1
|
Xu B, Huang Y, Yu D, Chen Y. Advancements of ROS-based biomaterials for sensorineural hearing loss therapy. Biomaterials 2025; 316:123026. [PMID: 39705924 DOI: 10.1016/j.biomaterials.2024.123026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/28/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Sensorineural hearing loss (SNHL) represents a substantial global health challenge, primarily driven by oxidative stress-induced damage within the auditory system. Excessive reactive oxygen species (ROS) play a pivotal role in this pathological process, leading to cellular damage and apoptosis of cochlear hair cells, culminating in irreversible hearing impairment. Recent advancements have introduced ROS-scavenging biomaterials as innovative, multifunctional platforms capable of mitigating oxidative stress. This comprehensive review systematically explores the mechanisms of ROS-mediated oxidative stress in SNHL, emphasizing etiological factors such as aging, acoustic trauma, and ototoxic medication exposure. Furthermore, it examines the therapeutic potential of ROS-scavenging biomaterials, positioning them as promising nanomedicines for targeted antioxidant intervention. By critically assessing recent advances in biomaterial design and functionality, this review thoroughly evaluates their translational potential for clinical applications. It also addresses the challenges and limitations of ROS-neutralizing strategies, while highlighting the transformative potential of these biomaterials in developing novel SNHL treatment modalities. This review advocates for continued research and development to integrate ROS-scavenging biomaterials into future clinical practice, aiming to address the unmet needs in SNHL management and potentially revolutionize the treatment landscape for this pervasive health issue.
Collapse
Affiliation(s)
- Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yuqi Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China; Shanghai Institute of Materdicine, Shanghai, 200012, China.
| |
Collapse
|
2
|
Yuan W, Liu Y, Liu C, Qiu Y. Serum metabolites and risk of sudden sensorineural hearing loss: A Mendelian randomization study. Braz J Otorhinolaryngol 2025; 91:101596. [PMID: 40288303 PMCID: PMC12056394 DOI: 10.1016/j.bjorl.2025.101596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/05/2025] [Accepted: 03/10/2025] [Indexed: 04/29/2025] Open
Abstract
OBJECTIVE Observational studies found that Sudden Sensorineural Hearing Loss (SSNHL) is associated with metabolic disorders, but the causal relationship remains unclear. Here we performed a two-sample Mendelian Randomization (MR) analysis to systematically assess the causation between blood metabolites and SSNHL. METHODS Summary statistics for blood metabolites were extracted from GWAS data of 7824 European participants on metabolite levels. GWAS data for SSNHL were collected from the FinnGen Consortium R10 release data, which consisted of 3128 cases and 362,353 controls in European populations. The inverse variance weighted method was the primary method for causality analysis while MR-Egger, weighted median and MR-RAPS served as complementary approaches. Cochran'sQ test, MR-Egger intercept test, MR-PRESSO, Radial MR, leave-one-out and Steiger test were used for sensitivity analyses. Additionally, we performed metabolic pathway analysis to further explore the potential pathogenesis of SSNHL. RESULTS We found that genetically predicted cholesterol, citrate, myristoleate (14:1n5) and tryptophan betaine may increase the risk of SSNHL, while stearate (18:0), pantothenate and glycerol 2-phosphate may act as protective factors for SSNHL. Nevertheless, these metabolites did not reach statistical significance after Bonferroni correction. Sensitivity analyses revealed no evidence of heterogeneity or horizontal pleiotropy. Metabolic pathway analysis revealed the pantothenate and CoA biosynthesis pathway and the citrate cycle pathway potentially related to the pathogenesis of SSNHL. CONCLUSION The findings of our study offer new insights into the role of blood metabolites in the development and pathogenesis of SSNHL and provide potential inspiration for further advancements in clinical settings. LEVEL OF EVIDENCE Level 3.
Collapse
Affiliation(s)
- Wenhui Yuan
- Central South University, Xiangya Hospital, Department of Otolaryngology Head and Neck Surgery, Changsha, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China; Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Yong Liu
- Central South University, Xiangya Hospital, Department of Otolaryngology Head and Neck Surgery, Changsha, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China; Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Chao Liu
- Central South University, Xiangya Hospital, Department of Otolaryngology Head and Neck Surgery, Changsha, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China; Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| | - Yuanzheng Qiu
- Central South University, Xiangya Hospital, Department of Otolaryngology Head and Neck Surgery, Changsha, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China; Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| |
Collapse
|
3
|
Guo S, Cheng C, Wu Y, Shen K, Zhang D, Chen B, Wang X, Shen L, Zhang Q, Chai R, Wang G, Zhou F. Metabolomic and Cellular Mechanisms of Drug-Induced Ototoxicity and Nephrotoxicity: Therapeutic Implications of Uric Acid Modulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415041. [PMID: 40041973 PMCID: PMC12021111 DOI: 10.1002/advs.202415041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/02/2025] [Indexed: 04/26/2025]
Abstract
Certain medications, including cisplatin and neomycin, often cause both hearing loss and renal dysfunction. This study aims to uncover the common mechanisms behind drug-induced ototoxicity and nephrotoxicity to aid early diagnosis and treatment. Metabolomic analyses reveal simultaneous disruptions in endogenous metabolic networks in the kidney, inner ear, and serum after administrating cisplatin or neomycin. Notably, a marked elevation in uric acid (UA), a recognized indicator of renal tubular injury, is identified. Supplementing UA and inhibiting its renal excretion worsen hearing loss and hair cell damage. Single-cell nucleus sequencing and immunohistochemistry reveal major changes in xanthine oxidase and ABCG2, crucial for UA metabolism, primarily in cochlear stria vascularis cells rather than hair cells. Cisplatin triggers a significant release of UA from stria vascularis cells, reaching concentrations sufficient to induce autophagy-dependent ferroptosis in hair cells. In a coculture system, targeted interventions against these two proteins in stria vascularis cells, through either pharmacological inhibition or genetic manipulation, markedly decrease the elevated UA release and the subsequent ferroptosis of hair cells. These findings suggest a metabolic connection between the inner ear and the kidney, highlighting the therapeutic potential of modulating UA to mitigate drug-induced nephrotoxicity and ototoxicity.
Collapse
Affiliation(s)
- Suhan Guo
- Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Cheng Cheng
- Department of Otolaryngology Head and Neck SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjing210096China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
| | - Yunhao Wu
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117China
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Kaidi Shen
- Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Depeng Zhang
- Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Bin Chen
- Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Xinyu Wang
- Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Department of PharmacyGeneral Hospital of Ningxia Medical UniversityYinchuan750004China
| | - Luping Shen
- Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Qixiang Zhang
- Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Renjie Chai
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| |
Collapse
|
4
|
Wallace G, Ji L, Cassinotti LR, Kachman M, Lyssiotis CA, Burant CF, Corfas G. Lipidomics profiling identifies β-oxidation as a key process in noise-induced hearing loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645361. [PMID: 40196644 PMCID: PMC11974867 DOI: 10.1101/2025.03.25.645361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Noise-induced hearing loss (NIHL) is the second leading cause of hearing loss worldwide, and the most common cause in young adults. Despite this burden, the molecular mechanisms by which noise causes damage are poorly understood, and there are no pharmacologic therapies to prevent or reduce noise-induced damage to the inner ear. Here, using targeted and untargeted lipidomics, we show that noise exposure induces changes in fatty acid (FA) and acylcarnitine (CAR) species in the inner ear, a metabolic profile indicative of noise-induced increases in β- oxidation. This conclusion is validated through treatment with Etomoxir, an inhibitor of carnitine palmitoyltransferase 1A, the rate-limiting enzyme of long-chain β-oxidation. Furthermore, we demonstrate that blocking β-oxidation with Etomoxir does not affect hearing in a normal acoustic environment but reduces the extent of hearing loss induced by an intense noise exposure (2 hours, 112 dB SPL, 8-16kHz). Together, our findings provide insights into cochlear energy metabolism and suggest that its modulation could be targeted to reduce NIHL.
Collapse
|
5
|
Khorrami M, Pastras C, Haynes PA, Mirzaei M, Asadnia M. The Current State of Proteomics and Metabolomics for Inner Ear Health and Disease. Proteomes 2024; 12:17. [PMID: 38921823 PMCID: PMC11207525 DOI: 10.3390/proteomes12020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Characterising inner ear disorders represents a significant challenge due to a lack of reliable experimental procedures and identified biomarkers. It is also difficult to access the complex microenvironments of the inner ear and investigate specific pathological indicators through conventional techniques. Omics technologies have the potential to play a vital role in revolutionising the diagnosis of ear disorders by providing a comprehensive understanding of biological systems at various molecular levels. These approaches reveal valuable information about biomolecular signatures within the cochlear tissue or fluids such as the perilymphatic and endolymphatic fluid. Proteomics identifies changes in protein abundance, while metabolomics explores metabolic products and pathways, aiding the characterisation and early diagnosis of diseases. Although there are different methods for identifying and quantifying biomolecules, mass spectrometry, as part of proteomics and metabolomics analysis, could be utilised as an effective instrument for understanding different inner ear disorders. This study aims to review the literature on the application of proteomic and metabolomic approaches by specifically focusing on Meniere's disease, ototoxicity, noise-induced hearing loss, and vestibular schwannoma. Determining potential protein and metabolite biomarkers may be helpful for the diagnosis and treatment of inner ear problems.
Collapse
Affiliation(s)
- Motahare Khorrami
- Faculty of Science and Engineering, School of Engineering, Macquarie University, Sydney 2109, NSW, Australia; (M.K.); (C.P.)
| | - Christopher Pastras
- Faculty of Science and Engineering, School of Engineering, Macquarie University, Sydney 2109, NSW, Australia; (M.K.); (C.P.)
| | - Paul A. Haynes
- School of Natural Sciences, Macquarie University, Macquarie Park, Sydney 2109, NSW, Australia;
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney 2109, NSW, Australia;
| | - Mohsen Asadnia
- Faculty of Science and Engineering, School of Engineering, Macquarie University, Sydney 2109, NSW, Australia; (M.K.); (C.P.)
| |
Collapse
|
6
|
Liu Y, Zeng X, Zhang H. An Emerging Approach of Age-Related Hearing Loss Research: Application of Integrated Multi-Omics Analysis. Adv Biol (Weinh) 2024; 8:e2300613. [PMID: 38279573 DOI: 10.1002/adbi.202300613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/03/2024] [Indexed: 01/28/2024]
Abstract
As one of the most common otologic diseases in the elderly, age-related hearing loss (ARHL) usually characterized by hearing loss and cognitive disorders, which have a significant impact on the elderly's physical and mental health and quality of life. However, as a typical disease of aging, it is unclear why aging causes widespread hearing impairment in the elderly. As molecular biological experiments have been conducted for research recently, ARHL is gradually established at various levels with the application and development of integrated multi-omics analysis in the studies of ARHL. Here, the recent progress in the application of multi-omics analysis in the molecular mechanisms of ARHL development and therapeutic regimens, including the combined analysis of different omics, such as transcriptome, proteome, and metabolome, to screen for risk sites, risk genes, and differences in lipid metabolism, etc., is outlined and the integrated histological data further promote the profound understanding of the disease process as well as physiological mechanisms of ARHL. The advantages and disadvantages of multi-omics analysis in disease research are also discussed and the authors speculate on the future prospects and applications of this part-to-whole approach, which may provide more comprehensive guidance for ARHL and aging disease prevention and treatment.
Collapse
Affiliation(s)
- Yue Liu
- Department of Otolaryngology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China
- Department of Otolaryngology, Longgang E.N.T. Hospital and Shenzhen Key Laboratory of E.N.T, Institute of E.N.T., Shenzhen, 518172, China
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, 519041, China
| | - Xianhai Zeng
- Department of Otolaryngology, Longgang E.N.T. Hospital and Shenzhen Key Laboratory of E.N.T, Institute of E.N.T., Shenzhen, 518172, China
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, 519041, China
| | - Huasong Zhang
- Department of Otolaryngology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China
- Department of Otolaryngology, Longgang E.N.T. Hospital and Shenzhen Key Laboratory of E.N.T, Institute of E.N.T., Shenzhen, 518172, China
| |
Collapse
|
7
|
Wan H, Wang W, Liu J, Zhang Y, Yang B, Hua R, Chen H, Chen S, Hua Q. Cochlear metabolomics, highlighting novel insights of purine metabolic alterations in age-related hearing loss. Hear Res 2023; 440:108913. [PMID: 37939412 DOI: 10.1016/j.heares.2023.108913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/29/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
Aging is an inevitable phase in mammals that leads to health impairments, including hearing loss. Age-related hearing loss (AHL) leads to psychosocial problems and cognitive decline in the elderly. In this study, mean thresholds of auditory brainstem responses (ABR) and distortion-product otoacoustic emissions (DPOAE) increased at multiple frequencies in aged rats (14 months old) compared to young rats (2 months old). Using untargeted ultra-high performance liquid chromatography-mass spectroscopy (LC-MS), we quantified molecular metabolic markers in the cochlea of aged rats with hearing loss. A total of 137 different metabolites were identified in two groups, highlighting several prominent metabolic pathways related to purine metabolism; glycine, serine, and threonine metabolism; arginine and proline metabolism; and pyrimidine metabolism. In addition, the beneficial effects of purine supplementation were demonstrated in a mimetic model of senescent marginal cells (MCs). Overall, altered metabolic profiling is both the cause and manifestation of pathology, and our results suggest that cellular senescence and dysfunctional cochlear metabolism may contribute to the progression of AHL. These findings are seminal in elucidating the pathophysiological mechanisms underlying AHL and serve as a basis for future clinical predictions and interventions in AHL.
Collapse
Affiliation(s)
- Huanzhi Wan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Wenjing Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Jingchun Liu
- The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Yunlong Zhang
- Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Bingqian Yang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Rongkai Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Huidong Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Shiming Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China.
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
8
|
Malesci R, Lombardi M, Abenante V, Fratestefano F, Del Vecchio V, Fetoni AR, Troisi J. A Systematic Review on Metabolomics Analysis in Hearing Impairment: Is It a Possible Tool in Understanding Auditory Pathologies? Int J Mol Sci 2023; 24:15188. [PMID: 37894867 PMCID: PMC10607298 DOI: 10.3390/ijms242015188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
With more than 466 million people affected, hearing loss represents the most common sensory pathology worldwide. Despite its widespread occurrence, much remains to be explored, particularly concerning the intricate pathogenic mechanisms underlying its diverse phenotypes. In this context, metabolomics emerges as a promising approach. Indeed, lying downstream from molecular biology's central dogma, the metabolome reflects both genetic traits and environmental influences. Furthermore, its dynamic nature facilitates well-defined changes during disease states, making metabolomic analysis a unique lens into the mechanisms underpinning various hearing impairment forms. Hence, these investigations may pave the way for improved diagnostic strategies, personalized interventions and targeted treatments, ultimately enhancing the clinical management of affected individuals. In this comprehensive review, we discuss findings from 20 original articles, including human and animal studies. Existing literature highlights specific metabolic changes associated with hearing loss and ototoxicity of certain compounds. Nevertheless, numerous critical issues have emerged from the study of the current state of the art, with the lack of standardization of methods, significant heterogeneity in the studies and often small sample sizes being the main limiting factors for the reliability of these findings. Therefore, these results should serve as a stepping stone for future research aimed at addressing the aforementioned challenges.
Collapse
Affiliation(s)
- Rita Malesci
- Department of Neuroscience, Reproductive Sciences and Dentistry (Audiology and Vestibology Service), University of Naples Federico II, 80138 Napoli, Italy; (V.D.V.); (A.R.F.)
| | - Martina Lombardi
- Theoreo srl, Spin off Company of the University of Salerno, Via Degli Ulivi 3, 84090 Montecorvino Pugliano, Italy; (V.A.); (F.F.); (J.T.)
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy
- European Institute of Metabolomics (EIM) Foundation ETS, G. Puccini, 2, 84081 Baronissi, Italy
| | - Vera Abenante
- Theoreo srl, Spin off Company of the University of Salerno, Via Degli Ulivi 3, 84090 Montecorvino Pugliano, Italy; (V.A.); (F.F.); (J.T.)
| | - Federica Fratestefano
- Theoreo srl, Spin off Company of the University of Salerno, Via Degli Ulivi 3, 84090 Montecorvino Pugliano, Italy; (V.A.); (F.F.); (J.T.)
| | - Valeria Del Vecchio
- Department of Neuroscience, Reproductive Sciences and Dentistry (Audiology and Vestibology Service), University of Naples Federico II, 80138 Napoli, Italy; (V.D.V.); (A.R.F.)
| | - Anna Rita Fetoni
- Department of Neuroscience, Reproductive Sciences and Dentistry (Audiology and Vestibology Service), University of Naples Federico II, 80138 Napoli, Italy; (V.D.V.); (A.R.F.)
| | - Jacopo Troisi
- Theoreo srl, Spin off Company of the University of Salerno, Via Degli Ulivi 3, 84090 Montecorvino Pugliano, Italy; (V.A.); (F.F.); (J.T.)
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy
- European Institute of Metabolomics (EIM) Foundation ETS, G. Puccini, 2, 84081 Baronissi, Italy
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| |
Collapse
|
9
|
Wang H, Sun R, Xu N, Wang X, Bao M, Li X, Li J, Lin A, Feng J. Untargeted metabolomics of the cochleae from two laryngeally echolocating bats. Front Mol Biosci 2023; 10:1171366. [PMID: 37152899 PMCID: PMC10154556 DOI: 10.3389/fmolb.2023.1171366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
High-frequency hearing is regarded as one of the most functionally important traits in laryngeally echolocating bats. Abundant candidate hearing-related genes have been identified to be the important genetic bases underlying high-frequency hearing for laryngeally echolocating bats, however, extensive metabolites presented in the cochleae have not been studied. In this study, we identified 4,717 annotated metabolites in the cochleae of two typical laryngeally echolocating bats using the liquid chromatography-mass spectroscopy technology, metabolites classified as amino acids, peptides, and fatty acid esters were identified as the most abundant in the cochleae of these two echolocating bat species, Rhinolophus sinicus and Vespertilio sinensis. Furthermore, 357 metabolites were identified as significant differentially accumulated (adjusted p-value <0.05) in the cochleae of these two bat species with distinct echolocating dominant frequencies. Downstream KEGG enrichment analyses indicated that multiple biological processes, including signaling pathways, nervous system, and metabolic process, were putatively different in the cochleae of R. sinicus and V. sinensis. For the first time, this study investigated the extensive metabolites and associated biological pathways in the cochleae of two laryngeal echolocating bats and expanded our knowledge of the metabolic molecular bases underlying high-frequency hearing in the cochleae of echolocating bats.
Collapse
Affiliation(s)
- Hui Wang
- College of Life Science, Jilin Agricultural University, Changchun, China
- *Correspondence: Hui Wang, ; Jiang Feng,
| | - Ruyi Sun
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Ningning Xu
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Xue Wang
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Mingyue Bao
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Xin Li
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Jiqian Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Aiqing Lin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Jiang Feng
- College of Life Science, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- *Correspondence: Hui Wang, ; Jiang Feng,
| |
Collapse
|
10
|
Malfeld K, Armbrecht N, Pich A, Volk HA, Lenarz T, Scheper V. Prevention of Noise-Induced Hearing Loss In Vivo: Continuous Application of Insulin-like Growth Factor 1 and Its Effect on Inner Ear Synapses, Auditory Function and Perilymph Proteins. Int J Mol Sci 2022; 24:ijms24010291. [PMID: 36613734 PMCID: PMC9820558 DOI: 10.3390/ijms24010291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
As noise-induced hearing loss (NIHL) is a leading cause of occupational diseases, there is an urgent need for the development of preventive and therapeutic interventions. To avoid user-compliance-based problems occurring with conventional protection devices, the pharmacological prevention is currently in the focus of hearing research. Noise exposure leads to an increase in reactive oxygen species (ROS) in the cochlea. This way antioxidant agents are a promising option for pharmacological interventions. Previous animal studies reported preventive as well as therapeutic effects of Insulin-like growth factor 1 (IGF-1) in the context of NIHL. Unfortunately, in patients the time point of the noise trauma cannot always be predicted, and additive effects may occur. Therefore, continuous prevention seems to be beneficial. The present study aimed to investigate the preventive potential of continuous administration of low concentrations of IGF-1 to the inner ear in an animal model of NIHL. Guinea pigs were unilaterally implanted with an osmotic minipump. One week after surgery they received noise trauma, inducing a temporary threshold shift. Continuous IGF-1 delivery lasted for seven more days. It did not lead to significantly improved hearing thresholds compared to control animals. Quite the contrary, there is a hint for a higher noise susceptibility. Nevertheless, changes in the perilymph proteome indicate a reduced damage and better repair mechanisms through the IGF-1 treatment. Thus, future studies should investigate delivery methods enabling continuous prevention but reducing the risk of an overdosage.
Collapse
Affiliation(s)
- Kathrin Malfeld
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Nina Armbrecht
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Andreas Pich
- Core Facility Proteomics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Holger A. Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, German Research Foundation (DFG; “Deutsche Forschungsgemeinschaft”), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Verena Scheper
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, German Research Foundation (DFG; “Deutsche Forschungsgemeinschaft”), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Correspondence:
| |
Collapse
|
11
|
Tan J, Li Y, Gao D, Sun L, Song Q, Yang J. A liquid chromatography-mass spectroscopy-based untargeted metabolomic study of the rat cochlear nucleus at various stages of maturity. Hear Res 2022; 426:108645. [DOI: 10.1016/j.heares.2022.108645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/12/2022] [Accepted: 11/01/2022] [Indexed: 11/08/2022]
|
12
|
Wang C, Qiu J, Li G, Wang J, Liu D, Chen L, Song X, Cui L, Sun Y. Application and prospect of quasi-targeted metabolomics in age-related hearing loss. Hear Res 2022; 424:108604. [PMID: 36116178 DOI: 10.1016/j.heares.2022.108604] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/28/2022] [Accepted: 09/03/2022] [Indexed: 11/04/2022]
Abstract
Age-related hearing loss (ARHL) is a common sensory deficit in the elderly, which seriously affects physical and mental health. Therefore, understanding its underlying molecular mechanisms and taking interventions to treat ARHL are urgently needed. In our study, cochlea of 4-week-old C57BL/6 mice as the Youth group (n = 6) and 48-week-old cochlea as the Old group (n = 6) were subjected to quasi-targeted metabolomics analysis by Ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). In total, 208 differential metabolites were identified in 12 cochlea samples, which highlighted the following discriminant compounds: tryptophan, piperidine, methionine, L-arginine, histamine, serotonin, acetylcholine, and 4-aminobutyric acid. Differentially expressed metabolites were identified which were involved in KEGG pathways related to the digestion and absorption of oxidative stress associated amino acids, Synaptic vesicle cycle of serotonin, Pantothenate and CoA Biosynthesis. These findings are a first step toward elucidating the pathophysiological pathways involved in the etiology of ARHL and provide the possibility to further explore the mechanisms of ARHL using metabolomic analysis.
Collapse
Affiliation(s)
- Chen Wang
- School of Clinical Medicine, Weifang Medical University, Baotong West Street 7166, Weifang, China; Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China
| | - Jingjing Qiu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China
| | - Guangjin Li
- School of Clinical Medicine, Weifang Medical University, Baotong West Street 7166, Weifang, China; Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China
| | - Junxin Wang
- School of Clinical Medicine, Weifang Medical University, Baotong West Street 7166, Weifang, China; Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China
| | - Dawei Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China
| | - Liang Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China
| | - Limei Cui
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China.
| | - Yan Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China.
| |
Collapse
|
13
|
Wang X, Gao Y, Jiang R. Diagnostic and predictive values of serum metabolic profiles in sudden sensorineural hearing loss patients. Front Mol Biosci 2022; 9:982561. [PMID: 36148011 PMCID: PMC9486159 DOI: 10.3389/fmolb.2022.982561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Sudden sensorineural hearing loss (SSNHL) is an otologic emergency, and metabolic disturbance is involved in its pathogenesis. This study recruited 20 SSNHL patients and 20 healthy controls (HCs) and collected their serum samples. Serum metabolites were detected by liquid chromatography-mass spectrometry, and metabolic profiles were analyzed. All patients were followed up for 3 months and categorized into recovery and non-recovery groups. The distinctive metabolites were assessed between two groups, and their predictive values for hearing recovery were evaluated. Analysis results revealed that SSNHL patients exhibited significantly characteristic metabolite signatures compared to HCs. The top 10 differential metabolites were further analyzed, and most of them showed potential diagnostic values based on receiver operator characteristic (ROC) curves. Finally, 14 SSNHL patients were divided into the recovery group, and six patients were included in the non-recovery group. Twelve distinctive metabolites were observed between the two groups, and ROC curves demonstrated that N4-acetylcytidine, p-phenylenediamine, sphingosine, glycero-3-phosphocholine, and nonadecanoic acid presented good predictabilities in the hearing recovery. Multivariate analysis results demonstrated that serum N4-Acetylcytidine, sphingosine and nonadecanoic acid levels were associated with hearing recovery in SSNHL patients. Our results identified that SSNHL patients exhibited distinctive serum metabolomics signatures, and several serum biomarkers were proved to be potential in predicting hearing recovery. The discriminative metabolites might contribute to illustrating the mechanisms of SSNHL and provide possible clues for its treatments.
Collapse
Affiliation(s)
- Xiangsheng Wang
- Department of Otolaryngology-Head and Neck Surgery, Urumqi Maternal and Child Health Care Hospital, Urumqi, China
| | - Yan Gao
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Xin Jiang Medical University, Urumqi, China
| | - Ruirui Jiang
- Department of Pharmacy, The First People’s Hospital of Urumqi (Children’s Hospital), Urumqi, China
- *Correspondence: Ruirui Jiang,
| |
Collapse
|
14
|
Boullaud L, Blasco H, Caillaud E, Emond P, Bakhos D. Immediate-Early Modifications to the Metabolomic Profile of the Perilymph Following an Acoustic Trauma in a Sheep Model. J Clin Med 2022; 11:jcm11164668. [PMID: 36012907 PMCID: PMC9409969 DOI: 10.3390/jcm11164668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
The pathophysiological mechanisms of noise-induced hearing loss remain unknown. Identifying biomarkers of noise-induced hearing loss may increase the understanding of pathophysiological mechanisms of deafness, allow for a more precise diagnosis, and inform personalized treatment. Emerging techniques such as metabolomics can help to identify these biomarkers. The objective of the present study was to investigate immediate-early changes in the perilymph metabolome following acoustic trauma. Metabolomic analysis was performed using liquid chromatography coupled to mass spectrophotometry to analyze metabolic changes in perilymph associated with noise-induced hearing loss. Sheep (n = 6) were exposed to a noise designed to induce substantial hearing loss. Perilymph was collected before and after acoustic trauma. Data were analyzed using univariate analysis and a supervised multivariate analysis based on partial least squares discriminant analysis. A metabolomic analysis showed an abundance of 213 metabolites. Four metabolites were significantly changed following acoustic trauma (Urocanate (p = 0.004, FC = 0.48), S-(5’-Adenosyl)-L-Homocysteine (p = 0.06, FC = 2.32), Trigonelline (p = 0.06, FC = 0.46) and N-Acetyl-L-Leucine (p = 0.09, FC = 2.02)). The approach allowed for the identification of new metabolites and metabolic pathways involved with acoustic trauma that were associated with auditory impairment (nerve damage, mechanical destruction, and oxidative stress). The results suggest that metabolomics provides a powerful approach to characterize inner ear metabolites which may lead to identification of new therapies and therapeutic targets.
Collapse
Affiliation(s)
- Luc Boullaud
- ENT Department and Cervico-Facial Surgery, CHU de Tours, 2 Boulevard Tonnellé, 37044 Tours, France
- INSERM U1253, iBrain, University of Tours, 10 Boulevard Tonnellé, 37000 Tours, France
- Correspondence: ; Tel.: +33-02-4747-4747
| | - Hélène Blasco
- INSERM U1253, iBrain, University of Tours, 10 Boulevard Tonnellé, 37000 Tours, France
- Department of Biochemistry and Molecular Biology, CHU de Tours, 2 Boulevard Tonnellé, 37044 Tours, France
- Faculty of Medecine, University of Tours, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Eliott Caillaud
- ENT Department and Cervico-Facial Surgery, CHU de Tours, 2 Boulevard Tonnellé, 37044 Tours, France
| | - Patrick Emond
- INSERM U1253, iBrain, University of Tours, 10 Boulevard Tonnellé, 37000 Tours, France
- Faculty of Medecine, University of Tours, 10 Boulevard Tonnellé, 37000 Tours, France
| | - David Bakhos
- ENT Department and Cervico-Facial Surgery, CHU de Tours, 2 Boulevard Tonnellé, 37044 Tours, France
- INSERM U1253, iBrain, University of Tours, 10 Boulevard Tonnellé, 37000 Tours, France
- Faculty of Medecine, University of Tours, 10 Boulevard Tonnellé, 37000 Tours, France
- House Institute Foundation, Los Angeles, CA 90089, USA
| |
Collapse
|
15
|
Boullaud L, Blasco H, Trinh TT, Bakhos D. Metabolomic Studies in Inner Ear Pathologies. Metabolites 2022; 12:metabo12030214. [PMID: 35323657 PMCID: PMC8955628 DOI: 10.3390/metabo12030214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 12/25/2022] Open
Abstract
Sensorineural hearing loss is the most common sensory deficit. The etiologies of sensorineural hearing loss have been described and can be congenital or acquired. For congenital non-syndromic hearing loss, mutations that are related to sites of cochlear damage have been discovered (e.g., connexin proteins, mitochondrial genes, etc.). For cytomegalovirus infection or auditory neuropathies, mechanisms are also well known and well researched. Although the etiologies of sensorineural hearing loss may be evident for some patients, the damaged sites and pathological mechanisms remain unclear for patients with progressive post-lingual hearing loss. Metabolomics is an emerging technique in which all metabolites present in a sample at a given time are analyzed, reflecting a physiological state. The objective of this study was to review the literature on the use of metabolomics in hearing loss. The findings of this review suggest that metabolomic studies may help to develop objective tests for diagnosis and personalized treatment.
Collapse
Affiliation(s)
- Luc Boullaud
- ENT Department and Cervico-Facial Surgery, University Center Hospital of Tours, 2 Boulevard Tonnellé, 37044 Tours, France; (T.-T.T.); (D.B.)
- INSERM U1253, iBrain, University of Tours, 10 Boulevard Tonnellé, 37000 Tours, France;
- Correspondence: ; Tel.: +33-247-474-785; Fax: +33-247-473-600
| | - Hélène Blasco
- INSERM U1253, iBrain, University of Tours, 10 Boulevard Tonnellé, 37000 Tours, France;
- Faculty of Medicine, University of Tours, 10 Boulevard Tonnellé, 37000 Tours, France
- Department of Biochemistry and Molecular Biology, University Center Hospital of Tours, 2 Boulevard Tonnellé, 37044 Tours, France
| | - Thuy-Trân Trinh
- ENT Department and Cervico-Facial Surgery, University Center Hospital of Tours, 2 Boulevard Tonnellé, 37044 Tours, France; (T.-T.T.); (D.B.)
- Faculty of Medicine, University of Tours, 10 Boulevard Tonnellé, 37000 Tours, France
| | - David Bakhos
- ENT Department and Cervico-Facial Surgery, University Center Hospital of Tours, 2 Boulevard Tonnellé, 37044 Tours, France; (T.-T.T.); (D.B.)
- INSERM U1253, iBrain, University of Tours, 10 Boulevard Tonnellé, 37000 Tours, France;
- Faculty of Medicine, University of Tours, 10 Boulevard Tonnellé, 37000 Tours, France
- House Institute Foundation, Los Angeles, CA 90057, USA
| |
Collapse
|
16
|
Pirttilä K, Balgoma D, Rainer J, Pettersson C, Hedeland M, Brunius C. Comprehensive Peak Characterization (CPC) in Untargeted LC-MS Analysis. Metabolites 2022; 12:137. [PMID: 35208212 PMCID: PMC8878835 DOI: 10.3390/metabo12020137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 02/05/2023] Open
Abstract
LC-MS-based untargeted metabolomics is heavily dependent on algorithms for automated peak detection and data preprocessing due to the complexity and size of the raw data generated. These algorithms are generally designed to be as inclusive as possible in order to minimize the number of missed peaks. This is known to result in an abundance of false positive peaks that further complicate downstream data processing and analysis. As a consequence, considerable effort is spent identifying features of interest that might represent peak detection artifacts. Here, we present the CPC algorithm, which allows automated characterization of detected peaks with subsequent filtering of low quality peaks using quality criteria familiar to analytical chemists. We provide a thorough description of the methods in addition to applying the algorithms to authentic metabolomics data. In the example presented, the algorithm removed about 35% of the peaks detected by XCMS, a majority of which exhibited a low signal-to-noise ratio. The algorithm is made available as an R-package and can be fully integrated into a standard XCMS workflow.
Collapse
Affiliation(s)
- Kristian Pirttilä
- Department of Medicinal Chemistry, Uppsala University, SE-75123 Uppsala, Sweden; (D.B.); (C.P.); (M.H.)
| | - David Balgoma
- Department of Medicinal Chemistry, Uppsala University, SE-75123 Uppsala, Sweden; (D.B.); (C.P.); (M.H.)
| | - Johannes Rainer
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy;
| | - Curt Pettersson
- Department of Medicinal Chemistry, Uppsala University, SE-75123 Uppsala, Sweden; (D.B.); (C.P.); (M.H.)
| | - Mikael Hedeland
- Department of Medicinal Chemistry, Uppsala University, SE-75123 Uppsala, Sweden; (D.B.); (C.P.); (M.H.)
| | - Carl Brunius
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden;
- Chalmers Mass Spectrometry Infrastructure, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
17
|
Peter MS, Warnecke A, Staecker H. A Window of Opportunity: Perilymph Sampling from the Round Window Membrane Can Advance Inner Ear Diagnostics and Therapeutics. J Clin Med 2022; 11:jcm11020316. [PMID: 35054010 PMCID: PMC8781055 DOI: 10.3390/jcm11020316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
In the clinical setting, the pathophysiology of sensorineural hearing loss is poorly defined and there are currently no diagnostic tests available to differentiate between subtypes. This often leaves patients with generalized treatment options such as steroids, hearing aids, or cochlear implantation. The gold standard for localizing disease is direct biopsy or imaging of the affected tissue; however, the inaccessibility and fragility of the cochlea make these techniques difficult. Thus, the establishment of an indirect biopsy, a sampling of inner fluids, is needed to advance inner ear diagnostics and allow for the development of novel therapeutics for inner ear disease. A promising source is perilymph, an inner ear liquid that bathes multiple structures critical to sound transduction. Intraoperative perilymph sampling via the round window membrane of the cochlea has been successfully used to profile the proteome, metabolome, and transcriptome of the inner ear and is a potential source of biomarker discovery. Despite its potential to provide insight into inner ear pathologies, human perilymph sampling continues to be controversial and is currently performed only in conjunction with a planned procedure where the inner ear is opened. Here, we review the safety of procedures in which the inner ear is opened, highlight studies where perilymph analysis has advanced our knowledge of inner ear diseases, and finally propose that perilymph sampling could be done as a stand-alone procedure, thereby advancing our ability to accurately classify sensorineural hearing loss.
Collapse
Affiliation(s)
- Madeleine St. Peter
- Department of Otolaryngology-Head & Neck Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Athanasia Warnecke
- Department of Otolaryngology Head and Neck Surgery, Hannover Medical School, D-30625 Hanover, Germany;
| | - Hinrich Staecker
- Department of Otolaryngology-Head & Neck Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA;
- Correspondence:
| |
Collapse
|
18
|
Zhang P, Carlsten C, Chaleckis R, Hanhineva K, Huang M, Isobe T, Koistinen VM, Meister I, Papazian S, Sdougkou K, Xie H, Martin JW, Rappaport SM, Tsugawa H, Walker DI, Woodruff TJ, Wright RO, Wheelock CE. Defining the Scope of Exposome Studies and Research Needs from a Multidisciplinary Perspective. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2021; 8:839-852. [PMID: 34660833 PMCID: PMC8515788 DOI: 10.1021/acs.estlett.1c00648] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 05/02/2023]
Abstract
The concept of the exposome was introduced over 15 years ago to reflect the important role that the environment exerts on health and disease. While originally viewed as a call-to-arms to develop more comprehensive exposure assessment methods applicable at the individual level and throughout the life course, the scope of the exposome has now expanded to include the associated biological response. In order to explore these concepts, a workshop was hosted by the Gunma University Initiative for Advanced Research (GIAR, Japan) to discuss the scope of exposomics from an international and multidisciplinary perspective. This Global Perspective is a summary of the discussions with emphasis on (1) top-down, bottom-up, and functional approaches to exposomics, (2) the need for integration and standardization of LC- and GC-based high-resolution mass spectrometry methods for untargeted exposome analyses, (3) the design of an exposomics study, (4) the requirement for open science workflows including mass spectral libraries and public databases, (5) the necessity for large investments in mass spectrometry infrastructure in order to sequence the exposome, and (6) the role of the exposome in precision medicine and nutrition to create personalized environmental exposure profiles. Recommendations are made on key issues to encourage continued advancement and cooperation in exposomics.
Collapse
Affiliation(s)
- Pei Zhang
- Gunma
University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma 371-8511, Japan
- Division
of Physiological Chemistry 2, Department of Medical Biochemistry and
Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Key
Laboratory of Drug Quality Control and Pharmacovigilance (Ministry
of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Christopher Carlsten
- Air
Pollution Exposure Laboratory, Division of Respiratory Medicine, Department
of Medicine, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Romanas Chaleckis
- Gunma
University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma 371-8511, Japan
- Division
of Physiological Chemistry 2, Department of Medical Biochemistry and
Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Kati Hanhineva
- Department
of Life Technologies, Food Chemistry and Food Development Unit, University of Turku, Turku 20014, Finland
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, Gothenburg SE-412 96, Sweden
- Department
of Clinical Nutrition and Public Health, University of Eastern Finland, Kuopio 70210, Finland
| | - Mengna Huang
- Channing
Division of Network Medicine, Brigham and
Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Tomohiko Isobe
- The
Japan Environment and Children’s Study Programme Office, National Institute for Environmental Sciences, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Ville M. Koistinen
- Department
of Life Technologies, Food Chemistry and Food Development Unit, University of Turku, Turku 20014, Finland
- Department
of Clinical Nutrition and Public Health, University of Eastern Finland, Kuopio 70210, Finland
| | - Isabel Meister
- Gunma
University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma 371-8511, Japan
- Division
of Physiological Chemistry 2, Department of Medical Biochemistry and
Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Stefano Papazian
- Science
for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm SE-114 18, Sweden
| | - Kalliroi Sdougkou
- Science
for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm SE-114 18, Sweden
| | - Hongyu Xie
- Science
for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm SE-114 18, Sweden
| | - Jonathan W. Martin
- Science
for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm SE-114 18, Sweden
| | - Stephen M. Rappaport
- Division
of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California 94720-7360, United States
| | - Hiroshi Tsugawa
- RIKEN Center
for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Center
for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588 Japan
- Graduate
School of Medical life Science, Yokohama
City University, 1-7-22
Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Douglas I. Walker
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York10029-5674, United States
| | - Tracey J. Woodruff
- Program
on Reproductive Health and the Environment, University of California San Francisco, San Francisco, California 94143, United States
| | - Robert O. Wright
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York10029-5674, United States
| | - Craig E. Wheelock
- Gunma
University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma 371-8511, Japan
- Division
of Physiological Chemistry 2, Department of Medical Biochemistry and
Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Department
of Respiratory Medicine and Allergy, Karolinska
University Hospital, Stockholm SE-141-86, Sweden
| |
Collapse
|
19
|
Automated Sequential Analysis of Hydrophilic and Lipophilic Fractions of Biological Samples: Increasing Single-Injection Chemical Coverage in Untargeted Metabolomics. Metabolites 2021; 11:metabo11050295. [PMID: 34063084 PMCID: PMC8147996 DOI: 10.3390/metabo11050295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/02/2023] Open
Abstract
In order to increase metabolite coverage in LC–MS-based untargeted metabolomics, HILIC- and RPLC-mode separations are often combined. Unfortunately, these two techniques pose opposite requirements on sample composition, necessitating either dual sample preparations, increasing needed sample volume, or manipulation of the samples after the first analysis, potentially leading to loss of analytes. When sample material is precious, the number of analyses that can be performed is limited. To that end, an automated single-injection LC–MS method for sequential analysis of both the hydrophilic and lipophilic fractions of biological samples is described. Early eluting compounds in a HILIC separation are collected on a trap column and subsequently analyzed in the RPLC mode. The instrument configuration, composed of commercially available components, allows easy modulation of the dilution ratio of the collected effluent, with sufficient dilution to obtain peak compression in the RPLC column. Furthermore, the method is validated and shown to be fit for purpose for application in untargeted metabolomics. Repeatability in both retention times and peak areas was excellent across over 140 injections of protein-precipitated blood plasma. Finally, the method has been applied to the analysis of real perilymph samples collected in a guinea pig model. The QC sample injections clustered tightly in the PCA scores plot and showed a high repeatability in both retention times and peak areas for selected compounds.
Collapse
|