2
|
Vendramin Pasquetti M, Meier L, Loureiro S, Ganzella M, Junges B, Barbieri Caus L, Umpierrez Amaral A, Koeller DM, Goodman S, Woontner M, Gomes de Souza DO, Wajner M, Calcagnotto ME. Impairment of GABAergic system contributes to epileptogenesis in glutaric acidemia type I. Epilepsia 2017; 58:1771-1781. [PMID: 28762469 DOI: 10.1111/epi.13862] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Glutaric acidemia type I (GA-I) is an inherited neurometabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase (GCDH) and characterized by increased levels of glutaric, 3-OH-glutaric, and glutaconic acids in the brain parenchyma. The increment of these organic acids inhibits glutamate decarboxylase (GAD) and consequently lowers the γ-aminobutyric acid (GABA) synthesis. Untreated patients exhibit severe neurologic deficits during development, including epilepsy, especially following an acute encephalopathy outbreak. In this work, we evaluated the role of the GABAergic system on epileptogenesis in GA-I using the Gcdh-/- mice exposed to a high lysine diet (Gcdh-/- -Lys). METHODS Spontaneous recurrent seizures (SRS), seizure susceptibility, and changes in brain oscillations were evaluated by video-electroencephalography (EEG). Cortical GABAergic synaptic transmission was evaluated using electrophysiologic and neurochemical approaches. RESULTS SRS were observed in 72% of Gcdh-/- -Lys mice, whereas no seizures were detected in age-matched controls (Gcdh+/+ or Gcdh-/- receiving normal diet). The severity and number of PTZ-induced seizures were higher in Gcdh-/- -Lys mice. EEG spectral analysis showed a significant decrease in theta and gamma oscillations and predominant delta waves in Gcdh-/- -Lys mice, associated with increased EEG left index. Analysis of cortical synaptosomes revealed a significantly increased percentage of glutamate release and decreased GABA release in Gcdh-/- -Lys mice that were associated with a decrease in cortical GAD immunocontent and activity and confirmed by reduced frequency of inhibitory events in cortical pyramidal cells. SIGNIFICANCE Using an experimental model with a phenotype similar to that of GA-I in humans-the Gcdh-/- mice under high lysine diet (Gcdh-/- -Lys)-we provide evidence that a reduction in cortical inhibition of Gcdh-/- -Lys mice, probably induced by GAD dysfunction, leads to hyperexcitability and increased slow oscillations associated with neurologic abnormalities in GA-I. Our findings offer a new perspective on the pathophysiology of brain damage in GA-I.
Collapse
Affiliation(s)
- Mayara Vendramin Pasquetti
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory-NNNESP Lab.), Biochemistry Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Letícia Meier
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory-NNNESP Lab.), Biochemistry Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Samanta Loureiro
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcelo Ganzella
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bernardo Junges
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory-NNNESP Lab.), Biochemistry Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Letícia Barbieri Caus
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory-NNNESP Lab.), Biochemistry Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexandre Umpierrez Amaral
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - David M Koeller
- Department of Pediatrics, Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, U.S.A
| | - Stephen Goodman
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, U.S.A
| | - Michael Woontner
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, U.S.A
| | - Diogo Onofre Gomes de Souza
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Moacir Wajner
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Elisa Calcagnotto
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory-NNNESP Lab.), Biochemistry Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Postgraduate Program in Neuroscience, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
3
|
Almeida RF, Comasseto DD, Ramos DB, Hansel G, Zimmer ER, Loureiro SO, Ganzella M, Souza DO. Guanosine Anxiolytic-Like Effect Involves Adenosinergic and Glutamatergic Neurotransmitter Systems. Mol Neurobiol 2016; 54:423-436. [PMID: 26742520 DOI: 10.1007/s12035-015-9660-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/17/2015] [Indexed: 12/21/2022]
Abstract
Accumulating evidences indicate that endogenous modulators of excitatory synapses in the mammalian brain are potential targets for treating neuropsychiatric disorders. Indeed, glutamatergic and adenosinergic neurotransmissions were recently highlighted as potential targets for developing innovative anxiolytic drugs. Accordingly, it has been shown that guanine-based purines are able to modulate both adenosinergic and glutamatergic systems in mammalian central nervous system. Here, we aimed to investigate the potential anxiolytic-like effects of guanosine and its effects on the adenosinergic and glutamatergic systems. Acute/systemic guanosine administration (7.5 mg/kg) induced robust anxiolytic-like effects in three classical anxiety-related paradigms (elevated plus maze, light/dark box, and round open field tasks). These guanosine effects were correlated with an enhancement of adenosine and a decrement of glutamate levels in the cerebrospinal fluid. Additionally, pre-administration of caffeine (10 mg/kg), an unspecific adenosine receptors' antagonist, completely abolished the behavioral and partially prevented the neuromodulatory effects exerted by guanosine. Although the hippocampal glutamate uptake was not modulated by guanosine (both ex vivo and in vitro protocols), the synaptosomal K+-stimulated glutamate release in vitro was decreased by guanosine (100 μM) and by the specific adenosine A1 receptor agonist, 2-chloro-N 6-cyclopentyladenosine (CCPA, 100 nM). Moreover, the specific adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 100 nM) fully reversed the inhibitory guanosine effect in the glutamate release. The pharmacological modulation of A2a receptors has shown no effect in any of the evaluated parameters. In summary, the guanosine anxiolytic-like effects seem closely related to the modulation of adenosinergic (A1 receptors) and glutamatergic systems.
Collapse
Affiliation(s)
- Roberto Farina Almeida
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Daniel Diniz Comasseto
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Denise Barbosa Ramos
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Gisele Hansel
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Eduardo R Zimmer
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil.,Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Samanta Oliveira Loureiro
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Marcelo Ganzella
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil.,Neurobiology Department, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Diogo Onofre Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil.
| |
Collapse
|