1
|
Lee JC. Flourishing with sugars - following the fate of parasitoids in the field. CURRENT OPINION IN INSECT SCIENCE 2024; 61:101158. [PMID: 38184071 DOI: 10.1016/j.cois.2023.101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024]
Abstract
When flowers, plants bearing extrafloral nectaries, or sugar sprays are added to agroecosystems, parasitoids are expected to feed, thereby improving biological control. This paper reviews studies where sugar-feeding of field-collected parasitoids were monitored via biochemical assays. When examined, trends in parasitoid abundance, energetic reserves, longevity, and per capita fecundity are also followed. Starved parasitoids readily feed on sugar sources in the field, and more individuals collected near sugar sources are categorized as 'fed' when sugar is otherwise limited in the agroecosystem. When sugar is not limited (i.e. honeydew prevalent), trends are not as clear. Some studies show improved fecundity and parasitism, while other studies show inconsistent trends between parasitoid feeding, abundance, longevity, and parasitism, with some responses improved but not others. Future research could address the dispersal or resting behavior of wasps following feeding since it can influence eventual biological control, and consider whether field sampling methods might over-/underestimate feeding.
Collapse
Affiliation(s)
- Jana C Lee
- Horticultural Crops Disease and Pest Management Research Unit, USDA - ARS, 3420 NW Orchard Ave., Corvallis, OR 97330, USA.
| |
Collapse
|
2
|
Li Y, Wang S, Liu Y, Lu Y, Zhou M, Wang S, Wang S. The Effect of Different Dietary Sugars on the Development and Fecundity of Harmonia axyridis. Front Physiol 2020; 11:574851. [PMID: 33041872 PMCID: PMC7522449 DOI: 10.3389/fphys.2020.574851] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/25/2020] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to screen synergistic substances included in existing artificial feeds in order to improve the fertility and survival rate of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), an efficient pest predator. To this end, we analyzed the potential effects of glucose and trehalose on the growth, development, and reproduction of H. axyridis and evaluated the effect of three different artificial feeds on the energy stress of H. axyridis. The artificial diets contained fresh pork liver, honey, sucrose, vitamin C, and royal jelly, which was marked it as Diet1. The glucose was added to diet1, which was marked it as diet2, while adding trehalose to diet1 was marked as diet3. The pre-oviposition period of H. axyridis on Diet 1 was slower than that of Diet 2 and Diet 3. Additionally, the spawning quantity and incubation rate of insects on Diet 2 and Diet 3 were significantly higher than that of those on Diet 1. Finally, the larval developmental time on Diet 1 was significantly slower than that of Diet 2 and Diet 3. These results indicate that the addition of an appropriate amount of glucose or trehalose may affect positively the growth, development, and reproduction of H. axyridis. In addition, further studies showed that ATP, amino acids and fatty acids content in the H. axyridis also increased after the addition of the synergistic substance. All these results show that proper adjustment of stored energy anabolic and catabolism is important to maintain the metabolic balance of the insect’s entire life cycle and the addition of glucose or trehalose has a certain effect on the life indicators of H. axyridis.
Collapse
Affiliation(s)
- Yan Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Shasha Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yongkang Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yuting Lu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Min Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Su Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Shigui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
3
|
Gomes E, Desouhant E, Amat I. Evidence for risk-taking behavioural types and potential effects on resource acquisition in a parasitoid wasp. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Tena A, Senft M, Desneux N, Dregni J, Heimpel GE. The influence of aphid-produced honeydew on parasitoid fitness and nutritional state: A comparative study. Basic Appl Ecol 2018. [DOI: 10.1016/j.baae.2018.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Snart CJP, Kapranas A, Williams H, Barrett DA, Hardy ICW. Sustenance and Performance: Nutritional Reserves, Longevity, and Contest Outcomes of Fed and Starved Adult Parasitoid Wasps. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
6
|
Amat I, van Alphen JJ, Kacelnik A, Desouhant E, Bernstein C. Adaptations to different habitats in sexual and asexual populations of parasitoid wasps: a meta-analysis. PeerJ 2017; 5:e3699. [PMID: 28924495 PMCID: PMC5600175 DOI: 10.7717/peerj.3699] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/26/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Coexistence of sexual and asexual populations remains a key question in evolutionary ecology. We address the question how an asexual and a sexual form of the parasitoid Venturia canescens can coexist in southern Europe. We test the hypothesis that both forms are adapted to different habitats within their area of distribution. Sexuals inhabit natural environments that are highly unpredictable, and where density of wasps and their hosts is low and patchily distributed. Asexuals instead are common in anthropic environments (e.g., grain stores) where host outbreaks offer periods when egg-load is the main constraint on reproductive output. METHODS We present a meta-analysis of known adaptations to these habitats. Differences in behavior, physiology and life-history traits between sexual and asexual wasps were standardized in term of effect size (Cohen's d value; Cohen, 1988). RESULTS Seeking consilience from the differences between multiple traits, we found that sexuals invest more in longevity at the expense of egg-load, are more mobile, and display higher plasticity in response to thermal variability than asexual counterparts. DISCUSSION Thus, each form has consistent multiple adaptations to the ecological circumstances in the contrasting environments.
Collapse
Affiliation(s)
- Isabelle Amat
- UMR CNRS 5558 Biométrie et Biologie Evolutive, Univ Lyon; Université Claude Bernard (Lyon I), Villeurbanne, France
| | | | - Alex Kacelnik
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Emmanuel Desouhant
- UMR CNRS 5558 Biométrie et Biologie Evolutive, Univ Lyon; Université Claude Bernard (Lyon I), Villeurbanne, France
| | - Carlos Bernstein
- UMR CNRS 5558 Biométrie et Biologie Evolutive, Univ Lyon; Université Claude Bernard (Lyon I), Villeurbanne, France
| |
Collapse
|
7
|
Dieckhoff C, Theobald JC, Wäckers FL, Heimpel GE. Egg load dynamics and the risk of egg and time limitation experienced by an aphid parasitoid in the field. Ecol Evol 2014; 4:1739-50. [PMID: 24963373 PMCID: PMC4063472 DOI: 10.1002/ece3.1023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/02/2014] [Accepted: 02/07/2014] [Indexed: 11/22/2022] Open
Abstract
Insect parasitoids and herbivores must balance the risk of egg limitation and time limitation in order to maximize reproductive success. Egg and time limitation are mediated by oviposition and egg maturation rates as well as by starvation risk and other determinants of adult lifespan. Here, we assessed egg load and nutritional state in the soybean aphid parasitoid Binodoxys communis under field conditions to estimate its risk of becoming either egg- or time-limited. The majority of female B. communis showed no signs of egg limitation. Experimental field manipulations of B. communis females suggested that an average of 4-8 eggs were matured per hour over the course of a day. Regardless, egg loads remained constant over the course of the day at approximately 80 eggs, suggesting that egg maturation compensates for oviposition. This is the first case of such "egg load buffering" documented for a parasitoid in the field. Despite this buffering, egg loads dropped slightly with increasing host (aphid) density. This suggests that egg limitation could occur at very high host densities as experienced in outbreak years in some locations in the Midwestern USA. Biochemical analyses of sugar profiles showed that parasitoids fed upon sugar in the field at a remarkably high rate. Time limitation through starvation thus seems to be very low and aphid honeydew is most likely a source of dietary sugar for these parasitoids. This latter supposition is supported by the fact that body sugar levels increase with host (aphid) density. Together, these results suggest that fecundity of B. communis benefits from both dynamic egg maturation strategies and sugar-feeding.
Collapse
Affiliation(s)
- Christine Dieckhoff
- Department of Entomology & Wildlife Ecology, University of Delaware Newark, Delaware, 19716
| | - Julian C Theobald
- Lancaster Environment Centre, Centre for Sustainable Agriculture, Lancaster University Lancaster, LA1 4YQ, UK
| | - Felix L Wäckers
- Lancaster Environment Centre, Centre for Sustainable Agriculture, Lancaster University Lancaster, LA1 4YQ, UK
| | - George E Heimpel
- Department of Entomology, University of Minnesota St Paul, Minnesota, 55108
| |
Collapse
|
8
|
Nectar provisioning close to host patches increases parasitoid recruitment, retention and host parasitism. Basic Appl Ecol 2014. [DOI: 10.1016/j.baae.2014.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Fischbein D, Bernstein C, Corley JC. Linking reproductive and feeding strategies in the parasitoid Ibalia leucospoides: does feeding always imply profit? Evol Ecol 2012. [DOI: 10.1007/s10682-012-9608-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Mateo Leach I, Ferber S, van de Zande L, Beukeboom LW. Genetic variability of arrhenotokous and thelytokous Venturia canescens (Hymenoptera). Genetica 2012; 140:53-63. [PMID: 22729870 PMCID: PMC3386485 DOI: 10.1007/s10709-012-9657-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 05/02/2012] [Indexed: 11/30/2022]
Abstract
The ichneumonid wasp Venturia canescens (Hymenoptera) has been studied extensively for foraging behaviour and population dynamics of sexually (arrhenotokous) and parthenogenetically (thelytokous) reproducing individuals. Here we report the development of a set of microsatellite markers for V.canescens and use them to show that arrhenotokous individuals have more genetic variability than thelytokous ones, which are even homozygous for all tested loci. Crosses between arrhenotokous individuals suggested one marker, Vcan071, to be linked with the Complementary Sex Determiner (CSD) locus and one, Vcan109, with the Virus Like Protein (vlp-p40) locus. The genome size of V. canescens was estimated to be 274–279 Mb. We discuss how both reproductive modes can give rise to the observed genetic variability and how the new markers can be used for future genetic studies of V. canescens.
Collapse
Affiliation(s)
- Irene Mateo Leach
- Evolutionary Genetics, Centre for Ecological and Evolutionary Studies, University of Groningen, PO Box 11103, 9700 CC, Groningen, The Netherlands
| | | | | | | |
Collapse
|
11
|
Harvey JA, Cloutier J, Visser B, Ellers J, Wäckers FL, Gols R. The effect of different dietary sugars and honey on longevity and fecundity in two hyperparasitoid wasps. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:816-823. [PMID: 22469560 DOI: 10.1016/j.jinsphys.2012.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/05/2012] [Accepted: 03/05/2012] [Indexed: 05/31/2023]
Abstract
In nature adult insects, such as parasitic wasps or 'parasitoids' often depend on supplemental nutritional sources, such as sugars and other carbohydrates, to maximize their life-expectancy and reproductive potential. These food resources are commonly obtained from animal secretions or plant exudates, including honeydew, fruit juices and both floral and extra-floral nectar. In addition to exogenous sources of nutrition, adult parasitoids obtain endogenous sources from their hosts through 'host-feeding' behavior, whereby blood is imbibed from the host. Resources obtained from the host contain lipids, proteins and sugars that are assumed to enhance longevity and/or fecundity. Here we conducted an experiment exploring the effects of naturally occurring sugars on longevity and fecundity in the solitary hyperparasitoids, Lysibia nana and Gelis agilis. Although both species are closely related, L. nana does not host-feed whereas G. agilis does. In a separate experiment, we compared reproduction and longevity in G. agilis reared on either honey, a honey-sugar 'mimic', and glucose. Reproductive success and longevity in both hyperparasitoids varied significantly when fed on different sugars. However, only mannose- and water-fed wasps performed significantly more poorly than wasps fed on four other sugar types. G. agilis females fed honey produced twice as many progeny as those reared on the honey-sugar mimic or on glucose, whereas female longevity was only reduced on the mimic mixture. This result shows not only that host feeding influences reproductive success in G. agilis, but also that non-sugar constituents in honey do. The importance of non-sugar nutrients in honey on parasitoid reproduction is discussed.
Collapse
Affiliation(s)
- Jeffrey A Harvey
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Droevendalsesteeg 10, 6708-PB, Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
12
|
Ellers J, Ruhe B, Visser B. Discriminating between energetic content and dietary composition as an explanation for dietary restriction effects. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1670-1676. [PMID: 21914451 DOI: 10.1016/j.jinsphys.2011.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 08/28/2011] [Accepted: 08/29/2011] [Indexed: 05/31/2023]
Abstract
A reduction in dietary calories has been shown to prolong life span in a wide variety of taxa, but there has been much debate about confounding factors such as nutritional composition of the diet, or reallocation of nutrients from reduced reproduction. To disentangle the contribution of these different mechanisms to extension of life span, we study the effect of caloric restriction on longevity and fecundity in two species of sugar-feeding parasitoid wasps. They have a simple diet that consists of carbohydrates only, and they do not resorb eggs, which rules out the proposed alternative explanations for beneficial effects of caloric restriction. Two caloric restriction treatments were applied: first, dietary dilution to investigate the effect of carbohydrate concentration in the diet; and second, intermittent feeding to examine the effect of feeding frequency on longevity and fecundity. Only the dietary dilution treatment showed an effect of caloric restriction with the highest longevity recorded at 80% sucrose (w/v). No effect of dietary regime was found on fecundity. We also measured the weight increase of the parasitoids after feeding to obtain an estimate of consumption. A constant quantity of the sugar solution was consumed in all dietary dilution treatments, hence caloric intake was proportional to sucrose concentrations. Although the present study does not disqualify the relevance of nutrient composition in other species, our data unequivocally demonstrate that caloric restriction alone is sufficient to extend life span and invalidate alternative explanations.
Collapse
Affiliation(s)
- Jacintha Ellers
- Department of Ecological Sciences, VU University Amsterdam, The Netherlands.
| | | | | |
Collapse
|
13
|
PELOSSE PERRINE, JERVIS MARKA, BERNSTEIN CARLOS, DESOUHANT EMMANUEL. Does synovigeny confer reproductive plasticity upon a parasitoid wasp that is faced with variability in habitat richness? Biol J Linn Soc Lond 2011. [DOI: 10.1111/j.1095-8312.2011.01741.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Urru I, Stensmyr MC, Hansson BS. Pollination by brood-site deception. PHYTOCHEMISTRY 2011; 72:1655-66. [PMID: 21419464 DOI: 10.1016/j.phytochem.2011.02.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 02/16/2011] [Accepted: 02/16/2011] [Indexed: 05/11/2023]
Abstract
Pollination is often regarded as a mutualistic relationship between flowering plants and insects. In such a relationship, both partners gain a fitness benefit as a result of their interaction. The flower gets pollinated and the insect typically gets a food-related reward. However, flower-insect communication is not always a mutualistic system, as some flowers emit deceitful signals. Insects are thus fooled by irresistible stimuli and pollination is accomplished. Such deception requires very fine tuning, as insects in their typically short life span, try to find mating/feeding breeding sites as efficiently as possible, and following deceitful signals thus is both costly and time-consuming. Deceptive flowers have thus evolved the ability to emit signals that trigger obligate innate or learned responses in the targeted insects. The behavior, and thus the signals, exploited are typically involved in reproduction, from attracting pheromones to brood/food-site cues. Chemical mimicry is one of the main modalities through which flowers trick their pollen vectors, as olfaction plays a pivotal role in insect-insect and insect-plant interactions. Here we focus on floral odors that specifically mimic an oviposition substrate, i.e., brood-site mimicry. The phenomenon is wide spread across unrelated plant lineages of Angiosperm, Splachnaceae and Phallaceae. Targeted insects are mainly beetles and flies, and flowers accordingly often emit, to the human nose, highly powerful and fetid smells that are conversely extremely attractive to the duped insects. Brood-site deceptive plants often display highly elaborate flowers and have evolved a trap-release mechanism. Chemical cues often act in unison with other sensory cues to refine the imitation.
Collapse
Affiliation(s)
- Isabella Urru
- Department of Evolutionary Neuroethology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany.
| | | | | |
Collapse
|