1
|
Ritter S, Wright ET, Serwer P. Extracellular Interaction of Bacillus thuringiensis, ATP and Phage 0105phi7-2: A Potential New Anti-Bacterial Strategy. Viruses 2023; 15:2409. [PMID: 38140651 PMCID: PMC10747076 DOI: 10.3390/v15122409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The following hypothesis proposes non-diffusive, environmental bacteriophage (phage) motion. (1) Some phage-hosting, motile bacteria undergo chemotaxis down ATP concentration gradients to escape lysis-inducing conditions, such as phage infection. (2) Some phages respond by non-infective binding to the motile bacteria. (3) When the bacteria reach a lower ATP concentration, which is a condition that signals increased density of phage-susceptible bacteria, the phage converts, Trojan-horse-like, to productive binding and infection. This hypothesis was previously proposed for Bacillus thuringiensis siphophage 0105phi7-2. It is tested here and confirmed with the following observations. (1) B. thuringiensis is found, macroscopically, preferentially located at low ATP concentrations when propagated in-gel after inoculation in the center of an artificially generated ATP concentration gradient. (2) Inoculating phage 0105phi7-2 at the bacteria inoculation site, 2-3 h after inoculation of bacteria, results in cell lysing activity that moves with the bacteria, without a visible trail of lysis. Trojan-horse-like behavior is consistent with only biofilm-inhabiting phages because environmental selection for this behavior requires limited fluid flows. We propose using artificial ATP concentration gradients to instigate Trojan-horse-like phage behavior during phage therapy of bacterial biofilms.
Collapse
Affiliation(s)
- Samantha Ritter
- Department of Microbiology, Immunology and Molecular Genetics, UT Health, San Antonio, TX 78229, USA;
| | - Elena T. Wright
- Department of Biochemistry and Structural Biology, UT Health, San Antonio, TX 78229, USA;
| | - Philip Serwer
- Department of Biochemistry and Structural Biology, UT Health, San Antonio, TX 78229, USA;
| |
Collapse
|
2
|
Genome-Wide Identification of G Protein-Coupled Receptors in Ciliated Eukaryotes. Int J Mol Sci 2023; 24:ijms24043869. [PMID: 36835283 PMCID: PMC9960496 DOI: 10.3390/ijms24043869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors and play important roles in many physiological processes. As a representative group of protozoa, ciliates represent the highest stage of eukaryotic cell differentiation and evolution in terms of their reproductive mode, two-state karyotype, and extremely diverse cytogenesis patterns. GPCRs have been poorly reported in ciliates. In this study, we identified 492 GPCRs in 24 ciliates. Using the existing classification system for animals, GPCRs in ciliates can be assigned to four families, including families A, B, E, and F. Most (377 members) belong to family A. The number of GPCRs is extremely different in different ciliates; the Heterotrichea ciliates usually have more GPCRs than other ciliates. Parasitic or symbiotic ciliates usually have only a few GPCRs. Gene/genome duplication events seem to play important roles in the expansion of the GPCR superfamily in ciliates. GPCRs in ciliates displayed seven typical domain organizations. GPCRs in an ortholog group are common and conserved in all ciliates. The gene expression analysis of the members in this conserved ortholog group in the model ciliate, Tetrahymena thermophila, suggested that these GPCRs play important roles in the life cycle of ciliates. In summary, this study provides the first comprehensive genome-wide identification of GPCRs in ciliates, improving our understanding of the evolution and function of GPCR in ciliates.
Collapse
|
3
|
Kwok ACM, Chan WS, Wong JTY. Dinoflagellate Amphiesmal Dynamics: Cell Wall Deposition with Ecdysis and Cellular Growth. Mar Drugs 2023; 21:md21020070. [PMID: 36827111 PMCID: PMC9959387 DOI: 10.3390/md21020070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Dinoflagellates are a major aquatic protist group with amphiesma, multiple cortical membranous "cell wall" layers that contain large circum-cortical alveolar sacs (AVs). AVs undergo extensive remodeling during cell- and life-cycle transitions, including ecdysal cysts (ECs) and resting cysts that are important in some harmful algal bloom initiation-termination. AVs are large cortical vesicular compartments, within which are elaborate cellulosic thecal plates (CTPs), in thecate species, and the pellicular layer (PL). AV-CTPs provide cellular mechanical protection and are targets of vesicular transport that are replaced during EC-swarmer cell transition, or with increased deposition during the cellular growth cycle. AV-PL exhibits dynamical-replacement with vesicular trafficking that are orchestrated with amphiesmal chlortetracycline-labeled Ca2+ stores signaling, integrating cellular growth with different modes of cell division cycle/progression. We reviewed the dynamics of amphiesma during different cell division cycle modes and life cycle stages, and its multifaceted regulations, focusing on the regulatory and functional readouts, including the coral-zooxanthellae interactions.
Collapse
|
4
|
Brette R. Integrative Neuroscience of Paramecium, a "Swimming Neuron". eNeuro 2021; 8:ENEURO.0018-21.2021. [PMID: 33952615 PMCID: PMC8208649 DOI: 10.1523/eneuro.0018-21.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/28/2022] Open
Abstract
Paramecium is a unicellular organism that swims in fresh water by beating thousands of cilia. When it is stimulated (mechanically, chemically, optically, thermally…), it often swims backward then turns and swims forward again. This "avoiding reaction" is triggered by a calcium-based action potential. For this reason, some authors have called Paramecium a "swimming neuron." This review summarizes current knowledge about the physiological basis of behavior of Paramecium.
Collapse
Affiliation(s)
- Romain Brette
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris 75012, France
| |
Collapse
|
5
|
Verkhratsky A. Early evolutionary history (from bacteria to hemichordata) of the omnipresent purinergic signalling: A tribute to Geoff Burnstock inquisitive mind. Biochem Pharmacol 2020; 187:114261. [PMID: 33011161 DOI: 10.1016/j.bcp.2020.114261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
Purines and pyrimidines are indispensable molecules of life; they are fundamental for genetic code and bioenergetics. From the very early evolution of life purines have acquired the meaning of damage-associated extracellular signaller and purinergic receptors emerged in unicellular organisms. Ancestral purinoceptors are P2X-like ionotropic ligand-gated cationic channels showing 20-40% of homology with vertebrate P2X receptors; genes encoding ancestral P2X receptors have been detected in Protozoa, Algae, Fungi and Sponges; they are also present in some invertebrates, but are absent from the genome of insects, nematodes, and higher plants. Plants nevertheless evolved a sophisticated and widespread purinergic signalling system relying on the idiosyncratic purinoceptor P2K1/DORN1 linked to intracellular Ca2+ signalling. The advance of metabotropic purinoceptors starts later in evolution with adenosine receptors preceding the emergence of P2Y nucleotide and P0 adenine receptors. In vertebrates and mammals the purinergic signalling system reaches the summit and operates throughout all tissues and systems without anatomical or functional segregation.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom; Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain.
| |
Collapse
|
6
|
Mancinelli R, Fanò-Illic G, Pietrangelo T, Fulle S. Guanosine-Based Nucleotides, the Sons of a Lesser God in the Purinergic Signal Scenario of Excitable Tissues. Int J Mol Sci 2020; 21:ijms21051591. [PMID: 32111063 PMCID: PMC7084674 DOI: 10.3390/ijms21051591] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/28/2022] Open
Abstract
Purines are nitrogen compounds consisting mainly of a nitrogen base of adenine (ABP) or guanine (GBP) and their derivatives: nucleosides (nitrogen bases plus ribose) and nucleotides (nitrogen bases plus ribose and phosphate). These compounds are very common in nature, especially in a phosphorylated form. There is increasing evidence that purines are involved in the development of different organs such as the heart, skeletal muscle and brain. When brain development is complete, some purinergic mechanisms may be silenced, but may be reactivated in the adult brain/muscle, suggesting a role for purines in regeneration and self-repair. Thus, it is possible that guanosine-5′-triphosphate (GTP) also acts as regulator during the adult phase. However, regarding GBP, no specific receptor has been cloned for GTP or its metabolites, although specific binding sites with distinct GTP affinity characteristics have been found in both muscle and neural cell lines. Finally, even if the cross regulation mechanisms between the two different purines (ABP and GBP) are still largely unknown, it is now possible to hypothesize the existence of specific signal paths for guanosine-based nucleotides that are capable of modulating the intensity and duration of the intracellular signal, particularly in excitable tissues such as brain and muscle.
Collapse
Affiliation(s)
- Rosa Mancinelli
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (T.P.)
- Interuniversity Institute of Miology (IIM), 66100 Chieti, Italy;
| | - Giorgio Fanò-Illic
- Interuniversity Institute of Miology (IIM), 66100 Chieti, Italy;
- Libera Università di Alcatraz, Santa Cristina di Gubbio, 06024 Gubbio, Italy
| | - Tiziana Pietrangelo
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (T.P.)
- Interuniversity Institute of Miology (IIM), 66100 Chieti, Italy;
| | - Stefania Fulle
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (T.P.)
- Interuniversity Institute of Miology (IIM), 66100 Chieti, Italy;
- Correspondence:
| |
Collapse
|
7
|
Vijayamahantesh, Vijayalaxmi. Tinkering with targeting nucleotide signaling for control of intracellular Leishmania parasites. Cytokine 2019; 119:129-143. [PMID: 30909149 DOI: 10.1016/j.cyto.2019.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/23/2022]
Abstract
Nucleotides are one of the most primitive extracellular signalling molecules across all phyla and regulate a multitude of responses. The biological effects of extracellular nucleotides/sides are mediated via the specific purinergic receptors present on the cell surface. In mammalian system, adenine nucleotides are the predominant nucleotides found in the extracellular milieu and mediate a constellation of physiological functions. In the context of host-pathogen interaction, extracellular ATP is recognized as a danger signal and potentiates the release of pro-inflammatory mediators from activated immune cells, on the other hand, its breakdown product adenosine exerts potential anti-inflammatory and immunosuppressive actions. Therefore, it is increasingly apparent that the interplay between extracellular ATP/adenosine ratios has a significant role in coordinating the regulation of the immune system in health and diseases. Several pathogens express ectonucleotidases on their surface and exploit the purinergic signalling as one of the mechanisms to modulate the host immune response. Leishmania pathogens are one of the most successful intracellular pathogens which survive within host macrophages and manipulate protective Th1 response into disease promoting Th2 response. In this review, we discuss the regulation of extracellular ATP and adenosine levels, the role of ATP/adenosine counter signalling in regulating the inflammation and immune responses during infection and how Leishmania parasites exploit the purinergic signalling to manipulate host response. We also discuss the challenges and opportunities in targeting purinergic signalling and the future prospects.
Collapse
Affiliation(s)
- Vijayamahantesh
- Department of Biochemistry, Indian Institute of Science (IISc), Bengaluru, Karnataka, India.
| | - Vijayalaxmi
- Department of Zoology, Karnatak University, Dharwad, Karnataka, India
| |
Collapse
|
8
|
Plattner H. Signalling in ciliates: long- and short-range signals and molecular determinants for cellular dynamics. Biol Rev Camb Philos Soc 2015; 92:60-107. [PMID: 26487631 DOI: 10.1111/brv.12218] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/28/2015] [Accepted: 08/21/2015] [Indexed: 12/30/2022]
Abstract
In ciliates, unicellular representatives of the bikont branch of evolution, inter- and intracellular signalling pathways have been analysed mainly in Paramecium tetraurelia, Paramecium multimicronucleatum and Tetrahymena thermophila and in part also in Euplotes raikovi. Electrophysiology of ciliary activity in Paramecium spp. is a most successful example. Established signalling mechanisms include plasmalemmal ion channels, recently established intracellular Ca2+ -release channels, as well as signalling by cyclic nucleotides and Ca2+ . Ca2+ -binding proteins (calmodulin, centrin) and Ca2+ -activated enzymes (kinases, phosphatases) are involved. Many organelles are endowed with specific molecules cooperating in signalling for intracellular transport and targeted delivery. Among them are recently specified soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), monomeric GTPases, H+ -ATPase/pump, actin, etc. Little specification is available for some key signal transducers including mechanosensitive Ca2+ -channels, exocyst complexes and Ca2+ -sensor proteins for vesicle-vesicle/membrane interactions. The existence of heterotrimeric G-proteins and of G-protein-coupled receptors is still under considerable debate. Serine/threonine kinases dominate by far over tyrosine kinases (some predicted by phosphoproteomic analyses). Besides short-range signalling, long-range signalling also exists, e.g. as firmly installed microtubular transport rails within epigenetically determined patterns, thus facilitating targeted vesicle delivery. By envisaging widely different phenomena of signalling and subcellular dynamics, it will be shown (i) that important pathways of signalling and cellular dynamics are established already in ciliates, (ii) that some mechanisms diverge from higher eukaryotes and (iii) that considerable uncertainties still exist about some essential aspects of signalling.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, PO Box M625, 78457, Konstanz, Germany
| |
Collapse
|
9
|
Amaroli A, Ravera S, Parker S, Panfoli I, Benedicenti A, Benedicenti S. Effect of 808 nm Diode Laser on Swimming Behavior, Food Vacuole Formation and Endogenous ATP Production of Paramecium primaurelia (Protozoa). Photochem Photobiol 2015; 91:1150-5. [PMID: 26118482 DOI: 10.1111/php.12486] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/18/2015] [Indexed: 12/19/2022]
Abstract
Photobiomodulation (PBM) has been used in clinical practice for more than 40 years. To clarify the mechanisms of action of PBM at cellular and organism levels, we investigated its effect on Paramecium primaurelia (Protozoa) irradiated by an 808 nm infrared diode laser with a flat-top handpiece (1 W in CW). Our results led to the conclusion that: (1) the 808 nm laser stimulates the P. primaurelia without a thermal effect, (2) the laser effect is demonstrated by an increase in swimming speed and in food vacuole formation, (3) the laser treatment affects endogenous adenosine triphosphate (ATP) production in a positive way, (4) the effects of irradiation dose suggest an optimum exposure time of 50 s (64 J cm(-2) of fluence) to stimulate the Paramecium cells; irradiation of 25 s shows no effect or only mild effects and irradiation up to 100 s does not increase the effect observed with 50 s of treatment, (5) the increment of endogenous ATP concentration highlights the positive photobiomodulating effect of the 808 nm laser and the optimal irradiation conditions by the flat-top handpiece.
Collapse
Affiliation(s)
- Andrea Amaroli
- Department of Earth, Environmental and Life Sciences, Protistology Laboratory, University of Genoa, Genoa, Italy
| | - Silvia Ravera
- Department of Pharmacy, Biochemistry Laboratory, University of Genoa, Genoa, Italy
| | - Steven Parker
- Department of Surgical Sciences and Integrated Diagnostic, University of Genoa, Genoa, Italy
| | - Isabella Panfoli
- Department of Pharmacy, Biochemistry Laboratory, University of Genoa, Genoa, Italy
| | - Alberico Benedicenti
- Department of Surgical Sciences and Integrated Diagnostic, University of Genoa, Genoa, Italy
| | - Stefano Benedicenti
- Department of Surgical Sciences and Integrated Diagnostic, University of Genoa, Genoa, Italy
| |
Collapse
|
10
|
Nociceptin Signaling Involves a Calcium-Based Depolarization in Tetrahymena thermophila. INTERNATIONAL JOURNAL OF PEPTIDES 2013; 2013:573716. [PMID: 23737806 PMCID: PMC3657412 DOI: 10.1155/2013/573716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 04/09/2013] [Indexed: 11/18/2022]
Abstract
Tetrahymena thermophila are free-living, ciliated eukaryotes. Their behavioral response to stimuli is well characterized and easily observable, since cells swim toward chemoattractants and avoid chemorepellents. Chemoattractant responses involve increased swim speed or a decreased change in swim direction, while chemorepellent signaling involves ciliary reversal, which causes the organism to jerk back and forth, swim in small circles, or spin in an attempt to get away from the repellent. Many food sources, such as proteins, are chemoattractants for these organisms, while a variety of compounds are repellents. Repellents in nature are thought to come from the secretions of predators or from ruptured organisms, which may serve as “danger” signals. Interestingly, several peptides involved in vertebrate pain signaling are chemorepellents in Tetrahymena, including substances P, ACTH, PACAP, VIP, and nociceptin. Here, we characterize the response of Tetrahymena thermophila to three different isoforms of nociceptin. We find that G-protein inhibitors and tyrosine kinase inhibitors do not affect nociceptin avoidance. However, the calcium chelator, EGTA, and the SERCA calcium ATPase inhibitor, thapsigargin, both inhibit nociceptin avoidance, implicating calcium in avoidance. This result is confirmed by electrophysiology studies which show that 50 μM nociceptin-NH2 causes a sustained depolarization of approximately 40 mV, which is eliminated by the addition of extracellular EGTA.
Collapse
|
11
|
|
12
|
|
13
|
Lampert TJ, Coleman KD, Hennessey TM. A knockout mutation of a constitutive GPCR in Tetrahymena decreases both G-protein activity and chemoattraction. PLoS One 2011; 6:e28022. [PMID: 22140501 PMCID: PMC3226668 DOI: 10.1371/journal.pone.0028022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/30/2011] [Indexed: 11/18/2022] Open
Abstract
Although G-protein coupled receptors (GPCRs) are a common element in many chemosensory transduction pathways in eukaryotic cells, no GPCR or regulated G-protein activity has yet been shown in any ciliate. To study the possible role for a GPCR in the chemoresponses of the ciliate Tetrahymena, we have generated a number of macronuclear gene knockouts of putative GPCRs found in the Tetrahymena Genome database. One of these knockout mutants, called G6, is a complete knockout of a gene that we call GPCR6 (TTHERM_00925490). Based on sequence comparisons, the Gpcr6p protein belongs to the Rhodopsin Family of GPCRs. Notably, Gpcr6p shares highest amino acid sequence homologies to GPCRs from Paramecium and several plants. One of the phenotypes of the G6 mutant is a decreased responsiveness to the depolarizing ions Ba2+ and K+, suggesting a decrease in basal excitability (decrease in Ca2+ channel activity). The other major phenotype of G6 is a loss of chemoattraction to lysophosphatidic acid (LPA) and proteose peptone (PP), two known chemoattractants in Tetrahymena. Using microsomal [35S]GTPγS binding assays, we found that wild-type (CU427) have a prominent basal G-protein activity. This activity is decreased to the same level by pertussis toxin (a G-protein inhibitor), addition of chemoattractants, or the G6 mutant. Since the basal G-protein activity is decreased by the GPCR6 knockout, it is likely that this gene codes for a constitutively active GPCR in Tetrahymena. We propose that chemoattractants like LPA and PP cause attraction in Tetrahymena by decreasing the basal G-protein stimulating activity of Gpcr6p. This leads to decreased excitability in wild-type and longer runs of smooth forward swimming (less interrupted by direction changes) towards the attractant. Therefore, these attractants may work as inverse agonists through the constitutively active Gpcr6p coupled to a pertussis-sensitive G-protein.
Collapse
Affiliation(s)
- Thomas J Lampert
- Department of Biological Sciences, University at Buffalo, Amherst, New York, United States of America
| | | | | |
Collapse
|
14
|
Shpakov AO, Dergach KV, Uspenskaya ZI. Effects of natural amino acids and sugars on activity of infusiorian cyclases. J EVOL BIOCHEM PHYS+ 2011. [DOI: 10.1134/s0022093011020046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Chemoattraction to lysophosphatidic acid does not require a change in membrane potential inTetrahymena thermophila. Cell Biol Int 2011; 35:519-28. [DOI: 10.1042/cbi20100320] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Knowles AF. The GDA1_CD39 superfamily: NTPDases with diverse functions. Purinergic Signal 2011; 7:21-45. [PMID: 21484095 DOI: 10.1007/s11302-010-9214-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 12/21/2010] [Indexed: 01/05/2023] Open
Abstract
The first comprehensive review of the ubiquitous "ecto-ATPases" by Plesner was published in 1995. A year later, a lymphoid cell activation antigen, CD39, that had been cloned previously, was shown to be an ecto-ATPase. A family of proteins, related to CD39 and a yeast GDPase, all containing the canonical apyrase conserved regions in their polypeptides, soon started to expand. They are now recognized as members of the GDA1_CD39 protein family. Because proteins in this family hydrolyze nucleoside triphosphates and diphosphates, a unifying nomenclature, nucleoside triphosphate diphopshohydrolases (NTPDases), was established in 2000. Membrane-bound NTPDases are either located on the cell surface or membranes of intracellular organelles. Soluble NTPDases exist in the cytosol and may be secreted. In the last 15 years, molecular cloning and functional expression have facilitated biochemical characterization of NTPDases of many organisms, culminating in the recent structural determination of the ecto-domain of a mammalian cell surface NTPDase and a bacterial NTPDase. The first goal of this review is to summarize the biochemical, mutagenesis, and structural studies of the NTPDases. Because of their ability in hydrolyzing extracellular nucleotides, the mammalian cell surface NTPDases (the ecto-NTPDases) which regulate purinergic signaling have received the most attention. Less appreciated are the functions of intracellular NTPDases and NTPDases of other organisms, e.g., bacteria, parasites, Drosophila, plants, etc. The second goal of this review is to summarize recent findings which demonstrate the involvement of the NTPDases in multiple and diverse physiological processes: pathogen-host interaction, plant growth, eukaryote cell protein and lipid glycosylation, eye development, and oncogenesis.
Collapse
Affiliation(s)
- Aileen F Knowles
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1030, USA,
| |
Collapse
|
17
|
Tanaka K, Gilroy S, Jones AM, Stacey G. Extracellular ATP signaling in plants. Trends Cell Biol 2010; 20:601-8. [PMID: 20817461 DOI: 10.1016/j.tcb.2010.07.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 07/26/2010] [Accepted: 07/28/2010] [Indexed: 01/06/2023]
Abstract
Extracellular adenosine-5'-triphosphate (ATP) induces a number of cellular responses in plants and animals. Some of the molecular components for purinergic signaling in animal cells appear to be lacking in plant cells, although some cellular responses are similar in both systems [e.g. increased levels of cytosolic free calcium, nitric oxide (NO), and reactive oxygen species (ROS)]. The purpose of this review is to compare and contrast purinergic signaling mechanisms in animal and plant cells. This comparison will aid our overall understanding of plant physiology and also provide details of the general fundamentals of extracellular ATP signaling in eukaryotes.
Collapse
Affiliation(s)
- Kiwamu Tanaka
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
18
|
Abstract
Purines appear to be the most primitive and widespread chemical messengers in the animal and plant kingdoms. The evidence for purinergic signalling in plants, invertebrates and lower vertebrates is reviewed. Much is based on pharmacological studies, but important recent studies have utilized the techniques of molecular biology and receptors have been cloned and characterized in primitive invertebrates, including the social amoeba Dictyostelium and the platyhelminth Schistosoma, as well as the green algae Ostreococcus, which resemble P2X receptors identified in mammals. This suggests that contrary to earlier speculations, P2X ion channel receptors appeared early in evolution, while G protein-coupled P1 and P2Y receptors were introduced either at the same time or perhaps even later. The absence of gene coding for P2X receptors in some animal groups [e.g. in some insects, roundworms (Caenorhabditis elegans) and the plant Arabidopsis] in contrast to the potent pharmacological actions of nucleotides in the same species, suggests that novel receptors are still to be discovered.
Collapse
Affiliation(s)
- G Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, London, UK.
| | | |
Collapse
|
19
|
Reichler SA, Torres J, Rivera AL, Cintolesi VA, Clark G, Roux SJ. Intersection of two signalling pathways: extracellular nucleotides regulate pollen germination and pollen tube growth via nitric oxide. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2129-38. [PMID: 19363208 PMCID: PMC2682505 DOI: 10.1093/jxb/erp091] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 03/02/2009] [Accepted: 03/02/2009] [Indexed: 05/18/2023]
Abstract
Plant and animal cells release or secrete ATP by various mechanisms, and this activity allows extracellular ATP to serve as a signalling molecule. Recent reports suggest that extracellular ATP induces plant responses ranging from increased cytosolic calcium to changes in auxin transport, xenobiotic resistance, pollen germination, and growth. Although calcium has been identified as a secondary messenger for the extracellular ATP signal, other parts of this signal transduction chain remain unknown. Increasing the extracellular concentration of ATPgammaS, a poorly-hydrolysable ATP analogue, inhibited both pollen germination and pollen tube elongation, while the addition of AMPS had no effect. Because pollen tube elongation is also sensitive to nitric oxide, this raised the possibility that a connection exists between the two pathways. Four approaches were used to test whether the germination and growth effects of extracellular ATPgammaS were transduced via nitric oxide. The results showed that increases in extracellular ATPgammaS induced increases in cellular nitric oxide, chemical agonists of the nitric oxide signalling pathway lowered the threshold of extracellular ATPgammaS that inhibits pollen germination, an antagonist of guanylate cyclase, which can inhibit some nitric oxide signalling pathways, blocked the ATPgammaS-induced inhibition of both pollen germination and pollen tube elongation, and the effects of applied ATPgammaS were blocked in nia1nia2 mutants, which have diminished NO production. The concurrence of these four data sets support the conclusion that the suppression of pollen germination and pollen tube elongation by extracellular nucleotides is mediated in part via the nitric oxide signalling pathway.
Collapse
|
20
|
Bartholomew J, Reichart J, Mundy R, Recktenwald J, Keyser S, Riddle M, Kuruvilla H. GTP avoidance in Tetrahymena thermophila requires tyrosine kinase activity, intracellular calcium, NOS, and guanylyl cyclase. Purinergic Signal 2007; 4:171-81. [PMID: 18368528 PMCID: PMC2377316 DOI: 10.1007/s11302-007-9052-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 02/02/2007] [Indexed: 10/27/2022] Open
Abstract
Guanosine 5'-triphosphate (GTP) is a chemorepellent in Tetrahymena thermophila that has been shown to stimulate cell division as well as ciliary reversal. Previous studies have proposed that GTP avoidance is linked to a receptor-mediated, calcium-based depolarization. However, the intracellular mechanisms involved in GTP avoidance have not been previously documented. In this study, we examine the hypothesis that GTP signals through a tyrosine kinase pathway in T. thermophila. Using behavioral assays, enzyme immunosorbent assays, Western blotting, and immunofluorescence, we present data that implicate a tyrosine kinase, phospholipase C, intracellular calcium, nitric oxide synthase (NOS) and guanylyl cyclase in GTP signaling. The tyrosine kinase inhibitor genistein eliminates GTP avoidance in Tetrahymena in behavioral assays. Similarly, pharmacological inhibitors of phospholipase C, NOS, and guanylyl cyclase all eliminated Tetrahymena avoidance to GTP. Immunofluorescence data shows evidence of tyrosine kinase activity in the cilia, suggesting that this enzyme activity could be directly involved in ciliary reversal.
Collapse
Affiliation(s)
- Janine Bartholomew
- Department of Science and Mathematics, Cedarville University, Cedarville, OH, 45314, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Jeter CR, Roux SJ. Plant responses to extracellular nucleotides: Cellular processes and biological effects. Purinergic Signal 2006; 2:443-9. [PMID: 18404482 PMCID: PMC2254475 DOI: 10.1007/s11302-005-3981-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 08/26/2005] [Indexed: 11/26/2022] Open
Abstract
Higher plants exhibit cellular responsiveness to the exogenous application of purine nucleotides in a manner consistent with a cell–cell signaling function for these molecules. Like animals, plants respond to extracellular ATP, ADP, and stable analogues (e.g., ATPγS and ADPβS) by increasing the cytoplasmic concentration of calcium. Agonist substrate specificity and concentration dependency suggest receptor mediation of these events, and, although the identity of the plant receptor is currently unknown, pharmacological analysis points to the involvement of a plasma membrane-localized calcium channel. Extracellular ATP can also induce the production of reactive oxygen species and stimulate an increase in the mRNA levels of a number of stress- and calcium-regulated genes, suggesting a role for nucleotide-based signaling in plant wound and defense responses. Furthermore, the growth and development of plants can also be altered by the application of external ATP. Recent studies are only beginning to uncover the complexities of plant signaling networks activated in response to extracellular ATP and how these might interact to affect plant physiological processes.
Collapse
Affiliation(s)
- Collene R. Jeter
- Science Park-Research Division, Department of Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957 USA
| | - Stanley J. Roux
- Section of Molecular Cell and Developmental Biology, The University of Texas-Austin, University Station A6700, Austin, TX 78712-0183 USA
| |
Collapse
|
22
|
Pietrangelo T, Guarnieri S, Fulle S, Fanò G, Mariggiò MA. Signal transduction events induced by extracellular guanosine 5' triphosphate in excitable cells. Purinergic Signal 2006; 2:633-6. [PMID: 18404466 PMCID: PMC2096655 DOI: 10.1007/s11302-006-9021-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 05/22/2006] [Accepted: 05/29/2006] [Indexed: 11/25/2022] Open
Abstract
A better understanding of the physiological effects of guanosine-based purines should help clarify the complex subject of purinergic signalling. We studied the effect of extracellular guanosine 5′triphosphate (GTP) on the differentiation of two excitable cell lines that both have specific binding sites for GTP: PC12 rat pheochromocytoma cells and C2C12 mouse skeletal muscle cells. PC12 cells can be differentiated into fully functional sympathetic-like neurons with 50′00 ng ml−1 of nerve growth factor, whereas serum starvation causes C2C12 cells to differentiate into myotubes showing functional excitation–contraction coupling, with the expression of myosin heavy chain proteins. Our results show that GTP enhances the differentiation of both of these excitable cell lines. The early events in guanosine-based purine signal transduction appear to involve an increase in intracellular Ca2+ levels and membrane hyperpolarization. We further investigated the early activation of extracellular-regulated kinases and phosphoinositide 3-kinase in GTP-stimulated PC12 and C2C12 cells, respectively. We found that GTP promotes the activation of both kinases. Together, our results suggest that, even if there are some differences in the signalling pathways, GTP-induced differentiation in both cell lines is dependent on an increase in intracellular Ca2+.
Collapse
Affiliation(s)
- T. Pietrangelo
- Laboratorio di Fisiologia Cellulare, Dipartimento Scienze del Farmaco, Centro Scienze dell’Invecchiamento (Ce.S.I.), University ‘G. d’Annunzio′Foundation, Istituto Interuniversitario di Miologia, Università di Chieti-Pescara, via dei Vestini 31, 66013 Chieti, Italy
| | - S. Guarnieri
- Laboratorio di Fisiologia Cellulare, Dipartimento Scienze del Farmaco, Centro Scienze dell’Invecchiamento (Ce.S.I.), University ‘G. d’Annunzio′Foundation, Istituto Interuniversitario di Miologia, Università di Chieti-Pescara, via dei Vestini 31, 66013 Chieti, Italy
| | - S. Fulle
- Laboratorio di Fisiologia Cellulare, Dipartimento Scienze del Farmaco, Centro Scienze dell’Invecchiamento (Ce.S.I.), University ‘G. d’Annunzio′Foundation, Istituto Interuniversitario di Miologia, Università di Chieti-Pescara, via dei Vestini 31, 66013 Chieti, Italy
| | - G. Fanò
- Laboratorio di Fisiologia Cellulare, Dipartimento Scienze del Farmaco, Centro Scienze dell’Invecchiamento (Ce.S.I.), University ‘G. d’Annunzio′Foundation, Istituto Interuniversitario di Miologia, Università di Chieti-Pescara, via dei Vestini 31, 66013 Chieti, Italy
| | - M. A. Mariggiò
- Laboratorio di Fisiologia Cellulare, Dipartimento Scienze del Farmaco, Centro Scienze dell’Invecchiamento (Ce.S.I.), University ‘G. d’Annunzio′Foundation, Istituto Interuniversitario di Miologia, Università di Chieti-Pescara, via dei Vestini 31, 66013 Chieti, Italy
| |
Collapse
|