1
|
Scherf D, Hammermeister A, Böhnert P, Burkard A, Helm M, Glatt S, Schaffrath R. tRNA binding to Kti12 is crucial for wobble uridine modification by Elongator. Nucleic Acids Res 2025; 53:gkaf296. [PMID: 40226916 PMCID: PMC11995267 DOI: 10.1093/nar/gkaf296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/05/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025] Open
Abstract
In yeast, tRNA modifications that are introduced by the Elongator complex are recognized by zymocin, a fungal tRNase killer toxin that cleaves the anticodon. Based on zymocin resistance conferred by mutations in KTI12, a gene coding for an Elongator interactor, we further examined the yet vaguely defined cellular role of Kti12. Guided by structural similarities between Kti12 and PSTK, a tRNA kinase involved in selenocysteine synthesis, we identified conserved basic residues in the C-terminus of Kti12, which upon site-directed mutagenesis caused progressive loss of tRNA binding in vitro. The inability of Kti12 to bind tRNA led to similar phenotypes caused by Elongator inactivation in vivo. Consistently, tRNA binding deficient kti12 mutants drastically suppressed Elongator dependent tRNA anticodon modifications and reduced the capacity of Kti12 to interact with Elongator. We further could distinguish Elongator unbound pools of Kti12 in a tRNA dependent manner from bound ones. In summary, the C-terminal domain of Kti12 is crucial for tRNA binding and Kti12 recruitment to Elongator, which are both requirements for Elongator function suggesting Kti12 is a tRNA carrier that interacts with Elongator for modification of the tRNA anticodon.
Collapse
Affiliation(s)
- David Scherf
- Institute of Biology, Division of Microbiology, University of Kassel, D-34132 Kassel, Germany
| | - Alexander Hammermeister
- Institute of Biology, Division of Microbiology, University of Kassel, D-34132 Kassel, Germany
- Małopolska Centre of Biotechnology, Jagiellonian University, 30387 Krakow, Poland
| | - Pauline Böhnert
- Institute of Biology, Division of Microbiology, University of Kassel, D-34132 Kassel, Germany
| | - Alicia Burkard
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University of Mainz, D-55128 Mainz, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University of Mainz, D-55128 Mainz, Germany
| | - Sebastian Glatt
- Małopolska Centre of Biotechnology, Jagiellonian University, 30387 Krakow, Poland
- Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Raffael Schaffrath
- Institute of Biology, Division of Microbiology, University of Kassel, D-34132 Kassel, Germany
| |
Collapse
|
2
|
Ward C, Beharry A, Tennakoon R, Rozik P, Wilhelm SDP, Heinemann IU, O’Donoghue P. Mechanisms and Delivery of tRNA Therapeutics. Chem Rev 2024; 124:7976-8008. [PMID: 38801719 PMCID: PMC11212642 DOI: 10.1021/acs.chemrev.4c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Transfer ribonucleic acid (tRNA) therapeutics will provide personalized and mutation specific medicines to treat human genetic diseases for which no cures currently exist. The tRNAs are a family of adaptor molecules that interpret the nucleic acid sequences in our genes into the amino acid sequences of proteins that dictate cell function. Humans encode more than 600 tRNA genes. Interestingly, even healthy individuals contain some mutant tRNAs that make mistakes. Missense suppressor tRNAs insert the wrong amino acid in proteins, and nonsense suppressor tRNAs read through premature stop signals to generate full length proteins. Mutations that underlie many human diseases, including neurodegenerative diseases, cancers, and diverse rare genetic disorders, result from missense or nonsense mutations. Thus, specific tRNA variants can be strategically deployed as therapeutic agents to correct genetic defects. We review the mechanisms of tRNA therapeutic activity, the nature of the therapeutic window for nonsense and missense suppression as well as wild-type tRNA supplementation. We discuss the challenges and promises of delivering tRNAs as synthetic RNAs or as gene therapies. Together, tRNA medicines will provide novel treatments for common and rare genetic diseases in humans.
Collapse
Affiliation(s)
- Cian Ward
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Aruun Beharry
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Rasangi Tennakoon
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Peter Rozik
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Sarah D. P. Wilhelm
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ilka U. Heinemann
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Patrick O’Donoghue
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
3
|
Cheney AM, Costello SM, Pinkham NV, Waldum A, Broadaway SC, Cotrina-Vidal M, Mergy M, Tripet B, Kominsky DJ, Grifka-Walk HM, Kaufmann H, Norcliffe-Kaufmann L, Peach JT, Bothner B, Lefcort F, Copié V, Walk ST. Gut microbiome dysbiosis drives metabolic dysfunction in Familial dysautonomia. Nat Commun 2023; 14:218. [PMID: 36639365 PMCID: PMC9839693 DOI: 10.1038/s41467-023-35787-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/18/2022] [Indexed: 01/15/2023] Open
Abstract
Familial dysautonomia (FD) is a rare genetic neurologic disorder caused by impaired neuronal development and progressive degeneration of both the peripheral and central nervous systems. FD is monogenic, with >99.4% of patients sharing an identical point mutation in the elongator acetyltransferase complex subunit 1 (ELP1) gene, providing a relatively simple genetic background in which to identify modifiable factors that influence pathology. Gastrointestinal symptoms and metabolic deficits are common among FD patients, which supports the hypothesis that the gut microbiome and metabolome are altered and dysfunctional compared to healthy individuals. Here we show significant differences in gut microbiome composition (16 S rRNA gene sequencing of stool samples) and NMR-based stool and serum metabolomes between a cohort of FD patients (~14% of patients worldwide) and their cohabitating, healthy relatives. We show that key observations in human subjects are recapitulated in a neuron-specific Elp1-deficient mouse model, and that cohousing mutant and littermate control mice ameliorates gut microbiome dysbiosis, improves deficits in gut transit, and reduces disease severity. Our results provide evidence that neurologic deficits in FD alter the structure and function of the gut microbiome, which shifts overall host metabolism to perpetuate further neurodegeneration.
Collapse
Affiliation(s)
- Alexandra M Cheney
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Stephanann M Costello
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Nicholas V Pinkham
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Annie Waldum
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Susan C Broadaway
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Maria Cotrina-Vidal
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Marc Mergy
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Brian Tripet
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Douglas J Kominsky
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Heather M Grifka-Walk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Horacio Kaufmann
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | | | - Jesse T Peach
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Frances Lefcort
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| | - Valérie Copié
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA.
| | - Seth T Walk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
4
|
Termathe M, Leidel SA. Urm1: A Non-Canonical UBL. Biomolecules 2021; 11:biom11020139. [PMID: 33499055 PMCID: PMC7911844 DOI: 10.3390/biom11020139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 01/10/2023] Open
Abstract
Urm1 (ubiquitin related modifier 1) is a molecular fossil in the class of ubiquitin-like proteins (UBLs). It encompasses characteristics of classical UBLs, such as ubiquitin or SUMO (small ubiquitin-related modifier), but also of bacterial sulfur-carrier proteins (SCP). Since its main function is to modify tRNA, Urm1 acts in a non-canonical manner. Uba4, the activating enzyme of Urm1, contains two domains: a classical E1-like domain (AD), which activates Urm1, and a rhodanese homology domain (RHD). This sulfurtransferase domain catalyzes the formation of a C-terminal thiocarboxylate on Urm1. Thiocarboxylated Urm1 is the sulfur donor for 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U), a chemical nucleotide modification at the wobble position in tRNA. This thio-modification is conserved in all domains of life and optimizes translation. The absence of Urm1 increases stress sensitivity in yeast triggered by defects in protein homeostasis, a hallmark of neurological defects in higher organisms. In contrast, elevated levels of tRNA modifying enzymes promote the appearance of certain types of cancer and the formation of metastasis. Here, we summarize recent findings on the unique features that place Urm1 at the intersection of UBL and SCP and make Urm1 an excellent model for studying the evolution of protein conjugation and sulfur-carrier systems.
Collapse
Affiliation(s)
- Martin Termathe
- Institute of Biochemistry, Protein Biochemistry and Photobiocatalysis, University of Greifswald, Felix-Hausdorff-Strasse 4, 17489 Greifswald, Germany;
| | - Sebastian A. Leidel
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
- Correspondence:
| |
Collapse
|
5
|
Klassen R, Bruch A, Schaffrath R. Induction of protein aggregation and starvation response by tRNA modification defects. Curr Genet 2020; 66:1053-1057. [PMID: 32860511 PMCID: PMC7599136 DOI: 10.1007/s00294-020-01103-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023]
Abstract
Posttranscriptional modifications of anticodon loops contribute to the decoding efficiency of tRNAs by supporting codon recognition and loop stability. Consistently, strong synthetic growth defects are observed in yeast strains simultaneously lacking distinct anticodon loop modifications. These phenotypes are accompanied by translational inefficiency of certain mRNAs and disturbed protein homeostasis resulting in accumulation of protein aggregates. Different combinations of anticodon loop modification defects were shown to affect distinct tRNAs but provoke common transcriptional changes that are reminiscent of the cellular response to nutrient starvation. Multiple mechanisms may be involved in mediating inadequate starvation response upon loss of critical tRNA modifications. Recent evidence suggests protein aggregate induction to represent one such trigger.
Collapse
Affiliation(s)
- Roland Klassen
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany.
| | - Alexander Bruch
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| | - Raffael Schaffrath
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| |
Collapse
|
6
|
Bruch A, Laguna T, Butter F, Schaffrath R, Klassen R. Misactivation of multiple starvation responses in yeast by loss of tRNA modifications. Nucleic Acids Res 2020; 48:7307-7320. [PMID: 32484543 PMCID: PMC7367188 DOI: 10.1093/nar/gkaa455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
Previously, combined loss of different anticodon loop modifications was shown to impair the function of distinct tRNAs in Saccharomyces cerevisiae. Surprisingly, each scenario resulted in shared cellular phenotypes, the basis of which is unclear. Since loss of tRNA modification may evoke transcriptional responses, we characterized global transcription patterns of modification mutants with defects in either tRNAGlnUUG or tRNALysUUU function. We observe that the mutants share inappropriate induction of multiple starvation responses in exponential growth phase, including derepression of glucose and nitrogen catabolite-repressed genes. In addition, autophagy is prematurely and inadequately activated in the mutants. We further demonstrate that improper induction of individual starvation genes as well as the propensity of the tRNA modification mutants to form protein aggregates are diminished upon overexpression of tRNAGlnUUG or tRNALysUUU, the tRNA species that lack the modifications of interest. Hence, our data suggest that global alterations in mRNA translation and proteostasis account for the transcriptional stress signatures that are commonly triggered by loss of anticodon modifications in different tRNAs.
Collapse
Affiliation(s)
- Alexander Bruch
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Teresa Laguna
- Department of Quantitative Proteomics, IMB Mainz, Ackermannweg 4, 55128 Mainz, Germany
| | - Falk Butter
- Department of Quantitative Proteomics, IMB Mainz, Ackermannweg 4, 55128 Mainz, Germany
| | - Raffael Schaffrath
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Roland Klassen
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| |
Collapse
|
7
|
Protein Phosphatase Sit4 Affects Lipid Droplet Synthesis and Soraphen A Resistance Independent of Its Role in Regulating Elongator Dependent tRNA Modification. Biomolecules 2018; 8:biom8030049. [PMID: 29997346 PMCID: PMC6165401 DOI: 10.3390/biom8030049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022] Open
Abstract
The protein phosphatase Sit4 has been shown to be required for lipogenesis and resistance against the acetyl-CoA carboxylase inhibitor soraphen A. Since Sit4 is also required for biosynthesis of Elongator dependent tRNA modifications such as 5-methoxycarbonylmethyluridine (mcm5U), we investigated the relevance of tRNA modifications in lipogenesis and soraphen A response. While sit4 and Elongator (elp3) mutants copy defects in mcm5U formation and stress sensitivity, they do not share soraphen A sensitivity and low lipid droplet (LD) phenotypes. In contrast to sit4, we found elp3 mutants to display partial soraphen A resistance and a high LD phenotype. Screening a collection of tRNA modification mutants additionally identified the tRNA pseudo-uridine synthase gene DEG1 to be required for soraphen A sensitivity. Since deg1 and elp3 share high LD and soraphen A resistance phenotypes, these are likely caused by translational defects. In support of this notion, we observe overexpression of tRNAGlnUUG suppresses lipolysis defects of deg1 mutants. Hence, the sit4 mutation results in a composite defect including tRNA modification deficiency and loss of Snf1 kinase dephosphorylation, which induce opposite effects on LD regulation. Importantly, however, the Snf1 kinase regulatory defects of the phosphatase mutant dominate over effects on LD regulation imposed by loss of the tRNA modification alone.
Collapse
|
8
|
Lentini JM, Ramos J, Fu D. Monitoring the 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) modification in eukaryotic tRNAs via the γ-toxin endonuclease. RNA (NEW YORK, N.Y.) 2018; 24:749-758. [PMID: 29440318 PMCID: PMC5900570 DOI: 10.1261/rna.065581.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
The post-transcriptional modification of tRNA at the wobble position is a universal process occurring in all domains of life. In eukaryotes, the wobble uridine of particular tRNAs is transformed to the 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) modification which is critical for proper mRNA decoding and protein translation. However, current methods to detect mcm5s2U are technically challenging and/or require specialized instrumental expertise. Here, we show that γ-toxin endonuclease from the yeast Kluyveromyces lactis can be used as a probe for assaying mcm5s2U status in the tRNA of diverse eukaryotic organisms ranging from protozoans to mammalian cells. The assay couples the mcm5s2U-dependent cleavage of tRNA by γ-toxin with standard molecular biology techniques such as northern blot analysis or quantitative PCR to monitor mcm5s2U levels in multiple tRNA isoacceptors. The results gained from the γ-toxin assay reveals the evolutionary conservation of the mcm5s2U modification across eukaryotic species. Moreover, we have used the γ-toxin assay to verify uncharacterized eukaryotic Trm9 and Trm112 homologs that catalyze the formation of mcm5s2U. These findings demonstrate the use of γ-toxin as a detection method to monitor mcm5s2U status in diverse eukaryotic cell types for cellular, genetic, and biochemical studies.
Collapse
Affiliation(s)
- Jenna M Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York 14627, USA
| | - Jillian Ramos
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York 14627, USA
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
9
|
Mehlgarten C, Prochaska H, Hammermeister A, Abdel-Fattah W, Wagner M, Krutyhołowa R, Jun SE, Kim GT, Glatt S, Breunig KD, Stark MJR, Schaffrath R. Use of a Yeast tRNase Killer Toxin to Diagnose Kti12 Motifs Required for tRNA Modification by Elongator. Toxins (Basel) 2017; 9:E272. [PMID: 28872616 PMCID: PMC5618205 DOI: 10.3390/toxins9090272] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/29/2017] [Accepted: 09/03/2017] [Indexed: 01/23/2023] Open
Abstract
Saccharomyces cerevisiae cells are killed by zymocin, a tRNase ribotoxin complex from Kluyveromyces lactis, which cleaves anticodons and inhibits protein synthesis. Zymocin's action requires specific chemical modification of uridine bases in the anticodon wobble position (U34) by the Elongator complex (Elp1-Elp6). Hence, loss of anticodon modification in mutants lacking Elongator or related KTI (K. lactis Toxin Insensitive) genes protects against tRNA cleavage and confers resistance to the toxin. Here, we show that zymocin can be used as a tool to genetically analyse KTI12, a gene previously shown to code for an Elongator partner protein. From a kti12 mutant pool of zymocin survivors, we identify motifs in Kti12 that are functionally directly coupled to Elongator activity. In addition, shared requirement of U34 modifications for nonsense and missense tRNA suppression (SUP4; SOE1) strongly suggests that Kti12 and Elongator cooperate to assure proper tRNA functioning. We show that the Kti12 motifs are conserved in plant ortholog DRL1/ELO4 from Arabidopsis thaliana and seem to be involved in binding of cofactors (e.g., nucleotides, calmodulin). Elongator interaction defects triggered by mutations in these motifs correlate with phenotypes typical for loss of U34 modification. Thus, tRNA modification by Elongator appears to require physical contact with Kti12, and our preliminary data suggest that metabolic signals may affect proper communication between them.
Collapse
Affiliation(s)
- Constance Mehlgarten
- Institut für Biologie, Martin Luther Universität Halle-Wittenberg, Weinbergweg 10, 06120 Halle/Saale, Germany.
| | - Heike Prochaska
- Institut für Biologie, Martin Luther Universität Halle-Wittenberg, Weinbergweg 10, 06120 Halle/Saale, Germany.
| | - Alexander Hammermeister
- Institut für Biologie, FG Mikrobiologie, Universität Kassel, Heirich-Plett-Str. 40, 34132 Kassel, Germany.
| | - Wael Abdel-Fattah
- Institut für Biologie, FG Mikrobiologie, Universität Kassel, Heirich-Plett-Str. 40, 34132 Kassel, Germany.
| | - Melanie Wagner
- Institut für Biologie, Martin Luther Universität Halle-Wittenberg, Weinbergweg 10, 06120 Halle/Saale, Germany.
| | - Rościsław Krutyhołowa
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, 31-007 Krakow, Poland.
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland.
| | - Sang Eun Jun
- Department of Molecular Biotechnology, Dong-A University, Busan 604-714, Korea.
| | - Gyung-Tae Kim
- Department of Molecular Biotechnology, Dong-A University, Busan 604-714, Korea.
| | - Sebastian Glatt
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, 31-007 Krakow, Poland.
| | - Karin D Breunig
- Institut für Biologie, Martin Luther Universität Halle-Wittenberg, Weinbergweg 10, 06120 Halle/Saale, Germany.
| | - Michael J R Stark
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | - Raffael Schaffrath
- Institut für Biologie, Martin Luther Universität Halle-Wittenberg, Weinbergweg 10, 06120 Halle/Saale, Germany.
- Institut für Biologie, FG Mikrobiologie, Universität Kassel, Heirich-Plett-Str. 40, 34132 Kassel, Germany.
| |
Collapse
|
10
|
Elp3 and Dph3 of Schizosaccharomyces pombe mediate cellular stress responses through tRNA LysUUU modifications. Sci Rep 2017; 7:7225. [PMID: 28775286 PMCID: PMC5543170 DOI: 10.1038/s41598-017-07647-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/30/2017] [Indexed: 01/31/2023] Open
Abstract
Efficient protein synthesis in eukaryotes requires diphthamide modification of translation elongation factor eEF2 and wobble uridine modifications of tRNAs. In higher eukaryotes, these processes are important for preventing neurological and developmental defects and cancer. In this study, we used Schizosaccharomyces pombe as a model to analyse mutants defective in eEF2 modification (dph1Δ), in tRNA modifications (elp3Δ), or both (dph3Δ) for sensitivity to cytotoxic agents and thermal stress. The dph3Δ and elp3Δ mutants were sensitive to a range of drugs and had growth defects at low temperature. dph3Δ was epistatic with dph1Δ for sensitivity to hydroxyurea and methyl methanesulfonate, and with elp3Δ for methyl methanesulfonate and growth at 16 °C. The dph1Δ and dph3Δ deletions rescued growth defects of elp3Δ in response to thiabendazole and at 37 °C. Elevated tRNALysUUU levels suppressed the elp3Δ phenotypes and some of the dph3Δ phenotypes, indicating that lack of tRNALysUUU modifications were responsible. Furthermore, we found positive genetic interactions of elp3Δ and dph3Δ with sty1Δ and atf1Δ, indicating that Elp3/Dph3-dependent tRNA modifications are important for efficient biosynthesis of key factors required for accurate responses to cytotoxic stress conditions.
Collapse
|
11
|
Sulfur Modifications of the Wobble U 34 in tRNAs and their Intracellular Localization in Eukaryotic Cells. Biomolecules 2017; 7:biom7010017. [PMID: 28218716 PMCID: PMC5372729 DOI: 10.3390/biom7010017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 12/21/2022] Open
Abstract
The wobble uridine (U34) of transfer RNAs (tRNAs) for two-box codon recognition, i.e., tRNALysUUU, tRNAGluUUC, and tRNAGlnUUG, harbor a sulfur- (thio-) and a methyl-derivative structure at the second and fifth positions of U34, respectively. Both modifications are necessary to construct the proper anticodon loop structure and to enable them to exert their functions in translation. Thio-modification of U34 (s2U34) is found in both cytosolic tRNAs (cy-tRNAs) and mitochondrial tRNAs (mt-tRNAs). Although l-cysteine desulfurase is required in both cases, subsequent sulfur transfer pathways to cy-tRNAs and mt-tRNAs are different due to their distinct intracellular locations. The s2U34 formation in cy-tRNAs involves a sulfur delivery system required for the biosynthesis of iron-sulfur (Fe/S) clusters and certain resultant Fe/S proteins. This review addresses presumed sulfur delivery pathways for the s2U34 formation in distinct intracellular locations, especially that for cy-tRNAs in comparison with that for mt-tRNAs.
Collapse
|
12
|
Kolaj-Robin O, Séraphin B. Structures and Activities of the Elongator Complex and Its Cofactors. RNA MODIFICATION 2017; 41:117-149. [DOI: 10.1016/bs.enz.2017.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|