1
|
Chen AY, Ku JT, Tsai TP, Hung JJ, Hung BC, Lan EI. Metabolic Engineering Design Strategies for Increasing Carbon Fluxes Relevant for Biosynthesis in Cyanobacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 183:105-144. [PMID: 37093259 DOI: 10.1007/10_2023_218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Cyanobacteria are promising microbial cell factories for the direct production of biochemicals and biofuels from CO2. Through genetic and metabolic engineering, they can be modified to produce a variety of both natural and non-natural compounds. To enhance the yield of these products, various design strategies have been developed. In this chapter, strategies used to enhance metabolic fluxes towards common precursors used in biosynthesis, including pyruvate, acetyl-CoA, malonyl-CoA, TCA cycle intermediates, and aromatics, are discussed. Additionally, strategies related to cofactor availability and mixotrophic conditions for bioproduction are also summarize.
Collapse
Affiliation(s)
- Arvin Y Chen
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Jason T Ku
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Teresa P Tsai
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Jenny J Hung
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Billy C Hung
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Ethan I Lan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan.
| |
Collapse
|
2
|
Ohtake T, Kawase N, Pontrelli S, Nitta K, Laviña WA, Shen CR, Putri SP, Liao JC, Fukusaki E. Metabolomics-Driven Identification of the Rate-Limiting Steps in 1-Propanol Production. Front Microbiol 2022; 13:871624. [PMID: 35495658 PMCID: PMC9048197 DOI: 10.3389/fmicb.2022.871624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
The concerted effort for bioproduction of higher alcohols and other commodity chemicals has yielded a consortium of metabolic engineering techniques to identify targets to enhance performance of engineered microbial strains. Here, we demonstrate the use of metabolomics as a tool to systematically identify targets for improved production phenotypes in Escherichia coli. Gas chromatography/mass spectrometry (GC/MS) and ion-pair LC-MS/MS were performed to investigate metabolic perturbations in various 1-propanol producing strains. Two initial strains were compared that differ in the expression of the citramalate and threonine pathways, which hold a synergistic relationship to maximize production yields. While this results in increased productivity, no change in titer was observed when the threonine pathway was overexpressed beyond native levels. Metabolomics revealed accumulation of upstream byproducts, norvaline and 2-aminobutyrate, both of which are derived from 2-ketobutyrate (2KB). Eliminating the competing pathway by gene knockouts or improving flux through overexpression of glycolysis gene effectively increased the intracellular 2KB pool. However, the increase in 2KB intracellular concentration yielded decreased production titers, indicating toxicity caused by 2KB and an insufficient turnover rate of 2KB to 1-propanol. Optimization of alcohol dehydrogenase YqhD activity using an ribosome binding site (RBS) library improved 1-propanol titer (g/L) and yield (g/g of glucose) by 38 and 29% in 72 h compared to the base strain, respectively. This study demonstrates the use of metabolomics as a powerful tool to aid systematic strain improvement for metabolically engineered organisms.
Collapse
Affiliation(s)
- Toshiyuki Ohtake
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Naoki Kawase
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Sammy Pontrelli
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, United States
- Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
| | - Katsuaki Nitta
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Walter A. Laviña
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
- Microbiology Division, Institute of Biological Sciences, University of the Philippines Los Baños, Los Baños, Philippines
| | - Claire R. Shen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Sastia P. Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Osaka University Shimadzu Omics Innovation Research Laboratories, Osaka University, Suita, Japan
- *Correspondence: Sastia P. Putri,
| | - James C. Liao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Osaka University Shimadzu Omics Innovation Research Laboratories, Osaka University, Suita, Japan
- Eiichiro Fukusaki,
| |
Collapse
|