1
|
Gao M, Zhang Q, Chen B, Lei C, Xia Q, Sun L, Li T, Zhou NY, Lu T, Qian H. Global Geographic Patterns of Soil Microbial Degradation Potential for Polycyclic Aromatic Hydrocarbons. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7550-7560. [PMID: 40223703 DOI: 10.1021/acs.est.5c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are toxic and persistent pollutants that are widely distributed in the environment. PAHs are toxic to microorganisms and pose ecological risks. Bacteria encode enzymes for PAH degradation through specific genes, thereby mitigating PAH pollution. However, due to PAHs' complexity, information on the global degradation potential, diversity, and associated risks of PAH-degrading microbes in soils is lacking. In this study, we analyzed 121 PAH-degrading genes and selected 33 as marker genes to predict the degradation potential within the soil microbiome. By constructing a Hidden Markov Model, we identified 4990 species carrying PAH-degrading genes in 40,039 soil metagenomic assembly genomes, with Burkholderiaceae and Stellaceae emerging as high-potential degraders. We demonstrated that the candidate PAH degraders predominantly emerged in artificial soil and farmland, with significantly fewer present in extreme environments, driven by factors such as average annual rainfall, organic carbon, and human modification of terrestrial systems. Furthermore, we comprehensively quantified the potential risks of each potential host in future practical applications using three indicators (antibiotic resistance genes, virulence factors, and pathogenic bacteria). We found that the degrader Stellaceae has significant application prospects. Our research will help determine the biosynthetic potential of PAH-degrading enzymes globally and further identify potential PAH-degrading bacteria at lower risk.
Collapse
Affiliation(s)
- Mingyu Gao
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Qi Zhang
- Institute for Advanced Study, Shaoxing University, Shaoxing 312000, P. R. China
| | - Bingfeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Chaotang Lei
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Qingshan Xia
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Tao Li
- State Key Laboratory of Microbial Metabolism, and School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism, and School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Haifeng Qian
- Institute for Advanced Study, Shaoxing University, Shaoxing 312000, P. R. China
| |
Collapse
|
2
|
Yesankar PJ, Qureshi A. Insights into the functionality of biofilm-forming bacterial consortia as bioavailability enhancers towards biodegradation of pyrene in hydrocarbon-contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124295. [PMID: 39884207 DOI: 10.1016/j.jenvman.2025.124295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/03/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
Hydrophobic organic compounds (HOCs), such as pyrene, pose significant challenges for microbial-based remediation in soil due to limited substrate availability and the sustainability of augmented microbes. Research targets are to investigate the potential of biofilm-forming bacterial cells to enhance pyrene bioavailability and biodegradation in two different hydrocarbon-contaminated soil microcosms, employing microbiological, molecular, and chemical analysis validated through statistical tools. The microcosm augmented with strong biofilm bacterial consortia (A) significantly enhanced pyrene availability by 1-1.5% compared to the weak biofilm consortia (B) and mixed consortia (AB). Analysis of 16 S rDNA amplicons revealed notable differences in bacterial community composition between consortia A and B augmented soil, with Proteobacteria as the dominant phylum. Taxonomic composition of soil microbiome predicted enhanced xenobiotic biodegradative potential of strong biofilm consortia (A) up to 20 days, exhibiting a higher abundance of functional genes related to upstream degradative pathway of PAHs, such as naphthalene dioxygenase (nahAa), PAH dioxygenase subunit genes (nidA, nidB), extradiol dioxygenase (phdF) and aldehyde dehydrogenase (nidD). Our study highlights the significant role of biofilm-forming bacteria as "bioavailability enhancers," for high molecular weight PAHs like pyrene, in contaminated soils with their implications for designing future sustainable bioremediation programs.
Collapse
Affiliation(s)
- Prerna J Yesankar
- Sustainable Environmental Processes (Environmental Bioprocesses), CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Asifa Qureshi
- Sustainable Environmental Processes (Environmental Bioprocesses), CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
3
|
Song YJ, Zhao NL, Dai DR, Bao R. Prospects of Pseudomonas in Microbial Fuel, Bioremediation, and Sustainability. CHEMSUSCHEM 2025; 18:e202401324. [PMID: 39117578 DOI: 10.1002/cssc.202401324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/10/2024]
Abstract
Microbial applications in agriculture and industry have gained significant attention due to their potential to address environmental challenges and promote sustainable development. Among these, the genus Pseudomonas stands out as a promising candidate for various biotechnological uses, thanks to its metabolic flexibility, resilience, and adaptability to diverse environments. This review provides a comprehensive overview of the current state and future prospects of microbial fuel production, bioremediation, and sustainable development, focusing on the pivotal role of Pseudomonas species. We emphasize the importance of microbial fuel as a renewable energy source and discuss recent advancements in enhancing biofuel generation using Pseudomonas strains. Additionally, we explore the critical role of Pseudomonas in bioremediation processes, highlighting its ability to degrade a wide spectrum of pollutants, including hydrocarbons, pesticides, and heavy metals, thereby reducing environmental contamination. Despite significant progress, several challenges remain. These include refining microbial strains for optimal process efficiency and addressing ecological considerations. Nonetheless, the diverse capabilities of Pseudomonas offer promising avenues for innovative solutions to pressing environmental issues, supporting the transition to a more sustainable future.
Collapse
Affiliation(s)
- Ying-Jie Song
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Ning-Lin Zhao
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - De-Rong Dai
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Bao
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
4
|
Zhu M, Su Y, Wang Y, Bo Y, Sun Y, Liu Q, Zhang H, Zhao C, Gu Y. Biodegradation characteristics of p-Chloroaniline and the mechanism of co-metabolism with aniline by Pseudomonas sp. CA-1. BIORESOURCE TECHNOLOGY 2024; 406:131086. [PMID: 38977036 DOI: 10.1016/j.biortech.2024.131086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Co-metabolism is a promising method to optimize the biodegradation of p-Chloroaniline (PCA). In this study, Pseudomonas sp. CA-1 could reduce 76.57 % of PCA (pH = 8, 70 mg/L), and 20 mg/L aniline as the co-substrate improved the degradation efficiency by 12.50 %. Further, the response and co-metabolism mechanism of CA-1 to PCA were elucidated. The results revealed that PCA caused deformation and damage on the surface of CA-1, and the -OH belonging to polysaccharides and proteins offered adsorption sites for the contact between CA-1 and PCA. Subsequently, PCA entered the cell through transporters and was degraded by various oxidoreductases accompanied by deamination, hydroxylation, and ring-cleavage reactions. Thus, the key metabolite 4-chlorocatechol was identified and two PCA degradation pathways were proposed. Besides, aniline further enhanced the antioxidant capacity of CA-1, stimulated the expression of catechol 2,3-dioxygenase and promoted meta-cleavage efficiency of PCA. The findings provide new insights into the treatment of PCA-aniline co-pollution.
Collapse
Affiliation(s)
- Mingjun Zhu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yuhua Su
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yaru Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yonglin Bo
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yufeng Sun
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Qiyou Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, PR China.
| | - Hang Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Chaocheng Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, PR China
| | - Yingying Gu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, PR China
| |
Collapse
|
5
|
Aso RE, Obuekwe IS. Polycyclic aromatic hydrocarbon: underpinning the contribution of specialist microbial species to contaminant mitigation in the soil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:654. [PMID: 38913190 DOI: 10.1007/s10661-024-12778-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/06/2024] [Indexed: 06/25/2024]
Abstract
The persistence of PAHs poses a significant challenge for conventional remediation approaches, necessitating the exploration of alternative, sustainable strategies for their mitigation. This review underscores the vital role of specialized microbial species (nitrogen-fixing, phosphate-solubilizing, and biosurfactant-producing bacteria) in tackling the environmental impact of polycyclic aromatic hydrocarbons (PAHs). These resistant compounds demand innovative remediation strategies. The study explores microbial metabolic capabilities for converting complex PAHs into less harmful byproducts, ensuring sustainable mitigation. Synthesizing literature from 2016 to 2023, it covers PAH characteristics, sources, and associated risks. Degradation mechanisms by bacteria and fungi, key species, and enzymatic processes are examined. Nitrogen-fixing and phosphate-solubilizing bacteria contributions in symbiotic relationships with plants are highlighted. Biosurfactant-producing bacteria enhance PAH solubility, expanding microbial accessibility for degradation. Cutting-edge trends in omics technologies, synthetic biology, genetic engineering, and nano-remediation offer promising avenues. Recommendations emphasize genetic regulation, field-scale studies, sustainability assessments, interdisciplinary collaboration, and knowledge dissemination. These insights pave the way for innovative, sustainable PAH-contaminated environment restoration.
Collapse
Affiliation(s)
- Rufus Emamoge Aso
- Department of Microbiology, Faculty of Life Sciences, University of Benin, Benin, Edo State, Nigeria
| | - Ifeyinwa Sarah Obuekwe
- Department of Microbiology, Faculty of Life Sciences, University of Benin, Benin, Edo State, Nigeria.
| |
Collapse
|
6
|
Ali ML, Ferrieres L, Jass J, Hyötyläinen T. Metabolic Changes in Pseudomonas oleovorans Isolated from Contaminated Construction Material Exposed to Varied Biocide Treatments. Metabolites 2024; 14:326. [PMID: 38921461 PMCID: PMC11205842 DOI: 10.3390/metabo14060326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
Biocide resistance poses a significant challenge in industrial processes, with bacteria like Pseudomonas oleovorans exhibiting intrinsic resistance to traditional antimicrobial agents. In this study, the impact of biocide exposure on the metabolome of two P. oleovorans strains, namely, P. oleovorans P4A, isolated from contaminated coating material, and P. oleovorans 1045 reference strain, were investigated. The strains were exposed to 2-Methylisothiazol-3(2H)-one (MI) MIT, 1,2-Benzisothiazol-3(2H)-one (BIT), and 5-chloro-2-methyl-isothiazol-3-one (CMIT) at two different sub-inhibitory concentrations and the lipids and polar and semipolar metabolites were analyzed by ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry UPLC-Q-TOF/MS. Exposure to the BIT biocide induced significant metabolic modifications in P. oleovorans. Notable changes were observed in lipid and metabolite profiles, particularly in phospholipids, amino acid metabolism, and pathways related to stress response and adaptation. The 1045 strain showed more pronounced metabolic alterations than the P4A strain, suggesting potential implications for lipid, amino acid metabolism, energy metabolism, and stress adaptation. Improving our understanding of how different substances interact with bacteria is crucial for making antimicrobial chemicals more effective and addressing the challenges of resistance. We observed that different biocides trigged significantly different metabolic responses in these strains. Our study shows that metabolomics can be used as a tool for the investigation of metabolic mechanisms underlying biocide resistance, and thus in the development of targeted biocides. This in turn can have implications in combating biocide resistance in bacteria such as P. oleovorans.
Collapse
Affiliation(s)
- Muatasem Latif Ali
- School of Science and Technology, Örebro University, Fakultetsgatan 1, SE 701 82 Örebro, Sweden; (M.L.A.); (J.J.)
- Saint-Gobain SWEDEN AB, SCANSPAC, Kemivägen 7, SE 705 97 Glanshammar, Sweden
| | - Lionel Ferrieres
- Saint-Gobain Recherche, 39 Quai Lucien Lefranc, FR-93303 Aubervilliers Cedex, France;
| | - Jana Jass
- School of Science and Technology, Örebro University, Fakultetsgatan 1, SE 701 82 Örebro, Sweden; (M.L.A.); (J.J.)
| | - Tuulia Hyötyläinen
- School of Science and Technology, Örebro University, Fakultetsgatan 1, SE 701 82 Örebro, Sweden; (M.L.A.); (J.J.)
| |
Collapse
|
7
|
Li X, Cao X, Zhang Z, Li Y, Zhang Y, Wang C, Fan W. Mechanism of phenanthrene degradation by the halophilic Pelagerythrobacter sp. N7. CHEMOSPHERE 2024; 350:141175. [PMID: 38211788 DOI: 10.1016/j.chemosphere.2024.141175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/19/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
PAHs has shown worldwide accumulation and causes a significant environmental problem especially in saline and hypersaline environments. Moderately halophilic bacteria could be useful for the bioremediation of PAH pollution in hypersaline environments. Pelagerythrobacter sp. N7 was isolated from the PAH-degrading consortium 5H, which was enriched from mixed saline soil samples collected in Shanxi Province, China. 16S rRNA in the genomic DNA revealed that strain N7 belonged to Pelagerythrobacter. Strain N7 exhibited a high tolerance to a wide range of salinities (1-10%) and was highly efficient under neutral to weak alkaline conditions (pH 6-9). The whole genome of strain N7 was sequenced and analyzed, revealing an abundance of catabolic genes. Using the whole genome information, we conducted preliminary research on key enzymes and gene clusters involved in the upstream and downstream PAH degradation pathways of strain N7, thereby inferring its degradation pathway for phenanthrene and naphthalene. This study adds to our understanding of PAH degradation in hypersaline environments and, for the first time, identifies a Pelagerythrobacter with PAH-degrading capability. Strain N7, with its high efficiency in phenanthrene degradation, represents a promising resource for the bioremediation of PAHs in hypersaline environments.
Collapse
Affiliation(s)
- Xiangjin Li
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| | - Xinghong Cao
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| | - Zuotao Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Yichun Li
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| | - Yue Zhang
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| | - Chongyang Wang
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| | - Weihua Fan
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| |
Collapse
|
8
|
Wang Y, Sun S, Liu Q, Su Y, Zhang H, Zhu M, Tang F, Gu Y, Zhao C. Characteristic microbiome and synergistic mechanism by engineering agent MAB-1 to evaluate oil-contaminated soil biodegradation in different layer soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10802-10817. [PMID: 38212565 DOI: 10.1007/s11356-024-31891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Bioremediation is a sustainable and pollution-free technology for crude oil-contaminated soil. However, most studies are limited to the remediation of shallow crude oil-contaminated soil, while ignoring the deeper soil. Here, a high-efficiency composite microbial agent MAB-1 was provided containing Bacillus (naphthalene and pyrene), Acinetobacter (cyclohexane), and Microbacterium (xylene) to be synergism degradation of crude oil components combined with other treatments. According to the crude oil degradation rate, the up-layer (63.64%), middle-layer (50.84%), and underlying-layer (54.21%) crude oil-contaminated soil are suitable for bioaugmentation (BA), biostimulation (BS), and biostimulation+bioventing (BS+BV), respectively. Combined with GC-MS and carbon number distribution analysis, under the optimal biotreatment, the degradation rates of 2-ring and 3-ring PAHs in layers soil were about 70% and 45%, respectively, and the medium and long-chain alkanes were reduced during the remediation. More importantly, the relative abundance of bacteria associated with crude oil degradation increased in each layer after the optimal treatment, such as Microbacterium (2.10-14%), Bacillus (2.56-12.1%), and Acinetobacter (0.95-12.15%) in the up-layer soil; Rhodococcus (1.5-6.9%) in the middle-layer soil; and Pseudomonas (3-5.4%) and Rhodococcus (1.3-13.2%) in the underlying-layer soil. Our evaluation results demonstrated that crude oil removal can be accelerated by adopting appropriate bioremediation approach for different depths of soil, providing a new perspective for the remediation of actual crude oil-contaminated sites.
Collapse
Affiliation(s)
- Yaru Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
| | - Shuo Sun
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
| | - Qiyou Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China.
| | - Yuhua Su
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
| | - Hang Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
| | - Mingjun Zhu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
| | - Fang Tang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
| | - Yingying Gu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
| | - Chaocheng Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
| |
Collapse
|
9
|
Gafarova E, Kuracji D, Sogomonyan K, Gorokhov I, Polev D, Zubova E, Golikova E, Granovitch A, Maltseva A. Gut Bacteriomes and Ecological Niche Divergence: An Example of Two Cryptic Gastropod Species. BIOLOGY 2023; 12:1521. [PMID: 38132347 PMCID: PMC10740740 DOI: 10.3390/biology12121521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Symbiotic microorganisms may provide their hosts with abilities critical to their occupation of microhabitats. Gut (intestinal) bacterial communities aid animals to digest substrates that are either innutritious or toxic, as well as support their development and physiology. The role of microbial communities associated with sibling species in the hosts' adaptation remains largely unexplored. In this study, we examined the composition and plasticity of the bacteriomes in two sibling intertidal gastropod species, Littorina fabalis and L. obtusata, which are sympatric but differ in microhabitats. We applied 16S rRNA gene metabarcoding and shotgun sequencing to describe associated microbial communities and their spatial and temporal variation. A significant drop in the intestinal bacteriome diversity was revealed during the cold season, which may reflect temperature-related metabolic shifts and changes in snail behavior. Importantly, there were significant interspecies differences in the gut bacteriome composition in summer but not in autumn. The genera Vibrio, Aliivibrio, Moritella and Planktotalea were found to be predominantly associated with L. fabalis, while Granulosicoccus, Octadecabacter, Colwellia, Pseudomonas, Pseudoalteromonas and Maribacter were found to be mostly associated with L. obtusata. Based on these preferential associations, we analyzed the metabolic pathways' enrichment. We hypothesized that the L. obtusata gut bacteriome contributes to decomposing algae and detoxifying polyphenols produced by fucoids. Thus, differences in the sets of associated bacteria may equip their closely phylogenetically related hosts with a unique ability to occupy specific micro-niches.
Collapse
Affiliation(s)
- Elizaveta Gafarova
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Dmitrii Kuracji
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Karina Sogomonyan
- Center for Bioinformatics and Algorithmic Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Ivan Gorokhov
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Dmitrii Polev
- Department of Epidemiology, St. Petersburg Pasteur Institute, Mira Street 14, 197101 St. Petersburg, Russia;
| | - Ekaterina Zubova
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Elena Golikova
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Andrey Granovitch
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Arina Maltseva
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| |
Collapse
|
10
|
Peng H, Wu H, Gu W, Lu Y, Qin H, You Y, Zhou D, Wang D, Sun L, Zhou C, Zheng Y. Exploring the Application Potential of Aquaculture Sewage Treatment of Pseudomonas chengduensis Strain WD211 Based on Its Complete Genome. Genes (Basel) 2023; 14:2107. [PMID: 38136929 PMCID: PMC10743257 DOI: 10.3390/genes14122107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Pseudomonas chengduensis is a new species of Pseudomonas discovered in 2014, and currently, there is a scarcity of research on this bacterium. The P. chengduensis strain WD211 was isolated from a fish pond. This study investigated the purification capability and environmental adaptability of strain WD211 in wastewater and described the basic features and functional genes of its complete genome. According to the results, the sewage treated with strain WD211 showed a decrease in concentration of 18.12% in total nitrogen, 89.39% in NH4+, 62.16% in NO3-, 79.97% in total phosphorus, and 71.41% in COD after 24 h. Strain WD211 is able to survive in a pH range of 6-11. It shows resistance to 7% sodium chloride and different types of antibiotics. Genomic analysis showed that strain WD211 may remove nitrogen and phosphorus through the metabolic pathway of nitrogen assimilation and phosphorus accumulation, and that it can promote organic decomposition through oxygenase. Strain WD211 possesses genes for producing betaine, trehalose, and sodium ion transport, which provide it with salt tolerance. It also has genes for antibiotic efflux and multiple oxidases, which give it antibiotic resistance. This study contributes to the understanding of the sewage treatment ability and potential applications of P. chengduensis.
Collapse
Affiliation(s)
- Huanlong Peng
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China
| | - Hangtao Wu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China
| | - Wenjie Gu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Yusheng Lu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China
| | - Hongjie Qin
- Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yi You
- Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Donglai Zhou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Dan Wang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China
| | - Lili Sun
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China
| | - Changmin Zhou
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China
| | - Yanling Zheng
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China
| |
Collapse
|
11
|
Vogel AL, Thompson KJ, Straub D, App CB, Gutierrez T, Löffler FE, Kleindienst S. Substrate-independent expression of key functional genes in Cycloclasticus pugetii strain PS-1 limits their use as markers for PAH biodegradation. Front Microbiol 2023; 14:1185619. [PMID: 37455737 PMCID: PMC10338962 DOI: 10.3389/fmicb.2023.1185619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/22/2023] [Indexed: 07/18/2023] Open
Abstract
Microbial degradation of petroleum hydrocarbons is a crucial process for the clean-up of oil-contaminated environments. Cycloclasticus spp. are well-known polycyclic aromatic hydrocarbon (PAH) degraders that possess PAH-degradation marker genes including rhd3α, rhd2α, and pahE. However, it remains unknown if the expression of these genes can serve as an indicator for active PAH degradation. Here, we determined transcript-to-gene (TtG) ratios with (reverse transcription) qPCR in cultures of Cycloclasticus pugetii strain PS-1 grown with naphthalene, phenanthrene, a mixture of these PAHs, or alternate substrates (i.e., no PAHs). Mean TtG ratios of 1.99 × 10-2, 1.80 × 10-3, and 3.20 × 10-3 for rhd3α, rhd2α, and pahE, respectively, were measured in the presence or absence of PAHs. The TtG values suggested that marker-gene expression is independent of PAH degradation. Measurement of TtG ratios in Arctic seawater microcosms amended with water-accommodated crude oil fractions, and incubated under in situ temperature conditions (i.e., 1.5°C), only detected Cycloclasticus spp. rhd2α genes and transcripts (mean TtG ratio of 4.15 × 10-1). The other marker genes-rhd3α and pahE-were not detected, suggesting that not all Cycloclasticus spp. carry these genes and a broader yet-to-be-identified repertoire of PAH-degradation genes exists. The results indicate that the expression of PAH marker genes may not correlate with PAH-degradation activity, and transcription data should be interpreted cautiously.
Collapse
Affiliation(s)
- Anjela L. Vogel
- Department of Geosciences, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Environmental Microbiology, Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), University of Stuttgart, Stuttgart, Germany
| | - Katharine J. Thompson
- Department of Geosciences, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Environmental Microbiology, Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), University of Stuttgart, Stuttgart, Germany
| | - Daniel Straub
- Quantitative Biology Center (QBiC), Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tübingen, Germany
| | - Constantin B. App
- Department of Geosciences, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Tony Gutierrez
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Frank E. Löffler
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, United States
| | - Sara Kleindienst
- Department of Geosciences, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Environmental Microbiology, Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|