1
|
Mileti LN, Baleja JD. The Role of Purine Metabolism and Uric Acid in Postnatal Neurologic Development. Molecules 2025; 30:839. [PMID: 40005150 PMCID: PMC11858483 DOI: 10.3390/molecules30040839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/28/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
This review explores the essential roles of purine metabolism including the catabolic product, uric acid, in the development of dopaminergic neurons of the substantia nigra pars compacta. The high energy requirements of the substantia nigra pars compacta alongside necessary purinergic neurotransmission and the influence of oxidative stress during development makes these neurons uniquely susceptible to changes in purine metabolism. Uric acid's role as a central nervous system antioxidant may help to ameliorate these effects in utero. Understanding the mechanisms by which purines and uric acid influence development of the substantia nigra pars compacta can help further explain neurologic consequences of inborn errors of purine metabolism, such as Lesch-Nyhan disease.
Collapse
Affiliation(s)
| | - James D. Baleja
- Master’s Program in Biomedical Sciences, Departments of Medical Education and Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA;
| |
Collapse
|
2
|
Kaur J, Dora S. Purinergic signaling: Diverse effects and therapeutic potential in cancer. Front Oncol 2023; 13:1058371. [PMID: 36741002 PMCID: PMC9889871 DOI: 10.3389/fonc.2023.1058371] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Regardless of improved biological insights and therapeutic advances, cancer is consuming multiple lives worldwide. Cancer is a complex disease with diverse cellular, metabolic, and physiological parameters as its hallmarks. This instigates a need to uncover the latest therapeutic targets to advance the treatment of cancer patients. Purines are building blocks of nucleic acids but also function as metabolic intermediates and messengers, as part of a signaling pathway known as purinergic signaling. Purinergic signaling comprises primarily adenosine triphosphate (ATP) and adenosine (ADO), their analogous membrane receptors, and a set of ectonucleotidases, and has both short- and long-term (trophic) effects. Cells release ATP and ADO to modulate cellular function in an autocrine or paracrine manner by activating membrane-localized purinergic receptors (purinoceptors, P1 and P2). P1 receptors are selective for ADO and have four recognized subtypes-A1, A2A, A2B, and A3. Purines and pyrimidines activate P2 receptors, and the P2X subtype is ligand-gated ion channel receptors. P2X has seven subtypes (P2X1-7) and forms homo- and heterotrimers. The P2Y subtype is a G protein-coupled receptor with eight subtypes (P2Y1/2/4/6/11/12/13/14). ATP, its derivatives, and purinoceptors are widely distributed in all cell types for cellular communication, and any imbalance compromises the homeostasis of the cell. Neurotransmission, neuromodulation, and secretion employ fast purinergic signaling, while trophic purinergic signaling regulates cell metabolism, proliferation, differentiation, survival, migration, invasion, and immune response during tumor progression. Thus, purinergic signaling is a prospective therapeutic target in cancer and therapy resistance.
Collapse
Affiliation(s)
- Jasmeet Kaur
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sanchit Dora
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
3
|
Bioactive injectable hydrogels for on demand molecule/cell delivery and for tissue regeneration in the central nervous system. Acta Biomater 2022; 140:88-101. [PMID: 34852302 DOI: 10.1016/j.actbio.2021.11.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022]
Abstract
Currently there are no potential curative therapies that can improve the central nervous system (CNS) regeneration after traumatic injuries or diseases. Indeed, the regeneration of CNS is greatly impaired by limited drug penetration across the blood brain barrier (BBB), poor drug targeting, deficient progenitor neural cells and limited proliferation of mature neural cells. To overcome these limitations, bioengineered injectable hydrogels in combination with drug and cell therapy have been proposed to mimic the complexity of the CNS microenvironment and architecture. Additionally, to enhance relevant CNS regeneration, proper biophysical and biochemical cues are needed. Recently, great efforts have been devoted to tailor stimuli-responsive hydrogels as novel carrier systems which are able to guide neural tissue regeneration. This review provides an extensive overview on the most promising injectable hydrogels for neural tissue engineering. A special emphasis is made to highlight the ability of these hydrogels to deliver bioactive compounds/cells upon the exposure to internal and external stimuli. Bioactive injectable hydrogels have a broad application in central nervous system's (CNS) regeneration. This review gives an overview of the latest pioneering approaches in CNS recovery using stimuli-responsive hydrogels for several neurodegenerative disorders. STATEMENT OF SIGNIFICANCE: This review summarizes the latest innovations on bioactive injectable hydrogels, focusing on tailoring internal/external stimuli-responsive hydrogels for the new injectable systems design, able to guide neural tissue response. The purpose is to highlight the advantages and the limitations of thermo-responsive, photo responsive, magnetic responsive, electric responsive, ultrasound responsive and enzymes-triggered injectable hydrogels in developing customizable neurotherapies. We believe that this comprehensive review will help in identifying the strengths and gaps in the existing literature and to further support the use of injectable hydrogels in stimulating CNS regeneration.
Collapse
|
4
|
Zarrinmayeh H, Territo PR. Purinergic Receptors of the Central Nervous System: Biology, PET Ligands, and Their Applications. Mol Imaging 2021; 19:1536012120927609. [PMID: 32539522 PMCID: PMC7297484 DOI: 10.1177/1536012120927609] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purinergic receptors play important roles in central nervous system (CNS). These receptors are involved in cellular neuroinflammatory responses that regulate functions of neurons, microglial and astrocytes. Based on their endogenous ligands, purinergic receptors are classified into P1 or adenosine, P2X and P2Y receptors. During brain injury or under pathological conditions, rapid diffusion of extracellular adenosine triphosphate (ATP) or uridine triphosphate (UTP) from the damaged cells, promote microglial activation that result in the changes in expression of several of these receptors in the brain. Imaging of the purinergic receptors with selective Positron Emission Tomography (PET) radioligands has advanced our understanding of the functional roles of some of these receptors in healthy and diseased brains. In this review, we have accumulated a list of currently available PET radioligands of the purinergic receptors that are used to elucidate the receptor functions and participations in CNS disorders. We have also reviewed receptors lacking radiotracer, laying the foundation for future discoveries of novel PET radioligands to reveal these receptors roles in CNS disorders.
Collapse
Affiliation(s)
- Hamideh Zarrinmayeh
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paul R Territo
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
5
|
Mateus JM, Ribeiro FF, Alonso-Gomes M, Rodrigues RS, Marques JM, Sebastião AM, Rodrigues RJ, Xapelli S. Neurogenesis and Gliogenesis: Relevance of Adenosine for Neuroregeneration in Brain Disorders. J Caffeine Adenosine Res 2019. [DOI: 10.1089/caff.2019.0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Joana M. Mateus
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Filipa F. Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Marta Alonso-Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Rui S. Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joana M. Marques
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ricardo J. Rodrigues
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
6
|
Grijalvo S, Nieto‐Díaz M, Maza RM, Eritja R, Díaz DD. Alginate Hydrogels as Scaffolds and Delivery Systems to Repair the Damaged Spinal Cord. Biotechnol J 2019; 14:e1900275. [DOI: 10.1002/biot.201900275] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/12/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Santiago Grijalvo
- Institute for Advanced Chemistry of Catalonia (IQAC, CSIC) Jordi Girona 18–26 E‐08034 Barcelona Spain
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN) Jordi Girona 18–26 E‐08034 Barcelona Spain
| | - Manuel Nieto‐Díaz
- Molecular Neuroprotection GroupResearch Unit, National Hospital for Paraplegics (SESCAM) E‐45071 Toledo Spain
| | - Rodrigo M. Maza
- Molecular Neuroprotection GroupResearch Unit, National Hospital for Paraplegics (SESCAM) E‐45071 Toledo Spain
| | - Ramón Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC, CSIC) Jordi Girona 18–26 E‐08034 Barcelona Spain
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN) Jordi Girona 18–26 E‐08034 Barcelona Spain
| | - David Díaz Díaz
- Institut für Organische ChemieUniversität Regensburg, Universitätsstr. 31 93053 Regensburg Germany
- Institute of Natural Products and Abrobiology of the CSIC Avda. Astrofísico Francisco Sánchez 3 E‐3826 La Laguna Tenerife Spain
| |
Collapse
|
7
|
Rodrigues RJ, Marques JM, Cunha RA. Purinergic signalling and brain development. Semin Cell Dev Biol 2019; 95:34-41. [DOI: 10.1016/j.semcdb.2018.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/01/2018] [Accepted: 12/01/2018] [Indexed: 11/27/2022]
|
8
|
Nakamichi N, Nakao S, Masuo Y, Koike A, Matsumura N, Nishiyama M, Al-Shammari AH, Sekiguchi H, Sutoh K, Usumi K, Kato Y. Hydrolyzed Salmon Milt Extract Enhances Object Recognition and Location Memory Through an Increase in Hippocampal Cytidine Nucleoside Levels in Normal Mice. J Med Food 2019; 22:408-415. [DOI: 10.1089/jmf.2018.4285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Noritaka Nakamichi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Shunsuke Nakao
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yusuke Masuo
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Ayaka Koike
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Naoto Matsumura
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Misa Nishiyama
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Aya Hasan Al-Shammari
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | | | - Keita Sutoh
- Life Science Institute Co., Ltd., Tokyo, Japan
| | - Koji Usumi
- Life Science Institute Co., Ltd., Tokyo, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
9
|
Ribeiro DE, Glaser T, Oliveira-Giacomelli Á, Ulrich H. Purinergic receptors in neurogenic processes. Brain Res Bull 2018; 151:3-11. [PMID: 30593881 DOI: 10.1016/j.brainresbull.2018.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/28/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022]
Abstract
Neurogenesis is a process of generating functional neurons, which occurs during embryonic and adult stages in mammals. While neurogenesis during development phase is characterized by intensive proliferation activity in all regions of the brain to form the architecture and neural function of the nervous system, adult neurogenesis occurs with less intensity in two brain regions and is involved in the maintenance of neurogenic niches, local repair, memory and cognitive functions in the hippocampus. Taking such differences into account, the understanding of molecular mechanisms involved in cell differentiation in developmental stages and maintenance of the nervous system is an important research target. Although embryonic and adult neurogenesis presents several differences, signaling through purinergic receptors participates in this process throughout life. For instance, while embryonic neurogenesis involves P2X7 receptor down-regulation and calcium waves triggered by P2Y1 receptor stimulation, adult neurogenesis may be enhanced by increased activity of A2A and P2Y1 receptors and impaired by A1, P2Y13 and P2X7 receptor stimulation.
Collapse
Affiliation(s)
- D E Ribeiro
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900, Av. Prof. Lineu Prestes, 748, São Paulo, SP, Brazil
| | - T Glaser
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900, Av. Prof. Lineu Prestes, 748, São Paulo, SP, Brazil
| | - Á Oliveira-Giacomelli
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900, Av. Prof. Lineu Prestes, 748, São Paulo, SP, Brazil
| | - H Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900, Av. Prof. Lineu Prestes, 748, São Paulo, SP, Brazil.
| |
Collapse
|
10
|
Abstract
Adenosine 5′-triphosphate acts as an extracellular signalling molecule (purinergic signalling), as well as an intracellular energy source. Adenosine 5′-triphosphate receptors have been cloned and characterised. P1 receptors are selective for adenosine, a breakdown product of adenosine 5′-triphosphate after degradation by ectonucleotidases. Four subtypes are recognised, A1, A2A, A2B and A3 receptors. P2 receptors are activated by purine and by pyrimidine nucleotides. P2X receptors are ligand-gated ion channel receptors (seven subunits (P2X1-7)), which form trimers as both homomultimers and heteromultimers. P2Y receptors are G protein-coupled receptors (eight subtypes (P2Y1/2/4/6/11/12/13/14)). There is both purinergic short-term signalling and long-term (trophic) signalling. The cloning of P2X-like receptors in primitive invertebrates suggests that adenosine 5′-triphosphate is an early evolutionary extracellular signalling molecule. Selective purinoceptor agonists and antagonists with therapeutic potential have been developed for a wide range of diseases, including thrombosis and stroke, dry eye, atherosclerosis, kidney failure, osteoporosis, bladder incontinence, colitis, neurodegenerative diseases and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, London, UK.,Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Tang Y, Illes P. Regulation of adult neural progenitor cell functions by purinergic signaling. Glia 2016; 65:213-230. [PMID: 27629990 DOI: 10.1002/glia.23056] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/20/2016] [Accepted: 08/23/2016] [Indexed: 01/30/2023]
Abstract
Extracellular purines are signaling molecules in the neurogenic niches of the brain and spinal cord, where they activate cell surface purinoceptors at embryonic neural stem cells (NSCs) and adult neural progenitor cells (NPCs). Although mRNA and protein are expressed at NSCs/NPCs for almost all subtypes of the nucleotide-sensitive P2X/P2Y, and the nucleoside-sensitive adenosine receptors, only a few of those have acquired functional significance. ATP is sequentially degraded by ecto-nucleotidases to ADP, AMP, and adenosine with agonistic properties for distinct receptor-classes. Nucleotides/nucleosides facilitate or inhibit NSC/NPC proliferation, migration and differentiation. The most ubiquitous effect of all agonists (especially of ATP and ADP) appears to be the facilitation of cell proliferation, usually through P2Y1Rs and sometimes through P2X7Rs. However, usually P2X7R activation causes necrosis/apoptosis of NPCs. Differentiation can be initiated by P2Y2R-activation or P2X7R-blockade. A key element in the transduction mechanism of either receptor is the increase of the intracellular free Ca2+ concentration, which may arise due to its release from intracellular storage sites (G protein-coupling; P2Y) or due to its passage through the receptor-channel itself from the extracellular space (ATP-gated ion channel; P2X). Further research is needed to clarify how purinergic signaling controls NSC/NPC fate and how the balance between the quiescent and activated states is established with fine and dynamic regulation. GLIA 2017;65:213-230.
Collapse
Affiliation(s)
- Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Peter Illes
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, 04107, Germany
| |
Collapse
|
12
|
Benito-Muñoz M, Matute C, Cavaliere F. Adenosine A1 receptor inhibits postnatal neurogenesis and sustains astrogliogenesis from the subventricular zone. Glia 2016; 64:1465-78. [PMID: 27301342 DOI: 10.1002/glia.23010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 05/10/2016] [Indexed: 01/06/2023]
Abstract
We previously demonstrated that activation of ATP P2X receptors during oxygen and glucose deprivation inhibits neuroblast migration and in vitro neurogenesis from the subventricular zone (SVZ). Here, we have studied the effects of adenosine, the natural end-product of ATP hydrolysis, in modulating neurogenesis and gliogenesis from the SVZ. We provide immunochemical, molecular and pharmacological evidence that adenosine via A1 receptors reduces neuronal differentiation of neurosphere cultures generated from postnatal SVZ. Furthermore, activation of A1 receptors induces downregulation of genes related to neurogenesis as demonstrated by gene expression analysis. Specifically, we found that A1 receptors trigger a signaling cascade that, through the release of IL10, turns on the Bmp2/SMAD pathway. Furthermore, activating A1 receptors in SVZ-neural progenitor cells inhibits neurogenesis and stimulates astrogliogenesis as assayed in vitro in neurosphere cultures and in vivo in the olfactory bulb. Together, these data indicate that adenosine acting at A1 receptors negatively regulates adult neurogenesis while promoting astrogliogenesis, and that this feature may be relevant to pathological conditions whereby purines are profusely released. GLIA 2016;64:1465-1478.
Collapse
Affiliation(s)
- Monica Benito-Muñoz
- Department of Neuroscience, Achucarro Basque Center for Neuroscience, CIBERNED, and University of Basque Country UPV/EHU, Parque Tecnológico De Bizkaia Ed, Leioa, 205 48170, Spain
| | - Carlos Matute
- Department of Neuroscience, Achucarro Basque Center for Neuroscience, CIBERNED, and University of Basque Country UPV/EHU, Parque Tecnológico De Bizkaia Ed, Leioa, 205 48170, Spain
| | - Fabio Cavaliere
- Department of Neuroscience, Achucarro Basque Center for Neuroscience, CIBERNED, and University of Basque Country UPV/EHU, Parque Tecnológico De Bizkaia Ed, Leioa, 205 48170, Spain
| |
Collapse
|
13
|
Uda Y, Xu S, Matsumura T, Takei Y. P2Y4 Nucleotide Receptor in Neuronal Precursors Induces Glutamatergic Subtype Markers in Their Descendant Neurons. Stem Cell Reports 2016; 6:474-482. [PMID: 26972684 PMCID: PMC4834041 DOI: 10.1016/j.stemcr.2016.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 01/20/2023] Open
Abstract
Neural stem cells (NSCs) produce all neuronal subtypes involved in the nervous system. The mechanism regulating their subtype selection is not fully understood. We found that the expression of the nucleotide receptor P2Y4 was transiently augmented in the course of neuronal differentiation of mouse embryonic stem cells (ESCs), which was after loss of pluripotency but prior to terminal differentiation of neurons. The activation of P2Y4 in the differentiating ESCs resulted in an increased proportion of neurons expressing vesicular glutamate transporter (vGluT), a marker of glutamatergic subtype. A subpopulation of type 2 NSCs of the adult mouse hippocampus expressed P2Y4. Its activation induced the expression of glutamatergic subtype markers, vGluT and TBR1, in their descendant neurons. Reciprocally, inhibition of the P2Y4 signaling abolished the effects of nucleotides on those expressions. Our results provide evidence that differentiating NSCs pass through a stage in which nucleotides can affect subtype marker expression of their descendant neurons. Nucleotides can induce expression of glutamatergic neuronal markers The induction is mediated by the nucleotide receptor P2Y4 P2Y4 expression is augmented transiently in neuronal differentiation
Collapse
Affiliation(s)
- Youichi Uda
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Science, Kyoto University, 46-29 Shimo-adachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shuai Xu
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Science, Kyoto University, 46-29 Shimo-adachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takafumi Matsumura
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Science, Kyoto University, 46-29 Shimo-adachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshinori Takei
- Department of Nanobio Drug Discovery Science, Graduate School of Pharmaceutical Science, Kyoto University, 46-29 Shimo-adachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
14
|
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, UK; Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Australia
| |
Collapse
|
15
|
Purines in neurite growth and astroglia activation. Neuropharmacology 2015; 104:255-71. [PMID: 26498067 DOI: 10.1016/j.neuropharm.2015.10.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/14/2015] [Accepted: 10/18/2015] [Indexed: 12/19/2022]
Abstract
The mammalian nervous system is a complex, functional network of neurons, consisting of local and long-range connections. Neuronal growth is highly coordinated by a variety of extracellular and intracellular signaling molecules. Purines turned out to be an essential component of these processes. Here, we review the current knowledge about the involvement of purinergic signaling in the regulation of neuronal development. We particularly focus on its role in neuritogenesis: the formation and extension of neurites. In the course of maturation mammals generally lose their ability to regenerate the central nervous system (CNS) e.g. after traumatic brain injury; although, spontaneous regeneration still occurs in the peripheral nervous system (PNS). Thus, it is crucial to translate the knowledge about CNS development and PNS regeneration into novel approaches to enable neurons of the mature CNS to regenerate. In this context we give a general overview of growth-inhibitory and growth-stimulatory factors and mechanisms involved in neurite growth. With regard to neuronal growth, astrocytes are an important cell population. They provide structural and metabolic support to neurons and actively participate in brain signaling. Astrocytes respond to injury with beneficial or detrimental reactions with regard to axonal growth. In this review we present the current knowledge of purines in these glial functions. Moreover, we discuss organotypic brain slice co-cultures as a model which retains neuron-glia interactions, and further presents at once a model for CNS development and regeneration. In summary, the purinergic system is a pivotal factor in neuronal development and in the response to injury. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
|
16
|
Burnstock G, Dale N. Purinergic signalling during development and ageing. Purinergic Signal 2015; 11:277-305. [PMID: 25989750 PMCID: PMC4529855 DOI: 10.1007/s11302-015-9452-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 01/28/2023] Open
Abstract
Extracellular purines and pyrimidines play major roles during embryogenesis, organogenesis, postnatal development and ageing in vertebrates, including humans. Pluripotent stem cells can differentiate into three primary germ layers of the embryo but may also be involved in plasticity and repair of the adult brain. These cells express the molecular components necessary for purinergic signalling, and their developmental fates can be manipulated via this signalling pathway. Functional P1, P2Y and P2X receptor subtypes and ectonucleotidases are involved in the development of different organ systems, including heart, blood vessels, skeletal muscle, urinary bladder, central and peripheral neurons, retina, inner ear, gut, lung and vas deferens. The importance of purinergic signalling in the ageing process is suggested by changes in expression of A1 and A2 receptors in old rat brains and reduction of P2X receptor expression in ageing mouse brain. By contrast, in the periphery, increases in expression of P2X3 and P2X4 receptors are seen in bladder and pancreas.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | |
Collapse
|
17
|
Burnstock G. An introduction to the roles of purinergic signalling in neurodegeneration, neuroprotection and neuroregeneration. Neuropharmacology 2015; 104:4-17. [PMID: 26056033 DOI: 10.1016/j.neuropharm.2015.05.031] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 12/21/2022]
Abstract
Purinergic signalling appears to play important roles in neurodegeneration, neuroprotection and neuroregeneration. Initially there is a brief summary of the background of purinergic signalling, including release of purines and pyrimidines from neural and non-neural cells and their ectoenzymatic degradation, and the current characterisation of P1 (adenosine), and P2X (ion channel) and P2Y (G protein-coupled) nucleotide receptor subtypes. There is also coverage of the localization and roles of purinoceptors in the healthy central nervous system. The focus is then on the roles of purinergic signalling in trauma, ischaemia, stroke and in neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's diseases, as well as multiple sclerosis and amyotrophic lateral sclerosis. Neuroprotective mechanisms involving purinergic signalling are considered and its involvement in neuroregeneration, including the role of adult neural stem/progenitor cells. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK; Department of Pharmacology and Therapeutics, The University of Melbourne, Australia.
| |
Collapse
|
18
|
Bang SY, Kwon SH, Yi SH, Yi SA, Park EK, Lee JC, Jang CG, You JS, Lee SH, Han JW. Epigenetic activation of the Foxa2 gene is required for maintaining the potential of neural precursor cells to differentiate into dopaminergic neurons after expansion. Stem Cells Dev 2014; 24:520-33. [PMID: 25233056 DOI: 10.1089/scd.2014.0218] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dysregulation of forkhead box protein A2 (Foxa2) expression in fetal ventral mesencephalon (VM)-derived neural precursor cells (NPCs) appears to be associated with the loss of their potential to differentiate into dopaminergic (DA) neurons after mitogenic expansion in vitro, hindering their efficient use as a transplantable cell source. Here, we report that epigenetic activation of Foxa2 in VM-derived NPCs by inducing histone hyperacetylation rescues the mitogenic-expansion-dependent decrease of differentiation potential to DA neurons. The silencing of Foxa2 gene expression after expansion is accompanied by repressive histone modifications, including hypoacetylation of histone H3 and H4 and trimethylation of H3K27 on the Foxa2 promoter, as well as on the global level. In addition, histone deacetylase 7 (HDAC7) is highly expressed during differentiation and recruited to the Foxa2 promoter. Induction of histone acetylation in VM-derived NPCs by either knockdown of HDAC7 or treatment with the HDAC inhibitor apicidin upregulates Foxa2 expression via hyperacetylation of H3 and a decrease in H3K27 trimethylation on the promoter regions, leading to the expression of DA neuron developmental genes and enhanced differentiation of DA neurons. These effects are antagonized by the expression of shRNAs specific for Foxa2 but enhanced by shRNA for HDAC7. Collectively, these findings indicate that loss of differentiation potential of expanded VM-derived NPCs is attributed to a decrease in Foxa2 expression and suggest that activation of the endogenous Foxa2 gene by epigenetic regulation might be an approach to enhance the generation of DA neurons.
Collapse
Affiliation(s)
- So-Young Bang
- 1 Research Center for Epigenome Regulation, School of Pharmacy, Sungkyunkwan University , Suwon, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Ulrich H, Abbracchio MP, Burnstock G. Extrinsic purinergic regulation of neural stem/progenitor cells: implications for CNS development and repair. Stem Cell Rev Rep 2012; 8:755-67. [PMID: 22544361 DOI: 10.1007/s12015-012-9372-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There has been tremendous progress in understanding neural stem cell (NSC) biology, with genetic and cell biological methods identifying sequential gene expression and molecular interactions guiding NSC specification into distinct neuronal and glial populations during development. Data has emerged on the possible exploitation of NSC-based strategies to repair adult diseased brain. However, despite increased information on lineage specific transcription factors, cell-cycle regulators and epigenetic factors involved in the fate and plasticity of NSCs, understanding of extracellular cues driving the behavior of embryonic and adult NSCs is still very limited. Knowledge of factors regulating brain development is crucial in understanding the pathogenetic mechanisms of brain dysfunction. Since injury-activated repair mechanisms in adult brain often recapitulate ontogenetic events, the identification of these players will also reveal novel regenerative strategies. Here, we highlight the purinergic system as a key emerging player in the endogenous control of NSCs. Purinergic signalling molecules (ATP, UTP and adenosine) act with growth factors in regulating the synchronized proliferation, migration, differentiation and death of NSCs during brain and spinal cord development. At early stages of development, transient and time-specific release of ATP is critical for initiating eye formation; once anatomical CNS structures are defined, purinergic molecules participate in calcium-dependent neuron-glia communication controlling NSC behaviour. When development is complete, some purinergic mechanisms are silenced, but can be re-activated in adult brain after injury, suggesting a role in regeneration and self-repair. Targeting the purinergic system to develop new strategies for neurodevelopmental disorders and neurodegenerative diseases will be also discussed.
Collapse
Affiliation(s)
- Henning Ulrich
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo 05508-900, SP, Brazil.
| | | | | |
Collapse
|
21
|
Abstract
The importance of adult neurogenesis has only recently been accepted, resulting in a completely new field of investigation within stem cell biology. The regulation and functional significance of adult neurogenesis is currently an area of highly active research. G-protein-coupled receptors (GPCRs) have emerged as potential modulators of adult neurogenesis. GPCRs represent a class of proteins with significant clinical importance, because approximately 30% of all modern therapeutic treatments target these receptors. GPCRs bind to a large class of neurotransmitters and neuromodulators such as norepinephrine, dopamine, and serotonin. Besides their typical role in cellular communication, GPCRs are expressed on adult neural stem cells and their progenitors that relay specific signals to regulate the neurogenic process. This review summarizes the field of adult neurogenesis and its methods and specifies the roles of various GPCRs and their signal transduction pathways that are involved in the regulation of adult neural stem cells and their progenitors. Current evidence supporting adult neurogenesis as a model for self-repair in neuropathologic conditions, adult neural stem cell therapeutic strategies, and potential avenues for GPCR-based therapeutics are also discussed.
Collapse
Affiliation(s)
- Van A Doze
- Department of Molecular Cardiology, NB50, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195, USA
| | | |
Collapse
|
22
|
Burnstock G. Purinergic signalling: Its unpopular beginning, its acceptance and its exciting future. Bioessays 2012; 34:218-25. [PMID: 22237698 DOI: 10.1002/bies.201100130] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Adenosine 5'-triphosphate (ATP) was identified in 1970 as the transmitter responsible for non-adrenergic, non-cholinergic neurotransmission in the gut and bladder and the term 'purinergic' was coined. Purinergic cotransmission was proposed in 1976 and ATP is now recognized as a cotransmitter in all nerves in the peripheral and central nervous systems. P1 (adenosine) and P2 (ATP) receptors were distinguished in 1978. Cloning of these receptors in the early 1990s was a turning point in the acceptance of the purinergic signalling hypothesis. There are both short-term purinergic signalling in neurotransmission, neuromodulation and secretion and long-term (trophic) purinergic signalling of cell proliferation, differentiation and death in development and regeneration. Much is known about the mechanisms of ATP release and its breakdown by ectonucleotidases. Recently, there has been emphasis on purinergic pathophysiology, including neurodegenerative and neuropsychiatric disorders. Purinergic therapeutic strategies are being developed for treatment of gut, kidney, bladder, lung, skeletal and reproductive system disorders, pain and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, London, UK.
| |
Collapse
|
23
|
Zimmermann H. Purinergic signaling in neural development. Semin Cell Dev Biol 2011; 22:194-204. [DOI: 10.1016/j.semcdb.2011.02.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/07/2011] [Accepted: 02/07/2011] [Indexed: 02/07/2023]
|