1
|
Lohr C. Role of P2Y receptors in astrocyte physiology and pathophysiology. Neuropharmacology 2023; 223:109311. [PMID: 36328064 DOI: 10.1016/j.neuropharm.2022.109311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
Astrocytes are active constituents of the brain that manage ion homeostasis and metabolic support of neurons and directly tune synaptic transmission and plasticity. Astrocytes express all known P2Y receptors. These regulate a multitude of physiological functions such as cell proliferation, Ca2+ signalling, gliotransmitter release and neurovascular coupling. In addition, P2Y receptors are fundamental in the transition of astrocytes into reactive astrocytes, as occurring in many brain disorders such as neurodegenerative diseases, neuroinflammation and epilepsy. This review summarizes the current literature addressing the function of P2Y receptors in astrocytes in the healthy brain as well as in brain diseases.
Collapse
Affiliation(s)
- Christian Lohr
- Institute of Cell and Systems Biology of Animals, University of Hamburg, Germany.
| |
Collapse
|
2
|
Engel T, Smith J, Alves M. Targeting Neuroinflammation via Purinergic P2 Receptors for Disease Modification in Drug-Refractory Epilepsy. J Inflamm Res 2021; 14:3367-3392. [PMID: 34305404 PMCID: PMC8298823 DOI: 10.2147/jir.s287740] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/12/2021] [Indexed: 12/27/2022] Open
Abstract
Treatment of epilepsy remains a clinical challenge, with >30% of patients not responding to current antiseizure drugs (ASDs). Moreover, currently available ASDs are merely symptomatic without altering significantly the progression of the disease. Inflammation is increasingly recognized as playing an important role during the generation of hyperexcitable networks in the brain. Accordingly, the suppression of chronic inflammation has been suggested as a promising therapeutic strategy to prevent epileptogenesis and to treat drug-refractory epilepsy. As a consequence, a strong focus of ongoing research is identification of the mechanisms that contribute to sustained inflammation in the brain during epilepsy and whether these can be targeted. ATP is released in response to several pathological stimuli, including increased neuronal activity within the central nervous system, where it functions as a neuro- and gliotransmitter. Once released, ATP activates purinergic P2 receptors, which are divided into metabotropic P2Y and ionotropic P2X receptors, driving inflammatory processes. Evidence from experimental models and patients demonstrates widespread expression changes of both P2Y and P2X receptors during epilepsy, and critically, drugs targeting both receptor subtypes, in particular the P2Y1 and P2X7 subtypes, have been shown to possess both anticonvulsive and antiepileptic potential. This review provides a detailed summary of the current evidence suggesting ATP-gated receptors as novel drug targets for epilepsy and discusses how P2 receptor–driven inflammation may contribute to the generation of seizures and the development of epilepsy.
Collapse
Affiliation(s)
- Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Jonathon Smith
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| |
Collapse
|
3
|
Lucas TA, Zhu L, Buckwalter MS. Spleen glia are a transcriptionally unique glial subtype interposed between immune cells and sympathetic axons. Glia 2021; 69:1799-1815. [DOI: 10.1002/glia.23993] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Tawaun A. Lucas
- Department of Neurology and Neurological Sciences Stanford School of Medicine Stanford California USA
| | - Li Zhu
- Department of Neurology and Neurological Sciences Stanford School of Medicine Stanford California USA
| | - Marion S. Buckwalter
- Department of Neurology and Neurological Sciences Stanford School of Medicine Stanford California USA
- Department of Neurosurgery Stanford School of Medicine Stanford California USA
| |
Collapse
|
4
|
Fukumoto Y, Tanaka KF, Parajuli B, Shibata K, Yoshioka H, Kanemaru K, Gachet C, Ikenaka K, Koizumi S, Kinouchi H. Neuroprotective effects of microglial P2Y 1 receptors against ischemic neuronal injury. J Cereb Blood Flow Metab 2019; 39:2144-2156. [PMID: 30334687 PMCID: PMC6827120 DOI: 10.1177/0271678x18805317] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Extracellular ATP, which is released from damaged cells after ischemia, activates P2 receptors. P2Y1 receptors (P2Y1R) have received considerable attention, especially in astrocytes, because their activation plays a central role in the regulation of neuron-to-glia communication. However, the functions or even existence of P2Y1R in microglia remain unknown, despite the fact that many microglial P2 receptors are involved in several brain diseases. Herein, we demonstrate the presence and functional capability of microglial P2Y1R to provide neuroprotective effects following ischemic stress. Cerebral ischemia resulted in increased microglial P2Y1R expression. The number of injured hippocampal neurons was significantly higher in P2Y1 R knockout (KO) mice than wildtype mice after forebrain ischemia. Propidium iodide (PI) uptake, a marker for dying cells, was significantly higher in P2Y1R KO hippocampal slices compared with wildtype hippocampal slices at 48 h after 40-min oxygen-glucose deprivation (OGD). Furthermore, increased PI uptake following OGD was rescued by ectopic overexpression of P2Y1R in microglia. In summary, these data suggest that microglial P2Y1R mediate neuroprotective effects against ischemic stress and OGD insult.
Collapse
Affiliation(s)
- Yuichiro Fukumoto
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.,Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Bijay Parajuli
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Keisuke Shibata
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hideyuki Yoshioka
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kazuya Kanemaru
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Christian Gachet
- Institut National de la Santé et de la Recherche Médicale (INSERM), Strasbourg, France
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Science, Aichi, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hiroyuki Kinouchi
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
5
|
Quintas C, Vale N, Gonçalves J, Queiroz G. Microglia P2Y 13 Receptors Prevent Astrocyte Proliferation Mediated by P2Y 1 Receptors. Front Pharmacol 2018; 9:418. [PMID: 29773988 PMCID: PMC5943495 DOI: 10.3389/fphar.2018.00418] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/10/2018] [Indexed: 11/20/2022] Open
Abstract
Cerebral inflammation is a common feature of several neurodegenerative diseases that requires a fine interplay between astrocytes and microglia to acquire appropriate phenotypes for an efficient response to neuronal damage. During brain inflammation, ATP is massively released into the extracellular medium and converted into ADP. Both nucleotides acting on P2 receptors, modulate astrogliosis through mechanisms involving microglia-astrocytes communication. In previous studies, primary cultures of astrocytes and co-cultures of astrocytes and microglia were used to investigate the influence of microglia on astroglial proliferation induced by ADPβS, a stable ADP analog. In astrocyte cultures, ADPβS increased cell proliferation through activation of P2Y1 and P2Y12 receptors, an effect abolished in co-cultures (of astrocytes with ∼12.5% microglia). The possibility that the loss of the ADPβS-mediated effect could have been caused by a microglia-induced degradation of ADPβS or by a preferential microglial localization of P2Y1 or P2Y12 receptors was excluded. Since ADPβS also activates P2Y13 receptors, the contribution of microglial P2Y13 receptors to prevent the proliferative effect of ADPβS in co-cultures was investigated. The results obtained indicate that P2Y13 receptors are low expressed in astrocytes and mainly expressed in microglia. Furthermore, in co-cultures, ADPβS induced astroglial proliferation in the presence of the selective P2Y13 antagonist MRS 2211 (3 μM) and of the selective P2Y12 antagonist AR-C66096 (0.1 μM), suggesting that activation of microglial P2Y12 and P2Y13 receptors may induce the release of messengers that inhibit astroglial proliferation mediated by P2Y1,12 receptors. In this microglia-astrocyte paracrine communication, P2Y12 receptors exert opposite effects in astroglial proliferation as a result of its cellular localization: cooperating in astrocytes with P2Y1 receptors to directly stimulate proliferation and in microglia with P2Y13 receptors to prevent proliferation. IL-1β also attenuated the proliferative effect of ADPβS in astrocyte cultures. However, in co-cultures, the anti-IL-1β antibody was unable to recover the ADPβS-proliferative effect, an effect that was achieved by the anti-IL-1α and anti-TNF-α antibodies. It is concluded that microglia control the P2Y1,12 receptor-mediated astroglial proliferation through a P2Y12,13 receptor-mediated mechanism alternative to the IL-1β suppressive pathway that may involve the contribution of the cytokines IL-1α and TNF-α.
Collapse
Affiliation(s)
- Clara Quintas
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,REQUIMTE/LAQV, University of Porto, Porto, Portugal
| | - Nuno Vale
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,REQUIMTE/UCIBIO, University of Porto, Porto, Portugal
| | - Jorge Gonçalves
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,MedInUP, University of Porto, Porto, Portugal
| | - Glória Queiroz
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,MedInUP, University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Adzic M, Stevanovic I, Josipovic N, Laketa D, Lavrnja I, Bjelobaba IM, Bozic I, Jovanovic M, Milosevic M, Nedeljkovic N. Extracellular ATP induces graded reactive response of astrocytes and strengthens their antioxidative defense in vitro. J Neurosci Res 2016; 95:1053-1066. [PMID: 27714837 DOI: 10.1002/jnr.23950] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 12/20/2022]
Abstract
It is widely accepted that adenosine triphosphate (ATP) acts as a universal danger-associated molecular pattern with several known mechanisms for immune cell activation. In the central nervous system, ATP activates microglia and astrocytes and induces a neuroinflammatory response. The aim of the present study was to describe responses of isolated astrocytes to increasing concentrations of ATP (5 µM to 1 mM), which were intended to mimic graded intensity of the extracellular stimulus. The results show that ATP induces graded activation response of astrocytes in terms of the cell proliferation, stellation, shape remodeling, and underlying actin and GFAP filament rearrangement, although the changes occurred without an apparent increase in GFAP and actin protein expression. On the other hand, ATP in the range of applied concentrations did not evoke IL-1β release from cultured astrocytes, nor did it modify the release from LPS and LPS+IFN-γ-primed astrocytes. ATP did not promote astrocyte migration in the wound-healing assay, nor did it increase production of reactive oxygen and nitrogen species and lipid peroxidation. Instead, ATP strengthened the antioxidative defense of astrocytes by inducing Cu/ZnSOD and MnSOD activities and by increasing their glutathione content. Our current results suggest that although ATP triggers several attributes of activated astrocytic phenotype with a magnitude that increases with the concentration, it is not sufficient to induce full-blown reactive phenotype of astrocytes in vitro. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marija Adzic
- Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia.,Centre for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Ivana Stevanovic
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - Natasa Josipovic
- Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Danijela Laketa
- Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Irena Lavrnja
- Institute for Biological Research "Sinisa Stankovic,", University of Belgrade, Belgrade, Serbia
| | - Ivana M Bjelobaba
- Institute for Biological Research "Sinisa Stankovic,", University of Belgrade, Belgrade, Serbia
| | - Iva Bozic
- Institute for Biological Research "Sinisa Stankovic,", University of Belgrade, Belgrade, Serbia
| | - Marija Jovanovic
- Institute for Biological Research "Sinisa Stankovic,", University of Belgrade, Belgrade, Serbia
| | - Milena Milosevic
- Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia.,Centre for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Nadezda Nedeljkovic
- Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
7
|
Förster D, Reiser G. Supportive or detrimental roles of P2Y receptors in brain pathology?--The two faces of P2Y receptors in stroke and neurodegeneration detected in neural cell and in animal model studies. Purinergic Signal 2015; 11:441-54. [PMID: 26407872 DOI: 10.1007/s11302-015-9471-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/14/2015] [Indexed: 12/28/2022] Open
Abstract
This review describing the role of P2Y receptors in neuropathological conditions focuses on obvious differences between results demonstrating either a role in neuroprotection or in neurodegeneration, depending on in vitro and in vivo models. Such critical juxtaposition puts special emphasis on discussions of beneficial and detrimental effects of P2Y receptor agonists and antagonists in these models. The mechanisms reported to underlie the protection in vitro include increased expression of oxidoreductase genes, like carbonyl reductase and thioredoxin reductase; increased expression of inhibitor of apoptosis protein-2; extracellular signal-regulated kinase- and Akt-mediated antiapoptotic signaling; increased expression of Bcl-2 proteins, neurotrophins, neuropeptides, and growth factors; decreased Bax expression; non-amyloidogenic APP shedding; and increased neurite outgrowth in neuronal cells. Animal studies investigating the influence of P2Y receptors in middle cerebral artery occlusion (MCAO) models for stroke prove beneficial effects of P2Y receptor antagonists. In MCAO mice and rats, the application of broad-range P2 receptor antagonists decreased the infarct volume and improved neurological outcome. Moreover, antagonists of the P2Y1 receptor, one of the most abundant P2Y receptor subtypes in brain tissue, decreased neuronal loss and improved spatial memory in rats after traumatic brain injury (TBI). Currently available data show a discrepancy between in vitro and in vivo models concerning the benefits of P2Y receptor activation in pathological conditions. In vitro models demonstrate protection by P2Y receptor agonists, but in vivo P2Y receptor activation deteriorates the outcome after MCAO and controlled cortical impact brain injury, a TBI model. To broaden the scope of the review, we additionally discuss publications that demonstrate detrimental effects of P2Y receptor agonists in vitro and publications showing protective effects of agonists in vivo. All these studies help to better understand the significant role of P2Y receptors especially in stroke models and to develop pharmacological strategies for the treatment of stroke.
Collapse
Affiliation(s)
- Daniel Förster
- Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Institut für Neurobiochemie (Institut für Inflammation und Neurodegeneration), Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Georg Reiser
- Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Institut für Neurobiochemie (Institut für Inflammation und Neurodegeneration), Leipziger Straße 44, 39120, Magdeburg, Germany.
| |
Collapse
|
8
|
Illes P, Verkhratsky A. Purinergic neurone-glia signalling in cognitive-related pathologies. Neuropharmacology 2015; 104:62-75. [PMID: 26256423 DOI: 10.1016/j.neuropharm.2015.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/19/2015] [Accepted: 08/03/2015] [Indexed: 12/31/2022]
Abstract
Neuroglia, represented by astrocytes, oligodendrocytes, NG glia and microglia are homeostatic, myelinating and defensive cells of the brain. Neuroglial cells express various combinations of purinoceptors, which contribute to multiple intercellular signalling pathways in the healthy and diseased nervous system. Neurological diseases are invariably associated with profound neuroglial remodelling, which is manifest by reactive gliosis, pathological remodelling and functional atrophy of various types of glial cells. Gliopathology is disease and region specific and produces multiple glial phenotypes that may be neuroprotective or neurotoxic. In this review we summarise recent knowledge on the role of glial purinergic signalling in cognitive-related neurological diseases. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Peter Illes
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany.
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain; University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia.
| |
Collapse
|
9
|
Quintas C, Pinho D, Pereira C, Saraiva L, Gonçalves J, Queiroz G. Microglia P2Y₆ receptors mediate nitric oxide release and astrocyte apoptosis. J Neuroinflammation 2014; 11:141. [PMID: 25178395 PMCID: PMC4158093 DOI: 10.1186/s12974-014-0141-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/28/2014] [Indexed: 01/22/2023] Open
Abstract
Background During cerebral inflammation uracil nucleotides leak to the extracellular medium and activate glial pyrimidine receptors contributing to the development of a reactive phenotype. Chronically activated microglia acquire an anti-inflammatory phenotype that favors neuronal differentiation, but the impact of these microglia on astrogliosis is unknown. We investigated the contribution of pyrimidine receptors to microglia-astrocyte signaling in a chronic model of inflammation and its impact on astrogliosis. Methods Co-cultures of astrocytes and microglia were chronically treated with lipopolysaccharide (LPS) and incubated with uracil nucleotides for 48 h. The effect of nucleotides was evaluated in methyl-[3H]-thymidine incorporation. Western blot and immunofluorescence was performed to detect the expression of P2Y6 receptors and the inducible form of nitric oxide synthase (iNOS). Nitric oxide (NO) release was quantified through Griess reaction. Cell death was also investigated by the LDH assay and by the TUNEL assay or Hoechst 33258 staining. Results UTP, UDP (0.001 to 1 mM) or PSB 0474 (0.01 to 10 μM) inhibited cell proliferation up to 43 ± 2% (n = 10, P <0.05), an effect prevented by the selective P2Y6 receptor antagonist MRS 2578 (1 μM). UTP was rapidly metabolized into UDP, which had a longer half-life. The inhibitory effect of UDP (1 mM) was abolished by phospholipase C (PLC), protein kinase C (PKC) and nitric oxide synthase (NOS) inhibitors. Both UDP (1 mM) and PSB 0474 (10 μM) increased NO release up to 199 ± 20% (n = 4, P <0.05), an effect dependent on P2Y6 receptors-PLC-PKC pathway activation, indicating that this pathway mediates NO release. Western blot and immunocytochemistry analysis indicated that P2Y6 receptors were expressed in the cultures being mainly localized in microglia. Moreover, the expression of iNOS was mainly observed in microglia and was upregulated by UDP (1 mM) or PSB 0474 (10 μM). UDP-mediated NO release induced apoptosis in astrocytes, but not in microglia. Conclusions In LPS treated co-cultures of astrocytes and microglia, UTP is rapidly converted into UDP, which activates P2Y6 receptors inducing the release of NO by microglia that causes astrocyte apoptosis, thus controlling their rate of proliferation and preventing an excessive astrogliosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Glória Queiroz
- Department of Drug Sciences, Laboratory of Pharmacology, REQUIMTE and Center for Drug Discovery and Innovative Medicines, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira n° 228, Porto 4050-313, Portugal.
| |
Collapse
|
10
|
Boccazzi M, Rolando C, Abbracchio MP, Buffo A, Ceruti S. Purines regulate adult brain subventricular zone cell functions: contribution of reactive astrocytes. Glia 2013; 62:428-39. [PMID: 24382645 DOI: 10.1002/glia.22614] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 12/21/2022]
Abstract
Brain injuries modulate activation of neural stem cells (NSCs) in the adult brain. In pathological conditions, the concentrations of extracellular nucleotides (eNTs) raise several folds, contribute to reactive gliosis, and possibly directly affect subventricular zone (SVZ) cell functioning. Among eNTs and derived metabolites, the P2Y1 receptor agonist ADP strongly promotes astrogliosis and might also influence SVZ progenitor activity. Here, we tested the ability of the stable P2Y1 agonist adenosine 5'-O-(2-thiodiphosphate) (ADPβS) to control adult NSC functions both in vitro and in vivo, with a focus on the possible effects exerted by reactive astrocytes. In the absence of growth factors, ADPβS promoted proliferation and differentiation of SVZ progenitors. Moreover, ADPβS-activated astrocytes markedly changed the pattern of released cytokines and chemokines, and strongly modulated neurosphere-forming capacity of SVZ progenitors. Notably, a significant enhancement in proliferation was observed when SVZ cells, initially grown in the supernatant of astrocytes exposed to ADPβS, were shifted to normal medium. In vivo, ADPβS administration in the lateral ventricle of adult mice by osmotic minipumps caused diffused reactive astrogliosis, and a strong response of SVZ progenitors. Indeed, proliferation of glial fibrillary acidic protein-positive NSCs increased and led to a significant expansion of SVZ transit-amplifying progenitors and neuroblasts. Lineage tracing experiments performed in the GLAST::CreERT2;Rosa-YFP transgenic mice further demonstrated that ADPβS promoted proliferation of glutamate/aspartate transporter-positive progenitors and sustained their progression toward the generation of rapidly dividing progenitors. Altogether, our results show that the purinergic system crucially affects SVZ progenitor activities both directly and through the involvement of reactive astrocytes.
Collapse
Affiliation(s)
- Marta Boccazzi
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | |
Collapse
|
11
|
Pinho D, Quintas C, Sardo F, Cardoso TM, Queiroz G. Purinergic modulation of norepinephrine release and uptake in rat brain cortex: contribution of glial cells. J Neurophysiol 2013; 110:2580-91. [DOI: 10.1152/jn.00708.2012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The pathogenesis of psychiatric and neurodegenerative diseases is often associated with a deregulation of noradrenergic transmission. Considering the potential involvement of purinergic signaling in the modulation of noradrenergic transmission in the brain cortex, this study aimed to identify the P2Y receptor subtypes involved in the modulation of neuronal release and neuronal/glial uptake of norepinephrine. Electrical stimulation (100 pulses at 5 Hz) of rat cortical slices induced norepinephrine release that was inhibited by ATP and ADP (0.01–1 mM), adenosine 5′- O-(2-thiodiphosphate) (ADPβS, 0.03–0.3 mM), and UDP (0.1–1 mM). The effect of ADPβS was mediated by P2Y1receptors and possibly by A1/P2Y1heterodimers since it was attenuated by the A1receptor antagonist DPCPX and by the P2Y1receptor antagonist MRS 2500 but was resistant to the effect of adenosine deaminase (ADA). UDP inhibited norepinephrine release through activation of P2Y6receptors, an effect that was abolished by the P2Y6receptor antagonist MRS 2578 and by DPCPX, indicating that it depends on the formation and/or release of adenosine and activation of A1receptors. Supporting this hypothesis, the inhibitory effect of UDP was also prevented by inhibition of ectonucleotidases, by ADA and was attenuated by the inhibitor of nucleoside transporter 6-[(4-nitrobenzyl)thio]-9-β-d-ribofuranosylpurine (NBTI). Additionally, the inhibitory effect of UDP was attenuated when norepinephrine uptake 1 or 2 was inhibited. In astroglial cultures, ADPβS and UDP increased norepinephrine uptake mainly by activation of P2Y1and P2Y6receptors, respectively. The results indicate that neuronal and glial P2Y1and P2Y6receptors may represent new targets of intervention to regulate noradrenergic transmission in CNS diseases.
Collapse
Affiliation(s)
- Diana Pinho
- Laboratório de Farmacologia, Departamento de Ciências do Medicamento, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; and
| | - Clara Quintas
- Laboratório de Farmacologia, Departamento de Ciências do Medicamento, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; and
| | - Filipa Sardo
- Laboratório de Farmacologia, Departamento de Ciências do Medicamento, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; and
| | - Teresa Magalhães Cardoso
- Laboratório de Farmacologia e Neurobiologia, UMIB, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Glória Queiroz
- Laboratório de Farmacologia, Departamento de Ciências do Medicamento, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; and
| |
Collapse
|
12
|
Franke H, Verkhratsky A, Burnstock G, Illes P. Pathophysiology of astroglial purinergic signalling. Purinergic Signal 2012; 8:629-57. [PMID: 22544529 DOI: 10.1007/s11302-012-9300-0] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/01/2012] [Indexed: 12/13/2022] Open
Abstract
Astrocytes are fundamental for central nervous system (CNS) physiology and are the fulcrum of neurological diseases. Astroglial cells control development of the nervous system, regulate synaptogenesis, maturation, maintenance and plasticity of synapses and are central for nervous system homeostasis. Astroglial reactions determine progression and outcome of many neuropathologies and are critical for regeneration and remodelling of neural circuits following trauma, stroke, ischaemia or neurodegenerative disorders. They secrete multiple neurotransmitters and neurohormones to communicate with neurones, microglia and the vascular walls of capillaries. Signalling through release of ATP is the most widespread mean of communication between astrocytes and other types of neural cells. ATP serves as a fast excitatory neurotransmitter and has pronounced long-term (trophic) roles in cell proliferation, growth, and development. During pathology, ATP is released from damaged cells and acts both as a cytotoxic factor and a proinflammatory mediator, being a universal "danger" signal. In this review, we summarise contemporary knowledge on the role of purinergic receptors (P2Rs) in a variety of diseases in relation to changes of astrocytic functions and nucleotide signalling. We have focussed on the role of the ionotropic P2X and metabotropic P2YRs working alone or in concert to modify the release of neurotransmitters, to activate signalling cascades and to change the expression levels of ion channels and protein kinases. All these effects are of great importance for the initiation, progression and maintenance of astrogliosis-the conserved and ubiquitous glial defensive reaction to CNS pathologies. We highlighted specific aspects of reactive astrogliosis, especially with respect to the involvement of the P2X(7) and P2Y(1)R subtypes. Reactive astrogliosis exerts both beneficial and detrimental effects in a context-specific manner determined by distinct molecular signalling cascades. Understanding the role of purinergic signalling in astrocytes is critical to identifying new therapeutic principles to treat acute and chronic neurological diseases.
Collapse
Affiliation(s)
- Heike Franke
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, 04107, Leipzig, Germany.
| | | | | | | |
Collapse
|