1
|
Zhang YY, Li HK, Huang X, Yuan YJ, Zhang XF, Gao XS, Wang XJ, Wei MM, Huang HS, Li W. Heterozygosity analysis of spontaneous 2n female gametes and centromere mapping of the diploid Hevea brasiliensis based on full-sib triploid populations. PLANT REPRODUCTION 2024; 37:47-56. [PMID: 37758937 DOI: 10.1007/s00497-023-00481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
KEY MESSAGE Unreduced megagametophytes via second-division restitution were confirmed through heterozygosity analysis, and four candidate physical centromeres of rubber were located for the first time. The evaluation of maternal heterozygosity restitution (MHR) is vital in identifying the mechanism of 2n gametogenesis and assessing the utilization value of 2n gametes. In this study, three full-sib triploid populations were employed to evaluate the MHR of 2n female gametes of rubber tree clone GT1 and to confirm their genetic derivation. The 2n female gametes of GT1 were derived from second-division restitution (SDR) and transmitted more than half of the parental heterozygosity. In addition, low recombination frequency markers were developed, and four candidate physical centromeres of rubber tree were located for the first time. The confirmation that 2n female gametes of rubber tree clone GT1 are derived from SDR provides insights into the molecular mechanisms of 2n gametogenesis. In addition, the identified centromere location will aid in the development of centromeric markers for the rapid identification of the 2n gametogenesis mechanism.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- State Key Laboratory of Tropical Crop Breeding, State Centre for Rubber Breeding, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
| | - Hong-Kun Li
- Dehong Institute of Tropical Agricultural Sciences of Yunnan Province, Ruili, 678600, Yunnan, China
| | - Xiao Huang
- State Key Laboratory of Tropical Crop Breeding, State Centre for Rubber Breeding, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Yu-Jiao Yuan
- College of Tropical Crops, Yunnan Agricultural University, Puer, 665099, Yunnan, China
| | - Xiao-Fei Zhang
- State Key Laboratory of Tropical Crop Breeding, State Centre for Rubber Breeding, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Xin-Sheng Gao
- State Key Laboratory of Tropical Crop Breeding, State Centre for Rubber Breeding, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Xiang-Jun Wang
- State Key Laboratory of Tropical Crop Breeding, State Centre for Rubber Breeding, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Ming-Ming Wei
- State Key Laboratory of Tropical Crop Breeding, State Centre for Rubber Breeding, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Hua-Sun Huang
- State Key Laboratory of Tropical Crop Breeding, State Centre for Rubber Breeding, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Weiguo Li
- State Key Laboratory of Tropical Crop Breeding, State Centre for Rubber Breeding, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
| |
Collapse
|
2
|
Zhou X, Li S, Yang X. The DcPS1 cooperates with OSDLa during pollen development and 2n gamete production in carnation meiosis. BMC PLANT BIOLOGY 2022; 22:259. [PMID: 35610560 PMCID: PMC9128087 DOI: 10.1186/s12870-022-03648-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/09/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND Deciphering the mechanisms of meiosis has important implications for potential applications in plant breeding programmes and species evolution. However, the process of meiosis is poorly understood in carnation, which is famous for its cut flowers. RESULTS We report that Dianthus caryophyllus parallel spindle 1 (DcPS1) regulates omission of second division like a (OSDLa) during pollen development and 2n gamete production in carnation meiosis. In DcPS1 and OSDLa RNAi lines, an absence of the second meiotic division and the abnormal orientation of spindles at meiosis II might be the main reason for dyad/triad formation, resulting in unreduced gametes. We also found that carnation OSDLa interacted with DcPS1 and DcRAD51D. In the DcPS1 RNAi lines, a decrease in OSDLa and DcRAD51D expression was observed. In the OSDLa RNAi lines, a decrease in DcPS1 and DcRAD51D expression was also observed. We propose that DcPS1 regulates OSDLa expression, allowing entry into meiosis II and the proper orientation of the metaphase II spindle in meiosis II. We also propose that OSDLa regulates DcRAD51D expression, allowing for homologous recombination. CONCLUSIONS These results suggest a critical role for DcPS1 and OSDLa in diplogamete production during meiosis and open a new pathway for meiosis-related studies.
Collapse
Affiliation(s)
- Xuhong Zhou
- Office of Science and Technology, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Chenggong, Kunming, Yunnan, 650500, PR China.
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, 2238 Beijing Road, Kunming, Yunnan, 650205, PR China.
| | - Shuying Li
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, 2238 Beijing Road, Kunming, Yunnan, 650205, PR China
| | - Xiaomi Yang
- Office of Science and Technology, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Chenggong, Kunming, Yunnan, 650500, PR China
| |
Collapse
|
3
|
Insights into the Molecular Regulation of Lignin Content in Triploid Poplar Leaves. Int J Mol Sci 2022; 23:ijms23094603. [PMID: 35562994 PMCID: PMC9099847 DOI: 10.3390/ijms23094603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
After polyploidization, plants usually undergo some morphological and physiological changes, including the lignin content of polyploids usually becoming lower than that of diploids. However, the regulatory mechanism of the variation of lignin content in polyploid plants remains unclear. Therefore, in this research, we used full-sib poplar triploids and diploids to explore the molecular regulatory basis of lignin content in poplar triploid leaves through the determination of lignin content, the observation of xylem cells, and transcriptome sequencing. The results showed that the lignin content of triploid leaves was significantly lower than that of diploid leaves. The xylem cells of triploid leaves were significantly larger than those of diploids. Transcriptome sequencing data show that most lignin biosynthesis genes were significantly downregulated, and genes related to cell growth were mostly upregulated in triploid leaves compared with diploid leaves. In addition, co-expression network analysis showed that several transcription factors might be involved in the regulation of lignin biosynthesis. Consequently, the altered expression of genes related to lignin might lead to the reduced lignin content in triploids. These results provide a theoretical basis for further exploring the molecular mechanism of the variation of polyploid lignin content and the utilization of polyploid lignocellulosic resources.
Collapse
|
4
|
Huang XY, Shang J, Zhong YH, Li DL, Song LJ, Wang J. Disaggregation of Ploidy, Gender, and Genotype Effects on Wood and Fiber Traits in a Diploid and Triploid Hybrid Poplar Family. FRONTIERS IN PLANT SCIENCE 2022; 13:866296. [PMID: 35432438 PMCID: PMC9011097 DOI: 10.3389/fpls.2022.866296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Triploid breeding based on unilateral sexual polyploidization is an effective approach for genetic improvement of Populus, which can integrate heterosis and ploidy vigor in an elite variety. However, the phenotypic divergence of unselected allotriploids with the same cross-combination remains poorly understood, and the contributions of ploidy, gender, and genotype effects on phenotypic variation are still unclear. In this study, wood and fiber traits, including basic density (BD), lignin content (LC), fiber length (FL), fiber width (FW), and fiber length/width (FL/W), were measured based on a 10-year-old clonal trial, including full-sib diploid and triploid hybrids of (Populus pseudo-simonii × P. nigra 'Zheyin3#') × P. × beijingensis, and contributions of ploidy, gender, and genotype effects on the variation of these traits, were disaggregated to enhance our understanding of triploid breeding. We found a significant phenotypic variation for all measured traits among genotypes. All the wood and fiber traits studied here underwent strong clonal responses with high repeatabilities (0.55-0.76). The Pearson's correlation analyses based on the best linear unbiased predictors (BLUPs) revealed that BD was significantly positively correlated with FL (r = 0.65, p = 0.030), suggesting that BD could be improved together with FL during triploid breeding. The FL of the triploids was significantly larger than that of the diploids (p < 0.001), suggesting that ploidy strongly affected the variation of FL traits. The difference between females and males was not significant for any measured trait, implying that gender might not be a major factor for variation in these traits. Further analyses of variance components showed that genotype dominantly contributed to the variation of BD, LC, and FW traits (with 54, 62, and 53% contributions, respectively) and ploidy contributed strongly to variation in FL and FL/W (77 and 50%, respectively). The genetic coefficient of variation (CVG) of triploids for each trait was low, suggesting that it is necessary to produce many triploids for selection or to use different Populus species as parents. Our findings provide new insights into the genetic effects of ploidy, gender, and genotype on wood and fiber traits within a full-sib poplar family, enhancing the understanding of the triploid breeding program of Populus.
Collapse
Affiliation(s)
- Xu-Yan Huang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jing Shang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yu-Hang Zhong
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Dai-Li Li
- Beijing Institute of Landscape Architecture, Beijing, China
| | - Lian-Jun Song
- Breeding and Propagation Base for Tree Varieties in Weixian County, Xingtai, China
| | - Jun Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
5
|
Kang X, Wei H. Breeding polyploid Populus: progress and perspective. FORESTRY RESEARCH 2022; 2:4. [PMID: 39525419 PMCID: PMC11524227 DOI: 10.48130/fr-2022-0004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2024]
Abstract
Populus is a genus of 25-30 species of deciduous flowering plants in the family Salicaceae, which are primarily planted in short-rotation planations for producing timber, pulpwood, wooden products as well as bioenergy feedstock; they are also widely planted in agricultural fields and along roadsides as shelter forest belts for windbreak, decoration, and reduction of pollutants and noise. Moreover, their fast-growth and good adaptation to marginal lands enable them to provide some critical ecosystem services at various phytoremediation sites for land restoration and reclaimation. Thanks to their important roles, breeding for fast growing poplar trees has been one of the most important objectives for nearly a century. One of the most demonstrated, documented achievements in this aspect is polyploid breeding, especially triploid breeding. This paper critically reviews the various techniques used in inducing triploid plants, including natural 2n formation, artificial induction of 2n male and female gemmates through chemical or physical treatments, trait characterization of the triploid and tetraploid breeding populations, unveiling the molecular mechanisms underpinning the significantly improved traits, and identification and selection of the best triploid progenies. This review also recapitulated the challenges and strategies facing the future of triploid breeding in Populus, including amelioration of 2n gamete induction techniques and efficiency, selection of the best parents and identification of the best progrenies, utilization of the huge amount of genomic, transcriptomic, proteomic, metabolomic, and other omics data for selecting parents for improving target traits.
Collapse
Affiliation(s)
- Xiangyang Kang
- Beijing Forestry Molecular Design and Breeding Advanced Innovation Center, National Engineering Laboratory of Forestry Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education Beijing 100083, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
6
|
Zhong YH, Zheng YF, Xue YX, Wang LJ, Zhang JW, Li DL, Wang J. Variation of Chromosome Composition in a Full-Sib Population Derived From 2x × 3x Interploidy Cross of Populus. FRONTIERS IN PLANT SCIENCE 2022; 12:816946. [PMID: 35154214 PMCID: PMC8825477 DOI: 10.3389/fpls.2021.816946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Interploidy cross commonly results in complex chromosome number and structural variations. In our previous study, a progeny with segregated ploidy levels was produced by an interploidy cross between diploid female parent Populus tomentosa × Populus bolleana clone TB03 and triploid male parent Populus alba × Populus berolinensis 'Yinzhong'. However, the chromosome compositions of aneuploid genotypes in the progeny were still unclear. In the present study, a microsatellite DNA allele counting-peak ratios (MAC-PR) method was employed to analyze allelic configurations of each genotype to clarify their chromosome compositions, while 45S rDNA fluorescence in situ hybridization (FISH) analysis was used to reveal the mechanism of chromosome number variation. Based on the MAC-PR analysis of 47 polymorphic simple sequence repeat (SSR) markers distributed across all 19 chromosomes of Populus, both chromosomal number and structural variations were detected for the progeny. In the progeny, 26 hypo-triploids, 1 hyper-triploid, 16 hypo-tetraploids, 10 tetraploids, and 5 hyper-tetraploids were found. A total of 13 putative structural variation events (duplications and/or deletions) were detected in 12 genotypes, involved in chromosomes 3, 6, 7, 14, 15, 16, and 18. The 46.2% (six events) structural variation events occurred on chromosome 6, suggesting that there probably is a chromosome breakpoint near the SSR loci of chromosome 6. Based on calculation of the allelic information, the transmission of paternal heterozygosity in the hypo-triploids, hyper-triploid, hypo-tetraploids, tetraploids, and hyper-tetraploids were 0.748, 0.887, 0.830, 0.833, and 0.836, respectively, indicating that the viable pollen gains of the male parent 'Yinzhong' were able to transmit high heterozygosity to progeny. Furthermore, 45S rDNA-FISH analysis showed that specific-chromosome segregation feature during meiosis and chromosome appointment in normal and fused daughter nuclei of telophase II of 'Yinzhong,' which explained that the formation of aneuploids and tetraploids in the progeny could be attributed to imbalanced meiotic chromosomal segregation and division restitution of 'Yinzhong,' The data of chromosomal composition and structural variation of each aneuploid in the full-sib progeny of TB03 × 'Yinzhong' lays a foundation for analyzing mechanisms of trait variation relying on chromosome or gene dosages in Populus.
Collapse
Affiliation(s)
- Yu-Hang Zhong
- National Engineering Research Center of Tree Breeding and Ecological Remediation, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yun-Fei Zheng
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yin-Xuan Xue
- National Engineering Research Center of Tree Breeding and Ecological Remediation, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Lv-Ji Wang
- National Engineering Research Center of Tree Breeding and Ecological Remediation, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jin-Wang Zhang
- Forestry and Grassland Research Institute of Tongliao City, Tongliao, China
| | - Dai-Li Li
- Beijing Institute of Landscape Architecture, Beijing, China
| | - Jun Wang
- National Engineering Research Center of Tree Breeding and Ecological Remediation, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
7
|
Sun P, Nishiyama S, Asakuma H, Voorrips RE, Fu J, Tao R. Genomics-based discrimination of 2n gamete formation mechanisms in polyploids: a case study in nonaploid Diospyros kaki 'Akiou'. G3 (BETHESDA, MD.) 2021; 11:6288453. [PMID: 34849809 PMCID: PMC8496294 DOI: 10.1093/g3journal/jkab188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022]
Abstract
Unreduced gametes (2n gametes), possessing double the haploid genome, whatever ploidy that happens to be, are a common source of ploidy variation in plant populations. First and second division restitution (FDR and SDR) are the dominant mechanisms of 2n gamete production; all else being equal, FDR gametes have a higher degree of heterozygosity, thus they are advantageous in breeding. The discrimination of these mechanisms from the consequence of hybridization is challenging, especially in higher polyploids, and usually requires information on centromere location. In this study, we propose a genotyping-based strategy to uncover the mechanisms of 2n gamete formation in progeny that has a higher ploidy than its parents. Simulation of 2n gamete production revealed that FDR and SDR pathways can be discriminated based on allele transmission patterns alone without information on centromere location. We applied this strategy to study the formation mechanism of a nonaploid Diospyros kaki ‘Akiou', which was bred via hybridization between D. kaki hexaploid cultivars. The result demonstrated that ‘Akiou' was derived from the fertilization of a normal female gamete by a 2n male gamete and that this 2n gamete was produced through FDR. Consequently, the distinct duplex transmission pattern in the FDR gamete enabled us to infer the genomic characteristics of polyploid persimmon. The method could be tested only for the plant being polypoid, which allows for the ability to discriminate causes of 2n gamete formation using allele dosage in progeny, and will be useful in future studies of polyploid genomics.
Collapse
Affiliation(s)
- Peng Sun
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.,Key Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of State Forestry and Grassland Administration, Zhengzhou 450003, China.,Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China.,National Innovation Alliance of Persimmon Industry, Zhengzhou 450003, China
| | - Soichiro Nishiyama
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideaki Asakuma
- Fukuoka Agriculture and Forestry Research Center, Chikushino, Fukuoka 818-8549, Japan
| | - Roeland E Voorrips
- Department of Plant Breeding, Wageningen University & Research, Wageningen, the Netherlands
| | - Jianmin Fu
- Key Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of State Forestry and Grassland Administration, Zhengzhou 450003, China.,Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China.,National Innovation Alliance of Persimmon Industry, Zhengzhou 450003, China
| | - Ryutaro Tao
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
8
|
Zhang Y, Huang X, Li W. Comparative transcriptome analysis reveals the candidate genes involved in SDR unreduced female gamete formation in the diploid rubber tree (Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg.). J RUBBER RES 2021. [DOI: 10.1007/s42464-021-00102-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Zhou Q, Wu J, Sang Y, Zhao Z, Zhang P, Liu M. Effects of Colchicine on Populus canescens Ectexine Structure and 2n Pollen Production. FRONTIERS IN PLANT SCIENCE 2020; 11:295. [PMID: 32256514 PMCID: PMC7092626 DOI: 10.3389/fpls.2020.00295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/27/2020] [Indexed: 05/02/2023]
Abstract
Triploid breeding is a central way to improve growth traits, timber quality, and stress resistance in Populus. In the present study, the morphology and viability of colchicine-induced 2n pollen, triploid production by crossing induced 2n pollen, and identification of genetic constitution of colchicine-induced 2n pollen were conducted in Populus canescens based on optimizing technology for inducing chromosome doubling in pollen. We found that the meiotic stage, injection time, and the interaction between the meiotic stage and injection time had highly significant effects on the 2n pollen production rate. The most effective treatment for inducing 2n pollen was to give 11 injections of 0.5% colchicine solution when pollen mother cells (PMCs) were at the pachytene stage. The highest 2n pollen production rate was 30.27 ± 8.69%. Colchicine occasionally affected ectexine deposition, and some narrow furrows were detected in the ectexine structure. However, no significant difference was observed in the pollen germination rate between natural 2n pollen and colchicine-induced 2n pollen. Moreover, 5 triploids derived from FDR-type 2n pollen were generated by crossing induced 2n pollen, suggesting that colchicine does not eliminate the function of colchicine-induced 2n pollen. However, slower growth of 2n pollen tubes was responsible for a lower triploid production rate.
Collapse
Affiliation(s)
- Qing Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- School of Bioscience and Biotechnology, Beijing Forestry University, Beijing, China
| | - Jian Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- School of Bioscience and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yaru Sang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- School of Bioscience and Biotechnology, Beijing Forestry University, Beijing, China
| | - Zhengyang Zhao
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
| | - Pingdong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- School of Bioscience and Biotechnology, Beijing Forestry University, Beijing, China
| | - Meiqin Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| |
Collapse
|
10
|
Du K, Liao T, Ren Y, Geng X, Kang X. Molecular Mechanism of Vegetative Growth Advantage in Allotriploid Populus. Int J Mol Sci 2020; 21:ijms21020441. [PMID: 32284503 PMCID: PMC7014019 DOI: 10.3390/ijms21020441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
Allotriploid poplar has a prominent vegetative growth advantage that impacts dramatically on lumber yield. The growth regulation is complex which involves abundant genes, metabolic and signaling pathways, while the information about the functional control process is very little. We used high-throughput sequencing and physiological index measurement to obtain a global overview of differences between allotriploid and diploid Populus. The genes related to plant growth advantage show a higher expression compared to diploid, and most of them are revolved around hormones, photosynthesis and product accumulation. Thus, allotriploid Populus showed more efficient photosynthesis, carbon fixation, sucrose and starch synthesis, and metabolism as well as augmented biosynthesis of auxin, cytokinin, and gibberellin. These data enable the connection of metabolic processes, signaling pathways, and specific gene activity, which will underpin the development of network models to elucidate the process of triploid Populus advantage growth.
Collapse
Affiliation(s)
- Kang Du
- Beijing Advanced Innovation Center for Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Haidian District, Beijing 100083, China; (K.D.); (Y.R.); (X.G.)
| | - Ting Liao
- Beijing Academy of Forestry and Pomology Sciences No. 12 A Rui Wang Fen, Fragrance Hills Haidian District, Beijing 100093, China
| | - Yongyu Ren
- Beijing Advanced Innovation Center for Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Haidian District, Beijing 100083, China; (K.D.); (Y.R.); (X.G.)
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, No. 35, Qinghua East Road, Haidian District, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Haidian District, Beijing 100083, China
| | - Xining Geng
- Beijing Advanced Innovation Center for Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Haidian District, Beijing 100083, China; (K.D.); (Y.R.); (X.G.)
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, No. 35, Qinghua East Road, Haidian District, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Haidian District, Beijing 100083, China
| | - Xiangyang Kang
- Beijing Advanced Innovation Center for Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Haidian District, Beijing 100083, China; (K.D.); (Y.R.); (X.G.)
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, No. 35, Qinghua East Road, Haidian District, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Haidian District, Beijing 100083, China
- Correspondence: ; Tel.: +86-10-6233-6168
| |
Collapse
|
11
|
Wang J, Huo B, Liu W, Li D, Liao L. Abnormal meiosis in an intersectional allotriploid of Populus L. and segregation of ploidy levels in 2x × 3x progeny. PLoS One 2017; 12:e0181767. [PMID: 28732039 PMCID: PMC5521839 DOI: 10.1371/journal.pone.0181767] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/06/2017] [Indexed: 11/18/2022] Open
Abstract
Triploid plants are usually highly aborted owing to unbalanced meiotic chromosome segregation, but limited viable gametes can participate in the transition to different ploidy levels. In this study, numerous meiotic abnormalities were found with high frequency in an intersectional allotriploid poplar (Populus alba × P. berolinensis 'Yinzhong'), including univalents, precocious chromosome migration, lagging chromosomes, chromosome bridges, micronuclei, and precocious cytokinesis, indicating high genetic imbalance in this allotriploid. Some micronuclei trigger mini-spindle formation in metaphase II and participate in cytokinesis to form polyads with microcytes. Unbalanced chromosome segregation and chromosome elimination resulted in the formation of microspores with aneuploid chromosome sets. Fusion of sister nuclei occurs in microsporocytes with precocious cytokinesis, which could form second meiotic division restitution (SDR)-type gametes. However, SDR-type gametes likely contain incomplete chromosome sets due to unbalanced segregation of homologous chromosomes during the first meiotic division in triploids. Misorientation of spindles during the second meiotic division, such as fused and tripolar spindles with low frequency, could result in the formation of first meiotic division restitution (FDR)-type unreduced gametes, which most likely contain three complete chromosome sets. Although 'Yinzhong' yields 88.7% stainable pollen grains with wide diameter variation from 23.9 to 61.3 μm, the pollen viability is poor (2.78% ± 0.38). A cross of 'Yinzhong' pollen with a diploid female clone produced progeny with extensive segregation of ploidy levels, including 29 diploids, 18 triploids, 4 tetraploids, and 48 aneuploids, suggesting the formation of viable aneuploidy and unreduced pollen in 'Yinzhong'. Individuals with different chromosome compositions are potential to analyze chromosomal function and to integrate the chromosomal dosage variation into breeding programs of Populus.
Collapse
Affiliation(s)
- Jun Wang
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, People's Republic of China
- National Engineering Laboratory in Tree Breeding, Beijing Forestry University, Beijing, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, Beijing Forestry University, Beijing, People's Republic of China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Beibei Huo
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, People's Republic of China
- National Engineering Laboratory in Tree Breeding, Beijing Forestry University, Beijing, People's Republic of China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Wanting Liu
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, People's Republic of China
- National Engineering Laboratory in Tree Breeding, Beijing Forestry University, Beijing, People's Republic of China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Daili Li
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, Beijing Forestry University, Beijing, People's Republic of China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Ling Liao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| |
Collapse
|
12
|
Wang J, Li D, Shang F, Kang X. High temperature-induced production of unreduced pollen and its cytological effects in Populus. Sci Rep 2017; 7:5281. [PMID: 28706219 PMCID: PMC5509662 DOI: 10.1038/s41598-017-05661-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/01/2017] [Indexed: 11/18/2022] Open
Abstract
Temperature change is of potential to trigger the formation of unreduced gametes. In this study, we showed that short periods of high temperature treatment can induce the production of 2n pollen in Populus pseudo-simonii Kitag. The meiotic stage, duration of treatment, and temperature have significant effects on the induction of 2n pollen. Heat stress resulted in meiotic abnormalities, including failure of chromosome separation, chromosome stickiness, laggards and micronuclei. Spindle disorientations in the second meiotic division, such as parallel, fused, and tripolar spindles, either increased in frequency or were induced de novo by high temperature treatment. We found that the high temperature treatment induced depolymerisation of meiotic microtubular cytoskeleton, resulting in the failure of chromosome segregation. New microtubular cytoskeletons were able to repolymerise in some heat-treated cells after transferring them to normal conditions. However, aberrant cytokinesis occurred owing to defects of new radial microtubule systems, leading to production of monads, dyads, triads, and polyads. This suggested that depolymerisation and incomplete restoration of microtubules may be important for high temperature-induction of unreduced gametes. These findings might help us understand how polyploidisation is induced by temperature-related stress and support the potential effects of global climate change on reproductive development of plants.
Collapse
Affiliation(s)
- Jun Wang
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, People's Republic of China.
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, People's Republic of China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, Beijing Forestry University, Beijing, 100083, People's Republic of China.
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Daili Li
- Beijing Huang Fa Nursery, Beijing, 102601, People's Republic of China
| | - Fengnan Shang
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, People's Republic of China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Xiangyang Kang
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, People's Republic of China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE, Beijing Forestry University, Beijing, 100083, People's Republic of China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| |
Collapse
|
13
|
Guo L, Xu W, Zhang Y, Zhang J, Wei Z. Inducing triploids and tetraploids with high temperatures in Populus sect. Tacamahaca. PLANT CELL REPORTS 2017; 36:313-326. [PMID: 27858216 DOI: 10.1007/s00299-016-2081-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/13/2016] [Indexed: 06/06/2023]
Abstract
This study is the first to report that triploids and tetraploids have been successfully produced through embryo sac and zygotic embryo chromosome doubling with high temperatures in P. simonii Carr. and its hybrid. A new synthetic polyploid induced by hybridization with unreduced gametes and heterozygotic embryo chromosome doubling can effectively combine polyploidy and heterosis, which can provide two major breeding advantages. In Populus, successfully creating and cultivating new polyploid varieties have economic and ecological production value. This was the first successful study in which embryo sac and zygotic embryo chromosome doubling was induced using high temperatures to produce triploids and tetraploids in Populus simonii Carr. and its hybrid, P. simonii × P. nigra var. Italica, of Populus sect. Tacamahaca. The relationship between flower bud morphological characteristics (time after pollination) and female meiotic stage (embryo sac and zygotic embryo development) was established to guide the induction treatment period. In the resulting progeny, 37 triploids and 12 tetraploids were obtained and identified using flow cytometry. The optimal temperatures for embryo sac and zygotic embryo chromosome doubling were 38 and 41 °C, respectively. Cytogenetic analysis revealed that 66-72 h after pollination (HAP), a period characterized by a high proportion of one-nucleate and two-nucleate embryo sacs, was the optimal period for embryo sac chromosome doubling. For zygotic embryo chromosome doubling, 168 HAP was the optimal induction period, as there was a high proportion of two-cell and four-cell proembryos. The results indicate that inducing embryo sac and zygotic embryo chromosome doubling is an ideal method for producing polyploids. The methods for inducing polyploids and for evaluating ploidy and offspring with different ploidies and heterozygosity in this study will be useful for genetic research and Populus breeding programmes.
Collapse
Affiliation(s)
- Liqin Guo
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of State Forestry Administration, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| | - Wenting Xu
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of State Forestry Administration, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Yan Zhang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of State Forestry Administration, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Jinfeng Zhang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of State Forestry Administration, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Zunzheng Wei
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China.
| |
Collapse
|