1
|
Jardon KM, Umanets A, Gijbels A, Trouwborst I, Hul GB, Siebelink E, Vliex LM, Bastings JJ, Argamasilla R, Chenal E, Venema K, Afman LA, Goossens GH, Blaak EE. Distinct gut microbiota and metabolome features of tissue-specific insulin resistance in overweight and obesity. Gut Microbes 2025; 17:2501185. [PMID: 40336254 PMCID: PMC12064058 DOI: 10.1080/19490976.2025.2501185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/24/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025] Open
Abstract
Insulin resistance (IR) is an early marker of cardiometabolic deterioration which may develop heterogeneously in key metabolic organs, including the liver (LIR) and skeletal muscle (MIR). This tissue-specific IR is characterized by distinct metabolic signatures, but the role of the gut microbiota in its etiology remains unclear. Here, we profiled the gut microbiota, its metabolites and the plasma metabolome in individuals with either a LIR or MIR phenotype (n = 233). We observed distinct microbial community structures LIR and MIR, and higher short-chain fatty acid (SCFA) producing bacteria, fecal SCFAs and branched-chain fatty acids and a higher postprandial plasma glucagon-like-peptide-1 response in LIR. In addition, we found variations in metabolome profiles and phenotype-specific associations between microbial taxa and functional metabolite groups. Overall, our study highlights association between gut microbiota and its metabolites composition with IR heterogeneity that can be targeted in precision-based strategies to improve cardiometabolic health. Clinicaltrials.gov registration: NCT03708419.
Collapse
Affiliation(s)
- Kelly M. Jardon
- TiFN, Wageningen, The Netherlands
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Alexander Umanets
- Centre for Healthy Eating & Food Innovation, Maastricht University Campus Venlo, Venlo, The Netherlands
- Chair Group Youth Food and Health, Faculty of Science and Engineering, Maastricht University Campus Venlo, Venlo, The Netherlands
| | - Anouk Gijbels
- TiFN, Wageningen, The Netherlands
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Inez Trouwborst
- TiFN, Wageningen, The Netherlands
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Gabby B. Hul
- TiFN, Wageningen, The Netherlands
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Els Siebelink
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Lars M.M. Vliex
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Jacco J.A.J. Bastings
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | | | | | - Koen Venema
- Centre for Healthy Eating & Food Innovation, Maastricht University Campus Venlo, Venlo, The Netherlands
| | - Lydia A. Afman
- TiFN, Wageningen, The Netherlands
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Gijs H. Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ellen E. Blaak
- TiFN, Wageningen, The Netherlands
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
2
|
Cabrera D, Fraser K, Roy NC. A metabolomics analysis of interspecies and seasonal trends in ruminant milk: The molecular difference between bovine, caprine, and ovine milk. J Dairy Sci 2024; 107:6511-6527. [PMID: 38788847 DOI: 10.3168/jds.2023-24595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/04/2024] [Indexed: 05/26/2024]
Abstract
Ruminant milk composition can be affected by many factors, primarily interspecies differences, but also environmental factors (e.g., season, feeding system, and feed composition). Pasture-based feeding systems are known to be influenced by seasonal effects on grass composition. Spring pasture is rich in protein and low in fiber compared with late-season pasture, potentially inducing variability in the composition of some milk metabolites across the season. This study aimed to investigate interspecies and seasonal differences in the milk metabolome across the 3 major commercial ruminant milk species from factories in New Zealand: bovine, caprine, and ovine milk. Samples of bovine (n = 41) and caprine (n = 44) raw milk were collected monthly for a period of 9 mo (August 2016-April 2017), and ovine milk samples (n = 20) were collected for a period of 5 mo (August 2016-January 2017). Milk samples were subjected to biphasic extraction, and untargeted metabolite profiling was performed using 2 separate liquid chromatography high-resolution mass spectrometry analytical methods (polar metabolites and lipids). Major differences in the milk metabolome were observed between the 3 ruminant species, with 414 of 587 (71%) polar metabolite features and 210 of 233 (87%) lipid features being significantly different between species. Significant seasonal trends were observed in the polar metabolite fraction for bovine, caprine, and ovine milk (17, 24, and 32 metabolites, respectively), suggesting that the polar metabolite relative intensities of ovine and caprine milk were more susceptible to changes within seasons than bovine milk. We found no significant seasonal difference for the triglycerides (TG) species measured in bovine milk, whereas 3 and 52 TG species changed in caprine and ovine milk, respectively, across the seasons. In addition, 4 phosphatidylcholines and 2 phosphatidylethanolamines varied in caprine milk within the season, and 8 diglycerides varied in ovine milk. The interspecies and seasonal metabolite differences reported here provide a knowledge base of components potentially linked to milk physiochemical properties, and potential health benefits of New Zealand pasture-fed dairy ingredients.
Collapse
Affiliation(s)
- Diana Cabrera
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand; High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand.
| | - Karl Fraser
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand; High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand; Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Nicole C Roy
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand; Riddet Institute, Massey University, Palmerston North 4442, New Zealand; Department of Human Nutrition, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
3
|
Liu Z, Jiang A, Lv X, Fan D, Chen Q, Wu Y, Zhou C, Tan Z. Combined Metabolomics and Biochemical Analyses of Serum and Milk Revealed Parity-Related Metabolic Differences in Sanhe Dairy Cattle. Metabolites 2024; 14:227. [PMID: 38668355 PMCID: PMC11052102 DOI: 10.3390/metabo14040227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The production performance of dairy cattle is closely related to their metabolic state. This study aims to provide a comprehensive understanding of the production performance and metabolic features of Sanhe dairy cattle across different parities, with a specific focus on evaluating variations in milk traits and metabolites in both milk and serum. Sanhe dairy cattle from parities 1 to 4 (S1, n = 10; S2, n = 9; S3, n = 10; and S4, n = 10) at mid-lactation were maintained under the same feeding and management conditions. The milk traits, hydrolyzed milk amino acid levels, serum biochemical parameters, and serum free amino acid levels of the Sanhe dairy cattle were determined. Multiparous Sanhe dairy cattle (S2, S3, and S4) had a greater milk protein content, lower milk lactose content, and lower solids-not-fat content than primiparous Sanhe dairy cattle (S1). Moreover, S1 had a higher ratio of essential to total amino acids (EAAs/TAAs) in both the serum and milk. The serum biochemical results showed the lower glucose and total protein levels in S1 cattle were associated with milk quality. Furthermore, ultra-high-resolution high-performance liquid chromatography with tandem MS analysis (UPLC-MS/MS) identified 86 and 105 differential metabolites in the serum and milk, respectively, and these were mainly involved in amino acid, carbohydrate, and lipid metabolism. S1 and S2/S3/S4 had significantly different metabolic patterns in the serum and milk, and more vitamin B-related metabolites were significantly higher identified in S1 than in multiparous cattle. Among 36 shared differential metabolites in the serum and milk, 10 and 7 metabolites were significantly and strongly correlated with differential physiological indices, respectively. The differential metabolites identified were enriched in key metabolic pathways, illustrating the metabolic characteristics of the serum and milk from Sanhe dairy cattle of different parities. L-phenylalanine, dehydroepiandrosterone, and linoleic acid in the milk and N-acetylornithine in the serum could be used as potential marker metabolites to distinguish between Sanhe dairy cattle with parities of 1-4. In addition, a metabolic map of the serum and milk from the three aspects of carbohydrates, amino acids, and lipids was created for the further analysis and exploration of their relationships. These results reveal significant variations in milk traits and metabolites across different parities of Sanhe dairy cattle, highlighting the influence of parity on the metabolic profiles and production performance. Tailored nutritional strategies based on parity-specific metabolic profiles are recommended to optimize milk production and quality in Sanhe cattle.
Collapse
Affiliation(s)
- Zixin Liu
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Z.L.); (A.J.); (X.L.); (D.F.); (Q.C.); (Y.W.); (Z.T.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Aoyu Jiang
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Z.L.); (A.J.); (X.L.); (D.F.); (Q.C.); (Y.W.); (Z.T.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaokang Lv
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Z.L.); (A.J.); (X.L.); (D.F.); (Q.C.); (Y.W.); (Z.T.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
- College of Animal Science, Anhui Science and Technology University, Bengbu 233100, China
| | - Dingkun Fan
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Z.L.); (A.J.); (X.L.); (D.F.); (Q.C.); (Y.W.); (Z.T.)
| | - Qingqing Chen
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Z.L.); (A.J.); (X.L.); (D.F.); (Q.C.); (Y.W.); (Z.T.)
| | - Yicheng Wu
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Z.L.); (A.J.); (X.L.); (D.F.); (Q.C.); (Y.W.); (Z.T.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanshe Zhou
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Z.L.); (A.J.); (X.L.); (D.F.); (Q.C.); (Y.W.); (Z.T.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiliang Tan
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Z.L.); (A.J.); (X.L.); (D.F.); (Q.C.); (Y.W.); (Z.T.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Penagos-Tabares F, Khiaosa-Ard R, Faas J, Steininger F, Papst F, Egger-Danner C, Zebeli Q. A 2-year study reveals implications of feeding management and exposure to mycotoxins on udder health, performance, and fertility in dairy herds. J Dairy Sci 2024; 107:1124-1142. [PMID: 37709039 DOI: 10.3168/jds.2023-23476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/27/2023] [Indexed: 09/16/2023]
Abstract
We recently reported the ubiquitous occurrence of mycotoxins and their secondary metabolites in dairy rations and a substantial variation in the feeding management among Austrian dairy farms. The present study aimed to characterize to which extent these factors contribute to the fertility, udder health traits, and performance of dairy herds. During 2019 and 2020, we surveyed 100 dairy farms, visiting each farm 2 times and collecting data and feed samples. Data collection involved information on the main feed ingredients, nutrient composition, and the levels of mycotoxin and other metabolites in the diet. The annual fertility and milk data of the herds were obtained from the national reporting agency. Calving interval was the target criterion for fertility performance, whereas the percentage of primiparous and multiparous cows in the herd with somatic cell counts above 200,000 cells/mL was the criterion for impaired udder health. For each criterion, herds were classified into 3 groups: high/long, mid, and low/short, with the cut-off corresponding to the <25th and >75th percentiles and the rest of the data, respectively. Accordingly, for the calving interval, the cut-offs for the long and short groups were ≥400 and ≤380 d, for the udder health in primiparous cows were ≥20% and ≤8% of the herd, and for the udder health in multiparous cows were ≥35% and ≤20% of the herd, respectively. Quantitative approaches were further performed to define potential risk factors in the herds. The high somatic cell count group had higher dietary exposure to enniatins (2.8 vs. 1.62 mg/cow per d), deoxynivalenol (4.91 vs. 2.3 mg/cow per d), culmorin (9.48 vs. 5.72 mg/cow per d), beauvericin (0.32 vs. 0.18 mg/cow per d), and siccanol (13.3 vs. 5.15 mg/cow per d), and total Fusarium metabolites (42.8 vs. 23.2 mg/cow per d) and used more corn silage in the ration (26.9% vs. 17.3% diet DM) compared with the low counterparts. Beauvericin was the most substantial contributing variable among the Fusarium metabolites, as indicated by logistic regression and modeling analyses. Logistic analysis indicated that herds with high proportions of cows with milk fat-to-protein ratio >1.5 had an increased odds for a longer calving interval, which was found to be significant for primiparous cows (odds ratio = 5.5, 95% confidence interval = 1.65-21.7). As well, herds with high proportions of multiparous cows showing levels of milk urea nitrogen >30 mg/dL had an increased odds for longer calving intervals (odds ratio = 2.96, 95% confidence interval = 1.22-7.87). In conclusion, the present findings suggest that dietary contamination of Fusarium mycotoxins (especially emerging ones), likely due to increased use of corn silage in the diet, seems to be a risk factor for impairing the udder health of primiparous cows. Mismatching dietary energy and protein supply of multiparous cows contributed to reduced herd fertility performance.
Collapse
Affiliation(s)
- F Penagos-Tabares
- Unit Nutritional Physiology, Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria; FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, 3430 Tulln, Austria
| | - R Khiaosa-Ard
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - J Faas
- DSM-BIOMIN Research Center, Tulln a.d., 3430 Donau, Austria
| | - F Steininger
- ZuchtData EDV-Dienstleistungen GmbH, 1200 Vienna, Austria
| | - F Papst
- Institute of Technical Informatics, TU Graz/CSH Vienna, 8010 Graz, Austria
| | - C Egger-Danner
- ZuchtData EDV-Dienstleistungen GmbH, 1200 Vienna, Austria
| | - Q Zebeli
- Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria; Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
| |
Collapse
|
5
|
Liu Z, Jiang A, Lv X, Zhou C, Tan Z. Metabolic Changes in Serum and Milk of Holstein Cows in Their First to Fourth Parity Revealed by Biochemical Analysis and Untargeted Metabolomics. Animals (Basel) 2024; 14:407. [PMID: 38338048 PMCID: PMC10854930 DOI: 10.3390/ani14030407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
The performance of dairy cows is closely tied to the metabolic state, and this performance varies depending on the number of times the cows have given birth. However, there is still a lack of research on the relationship between the metabolic state of Holstein cows and the performance of lactation across multiple parities. In this study, biochemical analyses and metabolomics studies were performed on the serum and milk from Holstein cows of parities 1-4 (H1, N = 10; H2, N = 7; H3, N = 9; H4, N = 9) in mid-lactation (DIM of 141 ± 4 days) to investigate the link between performance and metabolic changes. The results of the milk quality analysis showed that the lactose levels were highest in H1 (p = 0.036). The total protein content in the serum increased with increasing parity (p = 0.013). Additionally, the lipase activity was found to be lowest in H1 (p = 0.022). There was no difference in the composition of the hydrolyzed amino acids in the milk among H1 to H4. However, the free amino acids histidine and glutamate in the serum were lowest in H1 and highest in H3 (p < 0.001), while glycine was higher in H4 (p = 0.031). The metabolomics analysis revealed that 53 and 118 differential metabolites were identified in the milk and serum, respectively. The differential metabolites in the cows' milk were classified into seven categories based on KEGG. Most of the differential metabolites in the cows' milk were found to be more abundant in H1, and these metabolites were enriched in two impact pathways. The differential metabolites in the serum could be classified into nine categories and enriched in six metabolic pathways. A total of six shared metabolites were identified in the serum and milk, among which cholesterol and citric acid were closely related to amino acid metabolism in the serum. These findings indicate a significant influence of blood metabolites on the energy and amino acid metabolism during the milk production process in the Holstein cows across 1-4 lactations, and that an in-depth understanding of the metabolic changes that occur in Holstein cows during different lactations is essential for precision farming, and that it is worthwhile to further investigate these key metabolites that have an impact through controlled experiments.
Collapse
Affiliation(s)
- Zixin Liu
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution CON and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Z.L.); (A.J.); (X.L.); (Z.T.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aoyu Jiang
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution CON and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Z.L.); (A.J.); (X.L.); (Z.T.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaokang Lv
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution CON and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Z.L.); (A.J.); (X.L.); (Z.T.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Animal Science, Anhui Science and Technology University, Bengbu 233100, China
| | - Chuanshe Zhou
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution CON and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Z.L.); (A.J.); (X.L.); (Z.T.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiliang Tan
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution CON and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Z.L.); (A.J.); (X.L.); (Z.T.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Cattaneo L, Rocchetti G, Piccioli-Cappelli F, Zini S, Trevisi E, Minuti A. Impact of dry-off and lyophilized Aloe arborescens supplementation on plasma metabolome of dairy cows. Sci Rep 2023; 13:5256. [PMID: 37002349 PMCID: PMC10066363 DOI: 10.1038/s41598-023-31922-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Positive effects have been observed as a result of Aloe arborescens supplementation in the dry-off phase in dairy cows. Metabolomic approaches can provide additional information about animal physiology. Thus, we characterized plasma metabolome around dry-off in 12 cows supplemented (AL) or not (CTR) with 10 g/d of lyophilized A. arborescens with an untargeted metabolomic approach. Overall, 1658 mass features were annotated. Regardless of treatment, multivariate statistics discriminated samples taken before and after dry-off. Overall, 490 metabolites were different between late lactation and early dry period, of which 237 were shared between AL and CTR. The most discriminant compounds (pentosidine and luteolin 7-O-glucoside) were related to the more fibrous diet. Pathway analysis indicated that pyrimidine and glycerophospholipid metabolisms were down-accumulated, suggesting reduced rumen microbial activity and liver load. Samples from AL were discriminated from CTR either the day of dry-off or 7 days after. At dry-off, aloin and emodin were the most discriminant metabolites, indicating that Aloe's bioactive compounds were absorbed. Seven days later, 534 compounds were different between groups, and emodin was among the most impacted. Pathway analysis highlighted that glycerophospholipid, pyrimidine, and folate metabolisms were affected. These results might indicate that Aloe has positive effects on liver function and a modulatory effect on rumen fermentation.
Collapse
Affiliation(s)
- L Cattaneo
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - G Rocchetti
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - F Piccioli-Cappelli
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - S Zini
- Department of Molecular and Translational Medicine (DMMT), University of Brescia, 25121, Brescia, Italy
| | - E Trevisi
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy.
- Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production of the Università Cattolica del Sacro Cuore (CREI), 29122, Piacenza, Italy.
| | - A Minuti
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| |
Collapse
|
7
|
Amin N, Schwarzkopf S, Tröscher-Mußotter J, Camarinha-Silva A, Dänicke S, Huber K, Frahm J, Seifert J. Host metabolome and faecal microbiome shows potential interactions impacted by age and weaning times in calves. Anim Microbiome 2023; 5:12. [PMID: 36788596 PMCID: PMC9926800 DOI: 10.1186/s42523-023-00233-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Calves undergo nutritional, metabolic, and behavioural changes from birth to the entire weaning period. An appropriate selection of weaning age is essential to reduce the negative effects caused by weaning-related dietary transitions. This study monitored the faecal microbiome and plasma metabolome of 59 female Holstein calves during different developmental stages and weaning times (early vs. late) and identified the potential associations of the measured parameters over an experimental period of 140 days. RESULTS A progressive development of the microbiome and metabolome was observed with significant differences according to the weaning groups (weaned at 7 or 17 weeks of age). Faecal samples of young calves were dominated by bifidobacterial and lactobacilli species, while their respective plasma samples showed high concentrations of amino acids (AAs) and biogenic amines (BAs). However, as the calves matured, the abundances of potential fiber-degrading bacteria and the plasma concentrations of sphingomyelins (SMs), few BAs and acylcarnitines (ACs) were increased. Early-weaning at 7 weeks significantly restructured the microbiome towards potential fiber-degrading bacteria and decreased plasma concentrations of most of the AAs and SMs, few BAs and ACs compared to the late-weaning event. Strong associations between faecal microbes, plasma metabolites and calf growth parameters were observed during days 42-98, where the abundances of Bacteroides, Parabacteroides, and Blautia were positively correlated with the plasma concentrations of AAs, BAs and SMs as well as the live weight gain or average daily gain in calves. CONCLUSION The present study reported that weaning at 17 weeks of age was beneficial due to higher growth rate of late-weaned calves during days 42-98 and a quick adaptability of microbiota to weaning-related dietary changes during day 112, suggesting an age-dependent maturation of the gastrointestinal tract. However, the respective plasma samples of late-weaned calves contained several metabolites with differential concentrations to the early-weaned group, suggesting a less abrupt but more-persistent effect of dietary changes on host metabolome compared to the microbiome.
Collapse
Affiliation(s)
- Nida Amin
- grid.9464.f0000 0001 2290 1502HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany ,grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Sarah Schwarzkopf
- grid.9464.f0000 0001 2290 1502HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany ,grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Johanna Tröscher-Mußotter
- grid.9464.f0000 0001 2290 1502HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany ,grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Amélia Camarinha-Silva
- grid.9464.f0000 0001 2290 1502HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany ,grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Sven Dänicke
- grid.417834.dInstitute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Brunswick, Germany
| | - Korinna Huber
- grid.9464.f0000 0001 2290 1502HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany ,grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Jana Frahm
- grid.417834.dInstitute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Brunswick, Germany
| | - Jana Seifert
- HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany. .,Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593, Stuttgart, Germany.
| |
Collapse
|
8
|
Pacífico C, Hartinger T, Stauder A, Schwartz-Zimmermann HE, Reisinger N, Faas J, Zebeli Q. Supplementing a Clay Mineral-Based Feed Additive Modulated Fecal Microbiota Composition, Liver Health, and Lipid Serum Metabolome in Dairy Cows Fed Starch-Rich Diets. Front Vet Sci 2021; 8:714545. [PMID: 34722695 PMCID: PMC8548638 DOI: 10.3389/fvets.2021.714545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Starch-rich diets are a commonly adopted strategy in order to sustain high milk yields in dairy cows. However, these diets are known to increase the risk of gut dysbiosis and related systemic health disorders. This study aimed to evaluate the effects of supplementing a clay mineral-based feed additive (CM; Mycofix® Plus, BIOMIN) on fecal microbiota structure, fecal short-chain fatty acid (SCFA) fermentation, serum metabolome, and liver health in primiparous (PP, n = 8) and multiparous (MP, n = 16) early-lactation Simmental cows (737 ± 90 kg of live body weight). Cows were randomly assigned to either a control or CM group (55 g per cow and day) and transitioned from a diet moderate in starch (26.3 ± 1.0%) to a high starch diet (32.0 ± 0.8%). Supplementation of CM reversed the decrease in bacterial diversity, richness, and evenness (p < 0.05) during high-starch diet, demonstrating that CM supplementation efficiently eased hindgut dysbiosis. The CM treatment reduced levels of Lactobacillus in PP cows during starch-rich feeding and elevated fecal pH, indicating a healthier hindgut milieu compared with that in control. Butyrate and propionate levels were modulated by CM supplementation, with butyrate being lower in CM-treated MP cows, whereas propionate was lower in MP but higher in PP cows. Supplementing CM during high-starch feeding increased the concentrations of the main primary bile salts and secondary bile acids in the serum and improved liver function in cows as indicated by reduced levels of glutamate dehydrogenase and γ-glutamyl-transferase, as well as higher serum albumin and triglyceride concentrations. These changes and those related to lipid serum metabolome were more pronounced in PP cows as also corroborated by relevance network analysis.
Collapse
Affiliation(s)
- Cátia Pacífico
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Thomas Hartinger
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Alexander Stauder
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Heidi Elisabeth Schwartz-Zimmermann
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Johannes Faas
- BIOMIN Research Center, BIOMIN Holding GmbH, Tulln, Austria
| | - Qendrim Zebeli
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|