1
|
González-Carrera S, Fernández-Fuentes A, Escudero A, García-Estévez I, Martínez-Ortega M, Mediavilla S. Leaf traits and insect herbivory levels in two Mediterranean oaks and their hybrids through contrasting environmental gradients. TREE PHYSIOLOGY 2025; 45:tpae170. [PMID: 39729020 DOI: 10.1093/treephys/tpae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/06/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Insect herbivory has attracted enormous attention from researchers due to its effects on plant fitness. However, there remain questions such as what are the most important leaf traits that determine consumption levels, whether there are latitudinal gradients in herbivore pressure, or whether there are differences in susceptibility between hybrids and their parental species. In this work, we address all these issues in two species of Mediterranean Quercus (Quercus faginea subsp. faginea Lam. and Quercus pyrenaica Wild.) and their hybrids. Over 2 years, we analyzed leaf emergence and 11 leaf traits (biomechanical, chemical and morphological), as well as the levels of herbivory by insects in leaves of the three genetic groups in different locations distributed along a climatic gradient. The hybrids showed intermediate values between both species in leaf emergence, chemical traits and structural reinforcement. By contrast, they were more similar to Q. faginea in leaf size and shape. Despite their intermediate leaf traits, hybrids always showed lower losses by consumption than both parental species, which suggests that they possess inherent higher resistance to herbivores, which cannot be explained by their dissimilarities in leaf traits. Within each genetic group, differences in leaf size were the most important determinant of differences in herbivory losses, which increased with leaf size. In turn, leaf size increased significantly with the increase in mean annual temperatures across the climatic gradient, in parallel with herbivory losses. In conclusion, contrary to our expectations, hybrids maintained lower levels of herbivory than their parent species. Given the potential negative effect of leaf herbivory on carbon fixation, this advantage of the hybrids would imply a threat to the persistence of both pure species. More research is needed to elucidate possible alternative mechanisms that allow for maintaining species integrity in the absence of reproductive barriers.
Collapse
Affiliation(s)
- Santiago González-Carrera
- Department of Ecology, Faculty of Biology, University of Salamanca, c/ Licenciado Méndez Nieto, s/n, Salamanca 37071, Spain
| | - Alejandro Fernández-Fuentes
- Department of Ecology, Faculty of Biology, University of Salamanca, c/ Licenciado Méndez Nieto, s/n, Salamanca 37071, Spain
| | - Alfonso Escudero
- Department of Ecology, Faculty of Biology, University of Salamanca, c/ Licenciado Méndez Nieto, s/n, Salamanca 37071, Spain
| | - Ignacio García-Estévez
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Pharmacy, University of Salamanca, c/ Licenciado Méndez Nieto, s/n, Salamanca 37071, Spain
| | - Montserrat Martínez-Ortega
- Department of Botany and Plant Physiology, Faculty of Biology, University of Salamanca, c/ Licenciado Méndez Nieto, s/n, Salamanca 37071, Spain
- Herbarium and Plant DNA Biobank, University of Salamanca, c/ Espejo, 2, Salamanca 37007, Spain
| | - Sonia Mediavilla
- Department of Ecology, Faculty of Biology, University of Salamanca, c/ Licenciado Méndez Nieto, s/n, Salamanca 37071, Spain
| |
Collapse
|
2
|
Oikawa S. Changes in leaf lifespan, nitrogen resorption, and mean residence time of leaf nitrogen along a soil fertility gradient in an evergreen oak tree. PHYSIOLOGIA PLANTARUM 2024; 176:e14519. [PMID: 39262305 DOI: 10.1111/ppl.14519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/08/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
The ability of plants to retain nitrogen (N) for a long period of time is critical to their N use efficiency, growth, and fitness, particularly in infertile environments. The mean residence time of leaf N (MRTL) and its two determinants, leaf lifespan and N resorption efficiency (rN, the fraction of the total leaf N pool that is resorbed during leaf senescence), have been hypothesized to increase plastically with decreasing soil N fertility but this remains to be fully tested. To avoid confusion by random changes in these characteristics in a relatively narrow N fertility range, MRTL, leaf lifespan, and N resorption efficiency were measured in Quercus glauca over a broad N fertility range. In the high to moderate N fertility range, leaf lifespan and rN increased with decreasing N addition rate, and thus the MRTL increased. However, in the moderate to low N fertility range, leaf lifespan increased but rN decreased significantly, so MRTL decreased. The decrease in rN occurred because the senesced leaf N concentration was almost constant at the lower limit while the green leaf N concentration decreased in this range. The hump-shaped quadratic responses of MRTL and rN along the N fertility gradient suggest that incorrect conclusions about the response of these traits to N fertility variation may be drawn from experiments that include only a few fertility levels, and N recycling within leaf canopy alone cannot achieve efficient N use in infertile environments.
Collapse
Affiliation(s)
- Shimpei Oikawa
- Graduate School of Science and Engineering, Ibaraki University, Mito, Japan
| |
Collapse
|
3
|
The green thorns of Ulex europaeus play both defensive and photosynthetic roles: consequences for predictions of the enemy release hypothesis. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02648-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Zvereva EL, Paolucci LN, Kozlov MV. Top-down factors contribute to differences in insect herbivory between saplings and mature trees in boreal and tropical forests. Oecologia 2020; 193:167-176. [PMID: 32314043 PMCID: PMC7235072 DOI: 10.1007/s00442-020-04659-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/15/2020] [Indexed: 11/26/2022]
Abstract
Ontogenetic changes in herbivory are generally not consistent with ontogenetic changes in defensive traits of woody plants. This inconsistency suggests that other factors may affect ontogenetic trajectories in herbivory. We tested the hypothesis that top-down factors contribute to differences in foliar losses to insects between juvenile and mature trees in tropical and boreal forests. We used artificial caterpillars made of modelling clay to compare predation rates between saplings and mature trees of two common forest species, Siparuna guianensis in Brazil (tropical site) and Betula pubescens in Finland (boreal site). Leaf area losses to chewing insects in saplings were 2.5-fold higher than in mature trees in both species. Physical plant defences (measured as specific leaf area, SLA) did not differ between saplings and mature trees in the boreal forest, whereas in the tropical forest, SLA was greater in saplings than in mature trees. Attack rates on the model prey by birds were higher in the boreal forest, whereas attack rates by arthropod predators were higher in the tropical forest. Overall, predation rates on model prey were consistently higher on mature trees than on saplings at both sites, but in the boreal site, this pattern was primarily driven by birds, whereas in the tropical site, it was primarily driven by arthropod predators. We conclude that the effect of predation on herbivorous insects may considerably contribute to ontogenetic differences in herbivory, but the relative roles of different predatory groups and of top-down and bottom-up factors may vary between environments.
Collapse
Affiliation(s)
- Elena L Zvereva
- Department of Biology, University of Turku, 20014, Turku, Finland.
| | - Lucas N Paolucci
- Setor de Ecologia E Conservação, Departamento de Biologia, Universidade Federal de Lavras, Lavras, CEP: 37200-000, Brazil
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Campus Universitário, Viçosa, MG, CEP: 36570-900, Brazil
| | - Mikhail V Kozlov
- Department of Biology, University of Turku, 20014, Turku, Finland
| |
Collapse
|
5
|
Relationships between Leaf Anatomy and Physiological Functioning of Southern US Oak Species Differing in Flood Tolerance. FORESTS 2020. [DOI: 10.3390/f11010073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Research Highlights: Bottomland oaks receive less attention than upland species, however their adaptations to flooding and summer water stress will extend our understanding of the oak genus and links between physiology and leaf anatomy. Background and objectives: Determining links between leaf anatomy and physiology can aid in parameterizing dynamic global vegetation models for oak systems, therefore we sought to (1) compare leaf anatomic, nutrient, and physiological parameters for bottomland oaks differing in flood tolerance, (2) determine correlations across parameters and determine which anatomic and nutrient parameters best predict photosynthetic capacity metrics, and (3) compare these data with reported literature values for oaks across the globe. Materials and Methods: We measured CO2 response curves (A/Ci) on leaves from Nuttall, Shumard, swamp chestnut, water and white oak seedlings planted in the Southeastern United States (US) and estimated stomatal size and density, epidermal cell size, vein density, leaf mass per area (LMA) and nitrogen (N) concentrations. Principal component analysis among these leaf anatomic and nutrient parameters was used to determine the best predictors of photosynthetic parameters including Rubisco-limited carboxylation rate (VCmax) and electron transport limited carboxylation rate (Jmax). Results: We found that although physiological parameters were similar, flood-tolerant oaks had lower leaf N concentrations and larger, more infrequent stomata than less flood-tolerant species. Leaf epidermal properties were correlated with N concentrations and a principal component capturing this correlation as well as principal components correlated with mesophyll conductance and leaf carbon concentrations were found to best explain variation in VCmax and Jmax. These Southeastern US oaks exhibited similar leaf physiological parameters and LMA as oaks reported in the literature but differed in leaf epidermal and stomatal properties as well as leaf N concentrations increasing the reported range of these parameters within the oak genus. Conclusions: Therefore, leaf anatomy and nutrient parameters as opposed to physiology differed across flood tolerance and between bottomland oaks and broader literature values.
Collapse
|