1
|
Huang R, Ning Q, Zhao J, Zhao X, Zeng L, Yi Y, Tang S. Targeting ENPP1 for cancer immunotherapy: Killing two birds with one stone. Biochem Pharmacol 2024; 220:116006. [PMID: 38142838 DOI: 10.1016/j.bcp.2023.116006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Cancer immunotherapy, particularly with immune checkpoint inhibitors, has revolutionized the paradigm of cancer treatment. Nevertheless, the efficacy of cancer immunotherapy remains limited in most clinical settings due to the lack of a preexisting antitumor T-cell response in tumors. Therefore, the clinical outcomes of cancer immunotherapy must be improved crucially. With increased awareness of the importance of the innate immune response in the recruitment of T cells, as well as the onset and maintenance of the T cell response, great interest has been shown in activating the cGAS-STING signaling pathway to awaken the innate immune response, thereby orchestrating both innate and adaptive immune responses to induce tumor clearance. However, tumor cells have evolved to overexpress ectonucleotide pyrophosphate phosphodiesterase 1 (ENPP1), which degrades the immunotransmitter 2',3'-cGAMP and promotes the production of immune-suppressing adenosine, resulting in inhibition of the anticancer immune response in the tumor microenvironment. Clinically, ENPP1 overexpression is closely associated with poor prognosis in patients with cancer. Conversely, depleting or inhibiting ENPP1 has been verified to elevate extracellular 2',3'-cGAMP levels and inhibit the generation of adenosine, thereby reinvigorating the anticancer immune response for tumor elimination. A variety of ENPP1 inhibitors have recently been developed and have demonstrated significant promise for cancer immunotherapy. In this review, we provide an overview of ENPP1, dissect its immunosuppressive mechanisms, and discuss the development of ENPP1 inhibitors with the potential to further improve the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Ruilei Huang
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jihui Zhao
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Xuhong Zhao
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Luting Zeng
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Yi Yi
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Shengsong Tang
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, and Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China.
| |
Collapse
|
2
|
Fu X, Feng S, Qin H, Yan L, Zheng C, Yao K. Microglia: The breakthrough to treat neovascularization and repair blood-retinal barrier in retinopathy. Front Mol Neurosci 2023; 16:1100254. [PMID: 36756614 PMCID: PMC9899825 DOI: 10.3389/fnmol.2023.1100254] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
Microglia are the primary resident retinal macrophages that monitor neuronal activity in real-time and facilitate angiogenesis during retinal development. In certain retinal diseases, the activated microglia promote retinal angiogenesis in hypoxia stress through neurovascular coupling and guide neovascularization to avascular areas (e.g., the outer nuclear layer and macula lutea). Furthermore, continuously activated microglia secrete inflammatory factors and expedite the loss of the blood-retinal barrier which causes irreversible damage to the secondary death of neurons. In this review, we support microglia can be a potential cellular therapeutic target in retinopathy. We briefly describe the relevance of microglia to the retinal vasculature and blood-retinal barrier. Then we discuss the signaling pathway related to how microglia move to their destinations and regulate vascular regeneration. We summarize the properties of microglia in different retinal disease models and propose that reducing the number of pro-inflammatory microglial death and conversing microglial phenotypes from pro-inflammatory to anti-inflammatory are feasible for treating retinal neovascularization and the damaged blood-retinal barrier (BRB). Finally, we suppose that the unique properties of microglia may aid in the vascularization of retinal organoids.
Collapse
Affiliation(s)
- Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Shuyu Feng
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Lin Yan
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Caiyan Zheng
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China,*Correspondence: Kai Yao,
| |
Collapse
|
3
|
Suwara J, Radzikowska-Cieciura E, Chworos A, Pawlowska R. The ATP-dependent Pathways and Human Diseases. Curr Med Chem 2023; 30:1232-1255. [PMID: 35319356 DOI: 10.2174/0929867329666220322104552] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022]
Abstract
Adenosine triphosphate (ATP) is one of the most important molecules of life, present both inside the cells and extracellularly. It is an essential building block for nucleic acids biosynthesis and crucial intracellular energy storage. However, one of the most interesting functions of ATP is the role of a signaling molecule. Numerous studies indicate the involvement of ATP-dependent pathways in maintaining the proper functioning of individual tissues and organs. Herein, the latest data indicating the ATP function in the network of intra- and extracellular signaling pathways including purinergic signaling, MAP kinase pathway, mTOR and calcium signaling are collected. The main ATP-dependent processes maintaining the proper functioning of the nervous, cardiovascular and immune systems, as well as skin and bones, are summarized. The disturbances in the ATP amount, its cellular localization, or interaction with target elements may induce pathological changes in signaling pathways leading to the development of serious diseases. The impact of an ATP imbalance on the development of dangerous health dysfunctions such as neurodegeneration diseases, cardiovascular diseases (CVDs), diabetes mellitus, obesity, cancers and immune pathogenesis are discussed here.
Collapse
Affiliation(s)
- Justyna Suwara
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Ewa Radzikowska-Cieciura
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Arkadiusz Chworos
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Roza Pawlowska
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| |
Collapse
|
4
|
Masoumi E, Tahaghoghi-Hajghorbani S, Jafarzadeh L, Sanaei MJ, Pourbagheri-Sigaroodi A, Bashash D. The application of immune checkpoint blockade in breast cancer and the emerging role of nanoparticle. J Control Release 2021; 340:168-187. [PMID: 34743998 DOI: 10.1016/j.jconrel.2021.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
Breast cancer is the most common malignancy in the female population with a high mortality rate. Despite the satisfying depth of studies evaluating the contributory role of immune checkpoints in this malignancy, few articles have reviewed the pros and cons of immune checkpoint blockades (ICBs). In the current review, we provide an overview of immune-related inhibitory molecules and also discuss the original data obtained from international research laboratories on the aberrant expression of T and non-T cell-associated immune checkpoints in breast cancer. Then, we especially focus on recent studies that utilized ICBs as the treatment strategy in breast cancer and provide their efficiency reports. As there are always costs and benefits, we discuss the limitations and challenges toward ICB therapy such as adverse events and drug resistance. In the last section, we allocate an overview of the recent data concerning the application of nanoparticle systems for cancer immunotherapy and propose that nano-based ICB approaches may overcome the challenges related to ICB therapy in breast cancer. In conclusion, it seems it is time for nanoscience to more rapidly move forward into clinical trials and illuminates the breast cancer treatment area with its potent features for the target delivery of ICBs.
Collapse
Affiliation(s)
- Elham Masoumi
- Department of Immunology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Student Research Committee, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Sahar Tahaghoghi-Hajghorbani
- Microbiology and Virology Research Center, Qaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Leila Jafarzadeh
- Department of Laboratory Science, Sirjan Faculty of Medical Science, Sirjan, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Pietrowski MJ, Gabr AA, Kozlov S, Blum D, Halle A, Carvalho K. Glial Purinergic Signaling in Neurodegeneration. Front Neurol 2021; 12:654850. [PMID: 34054698 PMCID: PMC8160300 DOI: 10.3389/fneur.2021.654850] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/16/2021] [Indexed: 12/15/2022] Open
Abstract
Purinergic signaling regulates neuronal and glial cell functions in the healthy CNS. In neurodegenerative diseases, purinergic signaling becomes dysregulated and can affect disease-associated phenotypes of glial cells. In this review, we discuss how cell-specific expression patterns of purinergic signaling components change in neurodegeneration and how dysregulated glial purinergic signaling and crosstalk may contribute to disease pathophysiology, thus bearing promising potential for the development of new therapeutical options for neurodegenerative diseases.
Collapse
Affiliation(s)
- Marie J Pietrowski
- Microglia and Neuroinflammation Laboratory, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Amr Ahmed Gabr
- Microglia and Neuroinflammation Laboratory, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Stanislav Kozlov
- Microglia and Neuroinflammation Laboratory, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - David Blum
- University of Lille, Inserm, CHU Lille, U1172 LilNCog - Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, Labex DISTALZ, Lille, France
| | - Annett Halle
- Microglia and Neuroinflammation Laboratory, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Institute of Neuropathology, University of Bonn, Bonn, Germany
| | - Kevin Carvalho
- University of Lille, Inserm, CHU Lille, U1172 LilNCog - Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, Labex DISTALZ, Lille, France
| |
Collapse
|
6
|
de Leve S, Wirsdörfer F, Jendrossek V. Targeting the Immunomodulatory CD73/Adenosine System to Improve the Therapeutic Gain of Radiotherapy. Front Immunol 2019; 10:698. [PMID: 31024543 PMCID: PMC6460721 DOI: 10.3389/fimmu.2019.00698] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/14/2019] [Indexed: 12/23/2022] Open
Abstract
Extracellular adenosine is a potent endogenous immunosuppressive mediator critical to the maintenance of homeostasis in various normal tissues including the lung. Adenosine is either released from stressed or injured cells or generated from extracellular adenine nucleotides by the concerted action of the ectoenzymes ectoapyrase (CD39) and 5′ ectonucleotidase (CD73) that catabolize ATP to adenosine. An acute CD73-dependent increase of adenosine in normal tissues mostly exerts tissue protective functions whereas chronically increased adenosine-levels in tissues exposed to DNA damaging chemotherapy or radiotherapy promote pathologic remodeling processes and fibrosis for example in the skin and the lung. Importantly, cancer cells also express CD73 and high CD73 expression in the tumor tissue has been linked to poor overall survival and recurrence free survival in patients suffering from breast and ovarian cancer. CD73 and adenosine support growth-promoting neovascularization, metastasis, and survival in cancer cells. In addition, adenosine can promote tumor intrinsic or therapy-induced immune escape by various mechanisms that dampen the immune system. Consequently, modulating CD73 or cancer-derived adenosine in the tumor microenvironment emerges as an attractive novel therapeutic strategy to limit tumor progression, improve antitumor immune responses, avoid therapy-induced immune deviation, and potentially limit normal tissue toxicity. However, the role of CD73/adenosine signaling in the tumor and normal tissue responses to radiotherapy and its use as therapeutic target to improve the outcome of radiotherapy approaches is less understood. The present review will highlight the dual role of CD73 and adenosine in tumor and tissue responses to radiotherapy with a special focus to the lung. It will also discuss the potential benefits and risks of pharmacologic modulation of the CD73/adenosine system to increase the therapeutic gain of radiotherapy or combined radioimmunotherapy in cancer treatment.
Collapse
Affiliation(s)
- Simone de Leve
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Florian Wirsdörfer
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
7
|
Calovi S, Mut-Arbona P, Sperlágh B. Microglia and the Purinergic Signaling System. Neuroscience 2018; 405:137-147. [PMID: 30582977 DOI: 10.1016/j.neuroscience.2018.12.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023]
Abstract
Microglia are the main resident immune-competent cell type of the central nervous system (CNS); these cells are highly sensitive to subtle changes in the chemical environment of the brain. Microglia are activated during diverse conditions, such as apoptosis, trauma, inflammation, and infection. The specific activities of microglia result from the confluence of environmental stimuli and the cellular state. It is likely that several signaling systems with different biological functions operate in competition and/or synergy, thus regulating similar microglial behaviors. The purinergic system is one of the fundamental signaling systems that establish microglial behavior in a wide spectrum of conditions. Adenosine tri-phosphate (ATP) belongs to the purinergic signaling system, which includes P2X, P2Y, and P1 receptors, as well as other proteins participating in ATP secretion and extracellular ATP degradation, and molecules that recognize purines as a ligand. In this review, we focus on the latest pre-clinical and basic purinergic system and microglial research, with particular attention to data collected in vivo and ex vivo. This chapter is divided into sections related to microglial ATP release, ATP degradation, and ATP-related actions mediated by P2X and P2Y receptor activation.
Collapse
Affiliation(s)
- Stefano Calovi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, Hungary
| | - Paula Mut-Arbona
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|