein denaturation and prohibits the initiation of spore germination in Bacillus subtilis. JOURNAL OF MICROORGANISM CONTROL 2023; 28:15-25. [PMID: 37277954 DOI: 10.4265/jmc.28.1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ultraviolet (UV) -C is widely used to kill bacteria as it damages chromosomal DNA. We analyzed the denaturation of the protein function of Bacillus subtilis spores after UV-C irradiation. Almost all of the B. subtilis spores germinated in Luria-Bertani (LB) liquid medium, but the colony-forming unit (CFU) of the spores on LB agar plates decreased to approximately 1/103 by 100 mJ/cm2 of UV-C irradiation. Some of the spores germinated in LB liquid medium under phase-contrast microscopy, but almost no colonies formed on the LB agar plates after 1 J/cm2 of UV-C irradiation. The fluorescence of the green fluorescent protein (GFP) -fused spore proteins, YeeK-GFP, YeeK is a coat protein, decreased following UV-C irradiation of over 1 J/cm2, while that of SspA-GFP, SspA is a core protein, decreased following UV-C irradiation of over 2 J/ cm2, respectively. These results revealed that UV-C affected on coat proteins more than core proteins. We conclude that 25 to 100 mJ/cm2 of UV-C irradiation can cause DNA damage, and more than 1 J/cm2 of UV-C irradiation can cause the denaturation of spore proteins involved in germination. Our study would contribute to improve the technology to detect the bacterial spores, especially after UV sterilization.
Collapse
Affiliation(s)
| | | | - Ryoko Asada
- Graduate School of Engineering, Department of Quantum and Radiation Technology, Osaka Metropolitan University
| | - Kiyoshi Ito
- Faculty of Pharmaceutical Sciences, Setsunan University
| | - Masakazu Furuta
- Graduate School of Engineering, Department of Quantum and Radiation Technology, Osaka Metropolitan University
| | | |
Collapse
|
22
|
Mechanisms and Applications of Bacterial Sporulation and Germination in the Intestine. Int J Mol Sci 2022; 23:ijms23063405. [PMID: 35328823 PMCID: PMC8953710 DOI: 10.3390/ijms23063405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Recent studies have suggested a major role for endospore forming bacteria within the gut microbiota, not only as pathogens but also as commensal and beneficial members contributing to gut homeostasis. In this review the sporulation processes, spore properties, and germination processes will be explained within the scope of the human gut. Within the gut, spore-forming bacteria are known to interact with the host’s immune system, both in vegetative cell and spore form. Together with the resistant nature of the spore, these characteristics offer potential for spores’ use as delivery vehicles for therapeutics. In the last part of the review, the therapeutic potential of spores as probiotics, vaccine vehicles, and drug delivery systems will be discussed.
Collapse
|
23
|
Insights into the Structure and Protein Composition of Moorella thermoacetica Spores Formed at Different Temperatures. Int J Mol Sci 2022; 23:ijms23010550. [PMID: 35008975 PMCID: PMC8745062 DOI: 10.3390/ijms23010550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/01/2023] Open
Abstract
The bacterium Moorella thermoacetica produces the most heat-resistant spores of any spoilage-causing microorganism known in the food industry. Previous work by our group revealed that the resistance of these spores to wet heat and biocides was lower when spores were produced at a lower temperature than the optimal temperature. Here, we used electron microcopy to characterize the ultrastructure of the coat of the spores formed at different sporulation temperatures; we found that spores produced at 55 °C mainly exhibited a lamellar inner coat tightly associated with a diffuse outer coat, while spores produced at 45 °C showed an inner and an outer coat separated by a less electron-dense zone. Moreover, misarranged coat structures were more frequently observed when spores were produced at the lower temperature. We then analyzed the proteome of the spores obtained at either 45 °C or 55 °C with respect to proteins putatively involved in the spore coat, exosporium, or in spore resistance. Some putative spore coat proteins, such as CotSA, were only identified in spores produced at 55 °C; other putative exosporium and coat proteins were significantly less abundant in spores produced at 45 °C. Altogether, our results suggest that sporulation temperature affects the structure and protein composition of M. thermoacetica spores.
Collapse
|