1
|
Fukuyama K, Motomura E, Okada M. Age-Dependent Activation of Purinergic Transmission Contributes to the Development of Epileptogenesis in ADSHE Model Rats. Biomolecules 2024; 14:204. [PMID: 38397441 PMCID: PMC10886636 DOI: 10.3390/biom14020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
To explore the developmental processes of epileptogenesis/ictogenesis, this study determined age-dependent functional abnormalities associated with purinergic transmission in a genetic rat model (S286L-TG) of autosomal-dominant sleep-related hypermotor epilepsy (ADSHE). The age-dependent fluctuations in the release of ATP and L-glutamate in the orbitofrontal cortex (OFC) were determined using microdialysis and ultra-high-performance liquid chromatography with mass spectrometry (UHPLC-MS). ATP release from cultured astrocytes was also determined using UHPLC-MS. The expressions of P2X7 receptor (P2X7R), connexin 43, phosphorylated-Akt and phosphorylated-Erk were determined using capillary immunoblotting. No functional abnormalities associated with purinergic transmission could be detected in the OFC of 4-week-old S286L-TG and cultured S286L-TG astrocytes. However, P2X7R expression, as well as basal and P2X7R agonist-induced ATP releases, was enhanced in S286L-TG OFC in the critical ADSHE seizure onset period (7-week-old). Long-term exposure to a modest level of P2X7R agonist, which could not increase astroglial ATP release, for 14 d increased the expressions of P2X7R and connexin 43 and the signaling of Akt and Erk in astrocytes, and it enhanced the sensitivity of P2X7R to its agonists. Akt but not Erk increased P2X7R expression, whereas both Akt and Erk increased connexin 43 expression. Functional abnormalities, enhanced ATP release and P2X7R expression were already seen before the onset of ADSHE seizure in S286L-TG. Additionally, long-term exposure to the P2X7R agonist mimicked the functional abnormalities associated with purinergic transmission in astrocytes, similar to those in S286L-TG OFC. Therefore, these results suggest that long-term modestly enhanced purinergic transmission and/or activated P2X7R are, at least partially, involved in the development of the epileptogenesis of ADSHE, rather than that of ictogenesis.
Collapse
Affiliation(s)
| | | | - Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (K.F.); (E.M.)
| |
Collapse
|
2
|
Wu J, Liu D, Li J, Sun J, Huang Y, Zhang S, Gao S, Mei W. Central Neural Circuits Orchestrating Thermogenesis, Sleep-Wakefulness States and General Anesthesia States. Curr Neuropharmacol 2022; 20:223-253. [PMID: 33632102 PMCID: PMC9199556 DOI: 10.2174/1570159x19666210225152728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/01/2021] [Accepted: 02/24/2021] [Indexed: 11/22/2022] Open
Abstract
Great progress has been made in specifically identifying the central neural circuits (CNCs) of the core body temperature (Tcore), sleep-wakefulness states (SWs), and general anesthesia states (GAs), mainly utilizing optogenetic or chemogenetic manipulations. We summarize the neuronal populations and neural pathways of these three CNCs, which gives evidence for the orchestration within these three CNCs, and the integrative regulation of these three CNCs by different environmental light signals. We also outline some transient receptor potential (TRP) channels that function in the CNCs-Tcore and are modulated by some general anesthetics, which makes TRP channels possible targets for addressing the general-anestheticsinduced- hypothermia (GAIH). We suggest this review will provide new orientations for further consummating these CNCs and elucidating the central mechanisms of GAIH.
Collapse
Affiliation(s)
- Jiayi Wu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Daiqiang Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiayan Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia Sun
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yujie Huang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuang Zhang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shaojie Gao
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Mei
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
3
|
Zhao YF, Tang Y, Illes P. Astrocytic and Oligodendrocytic P2X7 Receptors Determine Neuronal Functions in the CNS. Front Mol Neurosci 2021; 14:641570. [PMID: 33642994 PMCID: PMC7906075 DOI: 10.3389/fnmol.2021.641570] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
P2X7 receptors are members of the ATP-gated cationic channel family with a preferential localization at the microglial cells, the resident macrophages of the brain. However, these receptors are also present at neuroglia (astrocytes, oligodendrocytes) although at a considerably lower density. They mediate necrosis/apoptosis by the release of pro-inflammatory cytokines/chemokines, reactive oxygen species (ROS) as well as the excitotoxic (glio)transmitters glutamate and ATP. Besides mediating cell damage i.e., superimposed upon chronic neurodegenerative processes in Alzheimer’s Disease, Parkinson’s Disease, multiple sclerosis, and amyotrophic lateral sclerosis, they may also participate in neuroglial signaling to neurons under conditions of high ATP concentrations during any other form of neuroinflammation/neurodegeneration. It is a pertinent open question whether P2X7Rs are localized on neurons, or whether only neuroglia/microglia possess this receptor-type causing indirect effects by releasing the above-mentioned signaling molecules. We suggest as based on molecular biology and functional evidence that neurons are devoid of P2X7Rs although the existence of neuronal P2X7Rs cannot be excluded with absolute certainty.
Collapse
Affiliation(s)
- Ya-Fei Zhao
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Tang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,International Collaborative Center on Big Science Plan for Purine Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peter Illes
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,International Collaborative Center on Big Science Plan for Purine Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
4
|
P2X7 Receptor Signaling in Stress and Depression. Int J Mol Sci 2019; 20:ijms20112778. [PMID: 31174279 PMCID: PMC6600521 DOI: 10.3390/ijms20112778] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/31/2022] Open
Abstract
Stress exposure is considered to be the main environmental cause associated with the development of depression. Due to the limitations of currently available antidepressants, a search for new pharmacological targets for treatment of depression is required. Recent studies suggest that adenosine triphosphate (ATP)-mediated signaling through the P2X7 receptor (P2X7R) might play a prominent role in regulating depression-related pathology, such as synaptic plasticity, neuronal degeneration, as well as changes in cognitive and behavioral functions. P2X7R is an ATP-gated cation channel localized in different cell types in the central nervous system (CNS), playing a crucial role in neuron-glia signaling. P2X7R may modulate the release of several neurotransmitters, including monoamines, nitric oxide (NO) and glutamate. Moreover, P2X7R stimulation in microglia modulates the innate immune response by activating the NLR family pyrin domain containing 3 (NLRP3) inflammasome, consistent with the neuroimmune hypothesis of MDD. Importantly, blockade of P2X7R leads to antidepressant-like effects in different animal models, which corroborates the findings that the gene encoding for the P2X7R is located in a susceptibility locus of relevance to depression in humans. This review will discuss recent findings linked to the P2X7R involvement in stress and MDD neuropathophysiology, with special emphasis on neurochemical, neuroimmune, and neuroplastic mechanisms.
Collapse
|
5
|
Neuronal P2X7 Receptors Revisited: Do They Really Exist? J Neurosci 2017; 37:7049-7062. [PMID: 28747388 DOI: 10.1523/jneurosci.3103-16.2017] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 12/13/2022] Open
Abstract
P2X7 receptors (Rs) constitute a subclass of ATP-sensitive ionotropic receptors (P2X1-P2X7). P2X7Rs have many distinguishing features, mostly based on their long intracellular C terminus regulating trafficking to the cell membrane, protein-protein interactions, and post-translational modification. Their C-terminal tail is especially important in enabling the transition from the nonselective ion channel mode to a membrane pore allowing the passage of large molecules. There is an ongoing dispute on the existence of neuronal P2X7Rs with consequences for our knowledge on their involvement in neuroinflammation, aggravating stroke, temporal lobe epilepsy, neuropathic pain, and various neurodegenerative diseases. Whereas early results appeared to support the operation of P2X7Rs at neurons, more recently glial P2X7Rs are increasingly considered as indirect causes of neuronal effects. Specific tools for P2X7Rs are of limited value because of the poor selectivity of agonists, and the inherent failure of antibodies to differentiate between the large number of active and inactive splice variants, or gain-of-function and loss-of-function small nucleotide polymorphisms of the receptor. Unfortunately, the available P2RX7 knock-out mice generated by pharmaceutical companies possess certain splice variants, which evade inactivation. In view of the recently discovered bidirectional dialogue between astrocytes and neurons (and even microglia and neurons), we offer an alternative explanation for previous data, which assumedly support the existence of P2X7Rs at neurons. We think that the unbiased reader will follow our argumentation on astrocytic or microglial P2X7Rs being the primary targets of pathologically high extracellular ATP concentrations, although a neuronal localization of these receptors cannot be fully excluded either.
Collapse
|
6
|
Neuronal P2X7 Receptor: Involvement in Neuronal Physiology and Pathology. J Neurosci 2017; 37:7063-7072. [PMID: 28747389 DOI: 10.1523/jneurosci.3104-16.2017] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 12/28/2022] Open
Abstract
The proposed presence of P2X7 receptor (P2X7R) in neurons has been the source of some contention. Initial studies suggested an absence of P2X7R mRNA in neurons, and the apparent nonspecificity of the antibodies used to identify P2X7R raised further doubts. However, subsequent studies using new pharmacological and biomolecular tools provided conclusive evidence supporting the existence of functional P2X7Rs in neurons. The P2X7 receptor has since been shown to play a leading role in multiple aspects of neuronal physiology, including axonal elongation and branching and neurotransmitter release. P2X7R has also been implicated in neuronal pathologies, in which it may influence neuronal survival. Together, this body of research suggests that P2X7R may constitute an important therapeutic target for a variety of neurological disorders.
Collapse
|
7
|
Sebastián-Serrano Á, Engel T, de Diego-García L, Olivos-Oré LA, Arribas-Blázquez M, Martínez-Frailes C, Pérez-Díaz C, Millán JL, Artalejo AR, Miras-Portugal MT, Henshall DC, Díaz-Hernández M. Neurodevelopmental alterations and seizures developed by mouse model of infantile hypophosphatasia are associated with purinergic signalling deregulation. Hum Mol Genet 2016; 25:4143-4156. [PMID: 27466191 PMCID: PMC5291194 DOI: 10.1093/hmg/ddw248] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/14/2016] [Accepted: 07/17/2016] [Indexed: 01/14/2023] Open
Abstract
Hypomorphic mutations in the gene encoding the tissue-nonspecific alkaline phosphatase (TNAP) enzyme, ALPL in human or Akp2 in mice, cause hypophosphatasia (HPP), an inherited metabolic bone disease also characterized by spontaneous seizures. Initially, these seizures were attributed to the impairment of GABAergic neurotransmission caused by altered vitamin B6 (vit-B6) metabolism. However, clinical cases in human newborns and adults whose convulsions are refractory to pro-GABAergic drugs but controlled by the vit-B6 administration, suggest that other factors are involved. Here, to evaluate whether neurodevelopmental alterations are underlying the seizures associated to HPP, we performed morphological and functional characterization of postnatal homozygous TNAP null mice, a model of HPP. These analyses revealed that TNAP deficient mice present an increased proliferation of neural precursors, an altered neuronal morphology, and an augmented neuronal activity. We found that these alterations were associated with a partial downregulation of the purinergic P2X7 receptor (P2X7R). Even though deficient P2X7R mice present similar neurodevelopmental alterations, they do not develop neonatal seizures. Accordingly, we found that the additional blockage of P2X7R prevent convulsions and extend the lifespan of mice lacking TNAP. In agreement with these findings, we also found that exogenous administration of ATP or TNAP antagonists induced seizures in adult wild-type mice by activating P2X7R. Finally, our results also indicate that the anticonvulsive effects attributed to vit-B6 may be due to its capacity to block P2X7R. Altogether, these findings suggest that the purinergic signalling regulates the neurodevelopmental alteration and the neonatal seizures associated to HPP.
Collapse
Affiliation(s)
- Álvaro Sebastián-Serrano
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Tobias Engel
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Laura de Diego-García
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Luis A Olivos-Oré
- Department of Toxicology and Pharmacology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain and
| | - Marina Arribas-Blázquez
- Department of Toxicology and Pharmacology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain and
| | - Carlos Martínez-Frailes
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Carmen Pérez-Díaz
- Department of Medicine and Animal Surgery, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Antonio R Artalejo
- Department of Toxicology and Pharmacology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain and
| | - María Teresa Miras-Portugal
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain
| | - David C Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork, Ireland
| | - Miguel Díaz-Hernández
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain .,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| |
Collapse
|
8
|
Köles L, Kató E, Hanuska A, Zádori ZS, Al-Khrasani M, Zelles T, Rubini P, Illes P. Modulation of excitatory neurotransmission by neuronal/glial signalling molecules: interplay between purinergic and glutamatergic systems. Purinergic Signal 2015; 12:1-24. [PMID: 26542977 DOI: 10.1007/s11302-015-9480-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/26/2015] [Indexed: 12/29/2022] Open
Abstract
Glutamate is the main excitatory neurotransmitter of the central nervous system (CNS), released both from neurons and glial cells. Acting via ionotropic (NMDA, AMPA, kainate) and metabotropic glutamate receptors, it is critically involved in essential regulatory functions. Disturbances of glutamatergic neurotransmission can be detected in cognitive and neurodegenerative disorders. This paper summarizes the present knowledge on the modulation of glutamate-mediated responses in the CNS. Emphasis will be put on NMDA receptor channels, which are essential executive and integrative elements of the glutamatergic system. This receptor is crucial for proper functioning of neuronal circuits; its hypofunction or overactivation can result in neuronal disturbances and neurotoxicity. Somewhat surprisingly, NMDA receptors are not widely targeted by pharmacotherapy in clinics; their robust activation or inhibition seems to be desirable only in exceptional cases. However, their fine-tuning might provide a promising manipulation to optimize the activity of the glutamatergic system and to restore proper CNS function. This orchestration utilizes several neuromodulators. Besides the classical ones such as dopamine, novel candidates emerged in the last two decades. The purinergic system is a promising possibility to optimize the activity of the glutamatergic system. It exerts not only direct and indirect influences on NMDA receptors but, by modulating glutamatergic transmission, also plays an important role in glia-neuron communication. These purinergic functions will be illustrated mostly by depicting the modulatory role of the purinergic system on glutamatergic transmission in the prefrontal cortex, a CNS area important for attention, memory and learning.
Collapse
Affiliation(s)
- László Köles
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary.
| | - Erzsébet Kató
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Adrienn Hanuska
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Patrizia Rubini
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany
| | - Peter Illes
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany.
| |
Collapse
|
9
|
Szolcsányi J. Effect of capsaicin on thermoregulation: an update with new aspects. Temperature (Austin) 2015; 2:277-96. [PMID: 27227029 PMCID: PMC4843897 DOI: 10.1080/23328940.2015.1048928] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/04/2015] [Accepted: 05/04/2015] [Indexed: 01/07/2023] Open
Abstract
Capsaicin, a selective activator of the chemo- and heat-sensitive transient receptor potential (TRP) V1 cation channel, has characteristic feature of causing long-term functional and structural impairment of neural elements supplied by TRPV1/capsaicin receptor. In mammals, systemic application of capsaicin induces complex heat-loss response characteristic for each species and avoidance of warm environment. Capsaicin activates cutaneous warm receptors and polymodal nociceptors but has no effect on cold receptors or mechanoreceptors. In this review, thermoregulatory features of capsaicin-pretreated rodents and TRPV1-mediated neural elements with innocuous heat sensitivity are summarized. Recent data support a novel hypothesis for the role of visceral warmth sensors in monitoring core body temperature. Furthermore, strong evidence suggests that central presynaptic nerve terminals of TRPV1-expressing cutaneous, thoracic and abdominal visceral receptors are activated by innocuous warmth stimuli and capsaicin. These responses are absent in TRPV1 knockout mice. Thermoregulatory disturbance induced by systemic capsaicin pretreatment lasts for months and is characterized by a normal body temperature at cool environment up to a total dose of 150 mg/kg s.c. Upward differential shift of set points for activation vasodilation, other heat-loss effectors and thermopreference develops. Avoidance of warm ambient temperature (35°C, 40°C) is severely impaired but thermopreference at cool ambient temperatures (Tas) are not altered. TRPV1 knockout or knockdown and genetically altered TRPV1, TRPV2 and TRPM8 knockout mice have normal core temperature in thermoneutral or cool environments, but the combined mutant mice have impaired regulation in warm or cold (4°C) environments. Several lines of evidence support that in the preoptic area warmth sensitive neurons are activated and desensitized by capsaicin, but morphological evidence for it is controversial. It is suggested that these neurons have also integrator function. Fever is enhanced in capsaicin-desensitized rats and the inhibition observed after pretreatment with low i.p. doses does not support in the light of their warmth sensitivity the concept that abdominal TRPV1-expressing nerve terminals serve as nonthermal chemosensors for reference signals in thermoregulation.
Collapse
Key Words
- (s)EPSC(s), (spontaneous) excitatory postsynaptic current(s)
- DRG, dorsal root ganglion (ganglia)
- EGFP, enhanced green fluorescent protein
- LC, locus coeruleus
- LPS, lipopolysaccharide
- NTS, nucleus of the solitary tract
- PG(s), prostaglandin(s)
- POA, the preoptic area (of the hypothalamus)
- RTX, resiniferatoxin
- TRP, transient receptor potential
- TRPM8
- TRPV1
- Ta(s), ambient temperature(s)
- Tr, rectal temperature
- Ts, skin temperature
- Tt, tail temperature
- capsaicin
- fever
- preoptic area
- thermoregulation
- visceral thermoreceptors
- warm receptors
Collapse
Affiliation(s)
- János Szolcsányi
- Department of Pharmacology and Pharmacotherapy; University Medical School of Pécs; Pécs, Hungary; Szentágothai Research Centre University of Pécs; Pécs, Hungary
| |
Collapse
|
10
|
Franceschini A, Adinolfi E. P2X receptors: New players in cancer pain. World J Biol Chem 2014; 5:429-436. [PMID: 25426266 PMCID: PMC4243147 DOI: 10.4331/wjbc.v5.i4.429] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/26/2014] [Accepted: 09/17/2014] [Indexed: 02/05/2023] Open
Abstract
Pain is unfortunately a quite common symptom for cancer patients. Normally pain starts as an episodic experience at early cancer phases to become chronic in later stages. In order to improve the quality of life of oncological patients, anti-cancer treatments are often accompanied by analgesic therapies. The P2X receptor are adenosine triphosphate (ATP) gated ion channels expressed by several cells including neurons, cancer and immune cells. Purinergic signaling through P2X receptors recently emerged as possible common pathway for cancer onset/growth and pain sensitivity. Indeed, tumor microenvironment is rich in extracellular ATP, which has a role in both tumor development and pain sensation. The study of the different mechanisms by which P2X receptors favor cancer progression and relative pain, represents an interesting challenge to design integrated therapeutic strategies for oncological patients. This review summarizes recent findings linking P2X receptors and ATP to cancer growth, progression and related pain. Special attention has been paid to the role of P2X2, P2X3, P2X4 and P2X7 in the genesis of cancer pain and to the function of P2X7 in tumor growth and metastasis. Therapeutic implications of the administration of different P2X receptor blockers to alleviate cancer-associated pain sensations contemporarily reducing tumor progression are also discussed.
Collapse
|
11
|
Sperlágh B, Illes P. P2X7 receptor: an emerging target in central nervous system diseases. Trends Pharmacol Sci 2014; 35:537-47. [PMID: 25223574 DOI: 10.1016/j.tips.2014.08.002] [Citation(s) in RCA: 306] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/07/2014] [Accepted: 08/14/2014] [Indexed: 12/19/2022]
Abstract
The ATP-sensitive homomeric P2X7 receptor (P2X7R) has received particular attention as a potential drug target because of its widespread involvement in inflammatory diseases as a key regulatory element of the inflammasome complex. However, it has only recently become evident that P2X7Rs also play a pivotal role in central nervous system (CNS) pathology. There is an explosion of data indicating that genetic deletion and pharmacological blockade of P2X7Rs alter responsiveness in animal models of neurological disorders, such as stroke, neurotrauma, epilepsy, neuropathic pain, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Alzheimer's disease, Parkinson's disease, and Huntington's disease. Moreover, recent studies suggest that P2X7Rs regulate the pathophysiology of psychiatric disorders, including mood disorders, implicating P2X7Rs as drug targets in a variety of CNS pathology.
Collapse
Affiliation(s)
- Beáta Sperlágh
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1450 Budapest, Hungary.
| | - Peter Illes
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, D-04107 Leipzig, Germany
| |
Collapse
|
12
|
de Carvalho D, Patrone LGA, Taxini CL, Biancardi V, Vicente MC, Gargaglioni LH. Neurochemical and electrical modulation of the locus coeruleus: contribution to CO2drive to breathe. Front Physiol 2014; 5:288. [PMID: 25183958 PMCID: PMC4135231 DOI: 10.3389/fphys.2014.00288] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/14/2014] [Indexed: 11/13/2022] Open
Abstract
The locus coeruleus (LC) is a dorsal pontine region, situated bilaterally on the floor of the fourth ventricle. It is considered to be the major source of noradrenergic innervation in the brain. These neurons are highly sensitive to CO2/pH, and chemical lesions of LC neurons largely attenuate the hypercapnic ventilatory response in unanesthetized adult rats. Developmental dysfunctions in these neurons are linked to pathological conditions such as Rett and sudden infant death syndromes, which can impair the control of the cardio-respiratory system. LC is densely innervated by fibers that contain glutamate, serotonin, and adenosine triphosphate, and these neurotransmitters strongly affect LC activity, including central chemoreflexes. Aside from neurochemical modulation, LC neurons are also strongly electrically coupled, specifically through gap junctions, which play a role in the CO2 ventilatory response. This article reviews the available data on the role of chemical and electrical neuromodulation of the LC in the control of ventilation.
Collapse
Affiliation(s)
- Débora de Carvalho
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinarian Sciences, Universidade Estadual Paulista - São Paulo State University Jaboticabal, Brazil
| | - Luis G A Patrone
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinarian Sciences, Universidade Estadual Paulista - São Paulo State University Jaboticabal, Brazil
| | - Camila L Taxini
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinarian Sciences, Universidade Estadual Paulista - São Paulo State University Jaboticabal, Brazil
| | - Vivian Biancardi
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinarian Sciences, Universidade Estadual Paulista - São Paulo State University Jaboticabal, Brazil
| | - Mariane C Vicente
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinarian Sciences, Universidade Estadual Paulista - São Paulo State University Jaboticabal, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinarian Sciences, Universidade Estadual Paulista - São Paulo State University Jaboticabal, Brazil
| |
Collapse
|
13
|
Pinho D, Quintas C, Sardo F, Cardoso TM, Queiroz G. Purinergic modulation of norepinephrine release and uptake in rat brain cortex: contribution of glial cells. J Neurophysiol 2013; 110:2580-91. [DOI: 10.1152/jn.00708.2012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The pathogenesis of psychiatric and neurodegenerative diseases is often associated with a deregulation of noradrenergic transmission. Considering the potential involvement of purinergic signaling in the modulation of noradrenergic transmission in the brain cortex, this study aimed to identify the P2Y receptor subtypes involved in the modulation of neuronal release and neuronal/glial uptake of norepinephrine. Electrical stimulation (100 pulses at 5 Hz) of rat cortical slices induced norepinephrine release that was inhibited by ATP and ADP (0.01–1 mM), adenosine 5′- O-(2-thiodiphosphate) (ADPβS, 0.03–0.3 mM), and UDP (0.1–1 mM). The effect of ADPβS was mediated by P2Y1receptors and possibly by A1/P2Y1heterodimers since it was attenuated by the A1receptor antagonist DPCPX and by the P2Y1receptor antagonist MRS 2500 but was resistant to the effect of adenosine deaminase (ADA). UDP inhibited norepinephrine release through activation of P2Y6receptors, an effect that was abolished by the P2Y6receptor antagonist MRS 2578 and by DPCPX, indicating that it depends on the formation and/or release of adenosine and activation of A1receptors. Supporting this hypothesis, the inhibitory effect of UDP was also prevented by inhibition of ectonucleotidases, by ADA and was attenuated by the inhibitor of nucleoside transporter 6-[(4-nitrobenzyl)thio]-9-β-d-ribofuranosylpurine (NBTI). Additionally, the inhibitory effect of UDP was attenuated when norepinephrine uptake 1 or 2 was inhibited. In astroglial cultures, ADPβS and UDP increased norepinephrine uptake mainly by activation of P2Y1and P2Y6receptors, respectively. The results indicate that neuronal and glial P2Y1and P2Y6receptors may represent new targets of intervention to regulate noradrenergic transmission in CNS diseases.
Collapse
Affiliation(s)
- Diana Pinho
- Laboratório de Farmacologia, Departamento de Ciências do Medicamento, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; and
| | - Clara Quintas
- Laboratório de Farmacologia, Departamento de Ciências do Medicamento, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; and
| | - Filipa Sardo
- Laboratório de Farmacologia, Departamento de Ciências do Medicamento, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; and
| | - Teresa Magalhães Cardoso
- Laboratório de Farmacologia e Neurobiologia, UMIB, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Glória Queiroz
- Laboratório de Farmacologia, Departamento de Ciências do Medicamento, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; and
| |
Collapse
|
14
|
Physiological roles and potential therapeutic applications of the P2X7 receptor in inflammation and pain. Molecules 2013; 18:10953-72. [PMID: 24013409 PMCID: PMC6270334 DOI: 10.3390/molecules180910953] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 12/21/2022] Open
Abstract
The P2X7 receptor (P2X7R) is a nonselective cation channel that is activated by extracellular ATP and triggers the secretion of several proinflammatory substances, such as IL-1β, IL-18, TNF-α, and nitric oxide. Recently, several preclinical studies have demonstrated that this receptor participates in inflammation and pain mechanisms. Taken together, these results indicate that P2X7R is a promising pharmacological target, and compounds that modulate the function of this receptor show potential as new anti-inflammatory medicines. In this review, we discuss aspects of P2X7R pharmacology and the participation of this protein in inflammation and pain and provide an overview of some promising compounds that have been tested as antagonists of P2X7R, with clinical applicability.
Collapse
|
15
|
Szabadi E. Modulation of physiological reflexes by pain: role of the locus coeruleus. Front Integr Neurosci 2012; 6:94. [PMID: 23087627 PMCID: PMC3474280 DOI: 10.3389/fnint.2012.00094] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 09/27/2012] [Indexed: 11/13/2022] Open
Abstract
The locus coeruleus (LC) is activated by noxious stimuli, and this activation leads to inhibition of perceived pain. As two physiological reflexes, the acoustic startle reflex and the pupillary light reflex, are sensitive to noxious stimuli, this review considers evidence that this sensitivity, at least to some extent, is mediated by the LC. The acoustic startle reflex, contraction of a large body of skeletal muscles in response to a sudden loud acoustic stimulus, can be enhanced by both directly ("sensitization") and indirectly ("fear conditioning") applied noxious stimuli. Fear-conditioning involves the association of a noxious (unconditioned) stimulus with a neutral (conditioned) stimulus (e.g., light), leading to the ability of the conditioned stimulus to evoke the "pain response". The enhancement of the startle response by conditioned fear ("fear-potentiated startle") involves the activation of the amygdala. The LC may also be involved in both sensitization and fear potentiation: pain signals activate the LC both directly and indirectly via the amygdala, which results in enhanced motoneurone activity, leading to an enhanced muscular response. Pupil diameter is under dual sympathetic/parasympathetic control, the sympathetic (noradrenergic) output dilating, and the parasympathetic (cholinergic) output constricting the pupil. The light reflex (constriction of the pupil in response to a light stimulus) operates via the parasympathetic output. The LC exerts a dual influence on pupillary control: it contributes to the sympathetic outflow and attenuates the parasympathetic output by inhibiting the Edinger-Westphal nucleus, the preganglionic cholinergic nucleus in the light reflex pathway. Noxious stimulation results in pupil dilation ("reflex dilation"), without any change in the light reflex response, consistent with sympathetic activation via the LC. Conditioned fear, on the other hand, results in the attenuation of the light reflex response ("fear-inhibited light reflex"), consistent with the inhibition of the parasympathetic light reflex via the LC. It is suggested that directly applied pain and fear-conditioning may affect different populations of autonomic neurones in the LC, directly applied pain activating sympathetic and fear-conditioning parasympathetic premotor neurones.
Collapse
Affiliation(s)
- Elemer Szabadi
- Psychopharmacology Section, Division of Psychiatry, University of NottinghamNottingham, UK
| |
Collapse
|
16
|
Borges GS, Berrocoso E, Ortega-Alvaro A, Mico JA, Neto FL. Extracellular signal-regulated kinase activation in the chronic constriction injury model of neuropathic pain in anaesthetized rats. Eur J Pain 2012; 17:35-45. [PMID: 23055268 DOI: 10.1002/j.1532-2149.2012.00181.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2012] [Indexed: 12/18/2022]
Abstract
BACKGROUND The role of extracellular signal-regulated kinases (ERKs) in nociception has been explored in the last years. While in spinal cord their activation is frequently correlated with pain or acute noxious stimuli, supraspinally, this association is not so evident and remains unclear. This study aims to evaluate ERK1/2 activation in the spinal cord and brainstem nuclei upon neuropathy and/or an additional mechanical stimulus. METHODS Acute noxious mechanical stimulation was applied in the left hindpaw of anaesthetized SHAM-operated and chronic constriction injured (CCI, neuropathic pain model) rats. Other SHAM or CCI rats did not receive any stimulus. Immunohistochemistry against the phosphorylated isoforms of ERK1/2 (pERK1/2) was performed in lumbar spinal cord and brainstem sections to assess ERK1/2 activation. RESULTS In the spinal cord, stimulation promoted an increase in pERK1/2 expression in the superficial dorsal horn of SHAM rats. No significant effects were caused by CCI alone. At supraspinal level, changes in ERK1/2 activation induced by CCI were observed in A5, locus coeruleus (LC), raphe obscurus (ROb), raphe magnus, dorsal raphe (DRN), lateral reticular and paragigantocellularis nucleus. CCI increased pERK1/2 expression in all these nuclei, with exception of LC, where a significant decrease was verified. Mechanical noxious stimulation of CCI rats decreased pERK1/2 expression in ROb and DRN, but no further changes were detected in either SHAM- or CCI-stimulated animals. CONCLUSION ERK1/2 are differentially activated in the spinal cord and in selected brainstem nuclei implicated in nociception, in response to an acute noxious stimulus and/or to a neuropathic pain condition.
Collapse
Affiliation(s)
- G S Borges
- Departamento de Biologia Experimental, Centro de Investigação Médica-Faculdade de Medicina (CIM-FMUP), Universidade do Porto, Porto, Portugal
| | | | | | | | | |
Collapse
|
17
|
Franke H, Verkhratsky A, Burnstock G, Illes P. Pathophysiology of astroglial purinergic signalling. Purinergic Signal 2012; 8:629-57. [PMID: 22544529 DOI: 10.1007/s11302-012-9300-0] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/01/2012] [Indexed: 12/13/2022] Open
Abstract
Astrocytes are fundamental for central nervous system (CNS) physiology and are the fulcrum of neurological diseases. Astroglial cells control development of the nervous system, regulate synaptogenesis, maturation, maintenance and plasticity of synapses and are central for nervous system homeostasis. Astroglial reactions determine progression and outcome of many neuropathologies and are critical for regeneration and remodelling of neural circuits following trauma, stroke, ischaemia or neurodegenerative disorders. They secrete multiple neurotransmitters and neurohormones to communicate with neurones, microglia and the vascular walls of capillaries. Signalling through release of ATP is the most widespread mean of communication between astrocytes and other types of neural cells. ATP serves as a fast excitatory neurotransmitter and has pronounced long-term (trophic) roles in cell proliferation, growth, and development. During pathology, ATP is released from damaged cells and acts both as a cytotoxic factor and a proinflammatory mediator, being a universal "danger" signal. In this review, we summarise contemporary knowledge on the role of purinergic receptors (P2Rs) in a variety of diseases in relation to changes of astrocytic functions and nucleotide signalling. We have focussed on the role of the ionotropic P2X and metabotropic P2YRs working alone or in concert to modify the release of neurotransmitters, to activate signalling cascades and to change the expression levels of ion channels and protein kinases. All these effects are of great importance for the initiation, progression and maintenance of astrogliosis-the conserved and ubiquitous glial defensive reaction to CNS pathologies. We highlighted specific aspects of reactive astrogliosis, especially with respect to the involvement of the P2X(7) and P2Y(1)R subtypes. Reactive astrogliosis exerts both beneficial and detrimental effects in a context-specific manner determined by distinct molecular signalling cascades. Understanding the role of purinergic signalling in astrocytes is critical to identifying new therapeutic principles to treat acute and chronic neurological diseases.
Collapse
Affiliation(s)
- Heike Franke
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, 04107, Leipzig, Germany.
| | | | | | | |
Collapse
|
18
|
Illes P, Verkhratsky A, Burnstock G, Franke H. P2X receptors and their roles in astroglia in the central and peripheral nervous system. Neuroscientist 2011; 18:422-38. [PMID: 22013151 DOI: 10.1177/1073858411418524] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Astrocytes are a class of neural cells that control homeostasis at all levels of the central and peripheral nervous system. There is a bidirectional neuron-glia interaction via a number of extracellular signaling molecules, glutamate and ATP being the most widespread. ATP activates ionotropic P2X and metabotropic P2Y receptors, which operate in both neurons and astrocytes. Morphological, biochemical, and functional evidence indicates the expression of astroglial P2X(1/5) heteromeric and P2X(7) homomeric receptors, which mediate physiological and pathophysiological responses. Activation of P2X(1/5) receptors triggers rapid increase of intracellular Na(+) that initiates immediate cellular reactions, such as the depression of the glutamate transporter to keep high glutamate concentrations in the synaptic cleft, the activation of the local lactate shuttle to supply energy substrate to pre- and postsynaptic neuronal structures, and the reversal of the Na(+)/Ca(2+) exchange resulting in additional Ca(2+) entry. The consequences of P2X(7) receptor activation are mostly but not exclusively mediated by the entry of Ca(2+) and result in reorganization of the cytoskeleton, inflammation, apoptosis/necrosis, and proliferation, usually at a prolonged time scale. Thus, astroglia detect by P2X(1/5) and P2X(7) receptors both physiological concentrations of ATP secreted from presynaptic nerve terminals and also much higher concentrations of ATP attained under pathological conditions.
Collapse
Affiliation(s)
- Peter Illes
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Germany.
| | | | | | | |
Collapse
|
19
|
Köles L, Leichsenring A, Rubini P, Illes P. P2 receptor signaling in neurons and glial cells of the central nervous system. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 61:441-93. [PMID: 21586367 DOI: 10.1016/b978-0-12-385526-8.00014-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purine and pyrimidine nucleotides are extracellular signaling molecules in the central nervous system (CNS) leaving the intracellular space of various CNS cell types via nonexocytotic mechanisms. In addition, ATP is a neuro-and gliotransmitter released by exocytosis from neurons and neuroglia. These nucleotides activate P2 receptors of the P2X (ligand-gated cationic channels) and P2Y (G protein-coupled receptors) types. In mammalians, seven P2X and eight P2Y receptor subunits occur; three P2X subtypes form homomeric or heteromeric P2X receptors. P2Y subtypes may also hetero-oligomerize with each other as well as with other G protein-coupled receptors. P2X receptors are able to physically associate with various types of ligand-gated ion channels and thereby to interact with them. The P2 receptor homomers or heteromers exhibit specific sensitivities against pharmacological ligands and have preferential functional roles. They may be situated at both presynaptic (nerve terminals) and postsynaptic (somatodendritic) sites of neurons, where they modulate either transmitter release or the postsynaptic sensitivity to neurotransmitters. P2 receptors exist at neuroglia (e.g., astrocytes, oligodendrocytes) and microglia in the CNS. The neuroglial P2 receptors subserve the neuron-glia cross talk especially via their end-feets projecting to neighboring synapses. In addition, glial networks are able to communicate through coordinated oscillations of their intracellular Ca(2+) over considerable distances. P2 receptors are involved in the physiological regulation of CNS functions as well as in its pathophysiological dysregulation. Normal (motivation, reward, embryonic and postnatal development, neuroregeneration) and abnormal regulatory mechanisms (pain, neuroinflammation, neurodegeneration, epilepsy) are important examples for the significance of P2 receptor-mediated/modulated processes.
Collapse
Affiliation(s)
- Laszlo Köles
- Rudolph-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Germany
| | | | | | | |
Collapse
|