1
|
Guillemain G, Khemtemourian L, Brehat J, Morin D, Movassat J, Tourrel-Cuzin C, Lacapere JJ. TSPO in pancreatic beta cells and its possible involvement in type 2 diabetes. Biochimie 2024; 224:104-113. [PMID: 38908539 DOI: 10.1016/j.biochi.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024]
Abstract
Amyloidosis forms a large family of pathologies associated with amyloid deposit generated by the formation of amyloid fibrils or plaques. The amyloidogenic proteins and peptides involved in these processes are targeted against almost all organs. In brain they are associated with neurodegenerative disease, and the Translocator Protein (TSPO), overexpressed in these inflammatory conditions, is one of the target for the diagnostic. Moreover, TSPO ligands have been described as promising therapeutic drugs for neurodegenerative diseases. Type 2 diabetes, another amyloidosis, is due to a beta cell mass decrease that has been linked to hIAPP (human islet amyloid polypeptide) fibril formation, leading to the reduction of insulin production. In the present study, in a first approach, we link overexpression of TSPO and inflammation in potentially prediabetic patients. In a second approach, we observed that TSPO deficient rats have higher level of insulin secretion in basal conditions and more IAPP fibrils formation compared with wild type animals. In a third approach, we show that diabetogenic conditions also increase TSPO overexpression and IAPP fibril formation in rat beta pancreatic cell line (INS-1E). These data open the way for further studies in the field of type 2 diabetes treatment or prevention.
Collapse
Affiliation(s)
- Ghislaine Guillemain
- Sorbonne Université, Institut Hospitalo-Universitaire, INSERM UMR_S938, Institute of Cardiometabolism and Nutrition (ICAN), Centre de Recherche de St-Antoine (CRSA), 27 Rue de Chaligny, 75012, Paris, France.
| | | | - Juliette Brehat
- INSERM, U955, IMRB, équipe Ghaleh, Faculté de Médecine, UPEC, 94010, Créteil, France
| | - Didier Morin
- INSERM, U955, IMRB, équipe Ghaleh, Faculté de Médecine, UPEC, 94010, Créteil, France
| | - Jamileh Movassat
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Team "Biologie et Pathologie du Pancréas Endocrine", Paris, France
| | - Cécile Tourrel-Cuzin
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Team "Biologie et Pathologie du Pancréas Endocrine", Paris, France
| | - Jean-Jacques Lacapere
- Sorbonne Université, Ecole normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005, Paris, France.
| |
Collapse
|
2
|
Vicente-Rodríguez M, Mancuso R, Peris-Yague A, Simmons C, Gómez-Nicola D, Perry VH, Turkheimer F, Lovestone S, Parker CA, Cash D. Pharmacological modulation of TSPO in microglia/macrophages and neurons in a chronic neurodegenerative model of prion disease. J Neuroinflammation 2023; 20:92. [PMID: 37032328 PMCID: PMC10084680 DOI: 10.1186/s12974-023-02769-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 03/20/2023] [Indexed: 04/11/2023] Open
Abstract
Neuroinflammation is an important component of many neurodegenerative diseases, whether as a primary cause or a secondary outcome. For that reason, either as diagnostic tools or to monitor progression and/or pharmacological interventions, there is a need for robust biomarkers of neuroinflammation in the brain. Mitochondrial TSPO (18 kDa Translocator protein) is one of few available biomarkers of neuroinflammation for which there are clinically available PET imaging agents. In this study, we further characterised neuroinflammation in a mouse model of prion-induced chronic neurodegeneration (ME7) including a pharmacological intervention via a CSF1R inhibitor. This was achieved by autoradiographic binding of the second-generation TSPO tracer, [3H]PBR28, along with a more comprehensive examination of the cellular contributors to the TSPO signal changes by immunohistochemistry. We observed regional increases of TSPO in the ME7 mouse brains, particularly in the hippocampus, cortex and thalamus. This increased TSPO signal was detected in the cells of microglia/macrophage lineage as well as in astrocytes, endothelial cells and neurons. Importantly, we show that the selective CSF1R inhibitor, JNJ-40346527 (JNJ527), attenuated the disease-dependent increase in TSPO signal, particularly in the dentate gyrus of the hippocampus, where JNJ527 attenuated the number of Iba1+ microglia and neurons, but not GFAP+ astrocytes or endothelial cells. These findings suggest that [3H]PBR28 quantitative autoradiography in combination with immunohistochemistry are important translational tools for detecting and quantifying neuroinflammation, and its treatments, in neurodegenerative disease. Furthermore, we demonstrate that although TSPO overexpression in the ME7 brains was driven by various cell types, the therapeutic effect of the CSF1R inhibitor was primarily to modulate TSPO expression in microglia and neurons, which identifies an important route of biological action of this particular CSF1R inhibitor and provides an example of a cell-specific effect of this type of therapeutic agent on the neuroinflammatory process.
Collapse
Affiliation(s)
- Marta Vicente-Rodríguez
- Department of Neuroimaging, BRAIN Centre (Biomarker Research and Imaging for Neuroscience), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK.
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.
| | - Renzo Mancuso
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Alba Peris-Yague
- Department of Neuroimaging, BRAIN Centre (Biomarker Research and Imaging for Neuroscience), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Camilla Simmons
- Department of Neuroimaging, BRAIN Centre (Biomarker Research and Imaging for Neuroscience), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK
| | - Diego Gómez-Nicola
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK
- Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, UK
| | - V Hugh Perry
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK
- Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Federico Turkheimer
- Department of Neuroimaging, BRAIN Centre (Biomarker Research and Imaging for Neuroscience), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK
| | - Simon Lovestone
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK
- Janssen Medical Ltd, High Wycombe, UK
| | - Christine A Parker
- Department of Neuroimaging, BRAIN Centre (Biomarker Research and Imaging for Neuroscience), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK
- GlaxoSmithKline, Stevenage, London, UK
| | - Diana Cash
- Department of Neuroimaging, BRAIN Centre (Biomarker Research and Imaging for Neuroscience), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK
| |
Collapse
|
3
|
Sikorska B, Gajos A, Bogucki A, Zielonka E, Sigurdson C, Liberski PP. Electron microscopic and confocal laser microscopy analysis of amyloid plaques in chronic wasting disease transmitted to transgenic mice. Prion 2019; 11:431-439. [PMID: 29105545 DOI: 10.1080/19336896.2017.1384109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
We report here on the ultrastructure of amyloid plaques in chronic wasting disease (CWD) transmitted to Tg20 transgenic mice overexpressing prion protein (PrPc). We identified three main types of amyloid deposits in mCWD: large amyloid deposits, unicentric plaques similar to kuru plaques in human prion diseases and multicentric plaques reminiscent of plaques typical of GSS. The most unique type of plaques were large subpial amyloid deposits. They were composed of large areas of amyloid fibrils but did not form "star-like" appearances of unicentric plaques. All types of plaques were totally devoid of dystrophic neuritic elements. However, numerous microglial cells invaded them. The plaques observed by confocal laser microscope were of the same types as those analyzed by electron microscopy. Neuronal processes surrounding the plaques did not show typical features of neuroaxonal dystrophy.
Collapse
Affiliation(s)
- Beata Sikorska
- a Department of Molecular Pathology and Neuropathology , Medical University of Lodz , Kosciuszki 4 st, Lodz , Poland
| | - Agata Gajos
- b Department of Extrapyramidal Diseases , Medical University of Lodz , Kosciuszki 4 st, Lodz , Poland
| | - Andrzej Bogucki
- b Department of Extrapyramidal Diseases , Medical University of Lodz , Kosciuszki 4 st, Lodz , Poland
| | - Emil Zielonka
- a Department of Molecular Pathology and Neuropathology , Medical University of Lodz , Kosciuszki 4 st, Lodz , Poland
| | - Christina Sigurdson
- c Center for Veterinary Sciences and Comparative Medicine , University of California , San Diego , United States of America
| | - Pawel P Liberski
- a Department of Molecular Pathology and Neuropathology , Medical University of Lodz , Kosciuszki 4 st, Lodz , Poland
| |
Collapse
|
4
|
Yang YT, Jin S. Effect of PrP105-132 on the secretion of interleukin-6 and interleukin-8 from microglial cells in vitro. Exp Ther Med 2018; 15:999-1004. [PMID: 29399107 PMCID: PMC5772781 DOI: 10.3892/etm.2017.5498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/06/2016] [Indexed: 12/25/2022] Open
Abstract
In the present study, the effect of prion protein (PrP) on the secretion of interleukin-6 (IL-6) and IL-8 from microglial cells in vitro and its possible underlying pathway were investigating by establishing a cell model for prion disease. Rat neuroglial cells were cultured in vitro, and were treated with 80 µM PrP peptides 105-132 (PrP105-132) only, PrP+MG132 or PrP+cyclosporin A (CsA). After 48 h, the IL-6 and IL-8 levels in the supernatant fluid of the treated cells were detected using enzyme-linked immunosorbent assay. In addition, the expression levels of nuclear factor-κB (NF-κB) and nuclear factor of activated T cells (NFAT) were evaluated using reverse transcription-polymerase chain reaction. The results indicated that the microglial cells were activated by treatment with PrP peptides. Cell bodies were augmented and appeared to have round, rod and amoeba-like shapes. In addition, the protuberances were shortened and eventually disappeared. Furthermore, the mRNA expression levels of NF-κB and NFAT in microglial cells increased, as well as the IL-6 and IL-8 levels in the supernatant fluid after treatment with PrP. However, the mRNA expression levels of NF-κB, and the IL-6 and IL-8 levels decreased after these cells were treated with MG132, a specific inhibitor of NF-κB. The mRNA expression of NFAT decreased after these cells were treated with CsA, a specific inhibitor of NFAT; however, the IL-6 level decreased, while no significant difference was observed in the IL-8 level. In conclusion, PrP-treated microglial cells secreted IL-6 and IL-8, and the secretion of IL-6 was associated with the activation of NF-κB and NFAT pathways. In addition, the secretion of IL-8 was mainly dependent on the NF-κB pathway.
Collapse
Affiliation(s)
- Yun-Tian Yang
- Department of Neurology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Shan Jin
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| |
Collapse
|
5
|
Fuchigami T, Yamashita Y, Kawasaki M, Ogawa A, Haratake M, Atarashi R, Sano K, Nakagaki T, Ubagai K, Ono M, Yoshida S, Nishida N, Nakayama M. Characterisation of radioiodinated flavonoid derivatives for SPECT imaging of cerebral prion deposits. Sci Rep 2015; 5:18440. [PMID: 26669576 PMCID: PMC4680881 DOI: 10.1038/srep18440] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/18/2015] [Indexed: 12/22/2022] Open
Abstract
Prion diseases are fatal neurodegenerative diseases characterised by deposition of amyloid plaques containing abnormal prion protein aggregates (PrP(Sc)). This study aimed to evaluate the potential of radioiodinated flavonoid derivatives for single photon emission computed tomography (SPECT) imaging of PrP(Sc). In vitro binding assays using recombinant mouse PrP (rMoPrP) aggregates revealed that the 4-dimethylamino-substituted styrylchromone derivative (SC-NMe2) had higher in vitro binding affinity (Kd = 24.5 nM) and capacity (Bmax = 36.3 pmol/nmol protein) than three other flavonoid derivatives (flavone, chalcone, and aurone). Fluorescent imaging using brain sections from mouse-adapted bovine spongiform encephalopathy (mBSE)-infected mice demonstrated that SC-NMe2 clearly labelled PrP(Sc)-positive prion deposits in the mice brain. Two methoxy SC derivatives, SC-OMe and SC-(OMe)2, also showed high binding affinity for rMoPrP aggregates with Ki values of 20.8 and 26.6 nM, respectively. In vitro fluorescence and autoradiography experiments demonstrated high accumulation of [(125)I]SC-OMe and [(125)I]SC-(OMe)2 in prion deposit-rich regions of the mBSE-infected mouse brain. SPECT/computed tomography (CT) imaging and ex vivo autoradiography demonstrated that [(123)I]SC-OMe showed consistent brain distribution with the presence of PrP(Sc) deposits in the mBSE-infected mice brain. In conclusion, [(123)I]SC-OMe appears a promising SPECT radioligand for monitoring prion deposit levels in the living brain.
Collapse
Affiliation(s)
- Takeshi Fuchigami
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Yuki Yamashita
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Masao Kawasaki
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Ayaka Ogawa
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Mamoru Haratake
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.,Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Ryuichiro Atarashi
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Kazunori Sano
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Takehiro Nakagaki
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Kaori Ubagai
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Masahiro Ono
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Sakura Yoshida
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Noriyuki Nishida
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Morio Nakayama
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
6
|
Liu G, Middleton RJ, Hatty CR, Kam WW, Chan R, Pham T, Harrison‐Brown M, Dodson E, Veale K, Banati RB. The 18 kDa translocator protein, microglia and neuroinflammation. Brain Pathol 2014; 24:631-53. [PMID: 25345894 PMCID: PMC8029074 DOI: 10.1111/bpa.12196] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 08/19/2014] [Indexed: 12/17/2022] Open
Abstract
The 18 kDa translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor, is expressed in the injured brain. It has become known as an imaging marker of "neuroinflammation" indicating active disease, and is best interpreted as a nondiagnostic biomarker and disease staging tool that refers to histopathology rather than disease etiology. The therapeutic potential of TSPO as a drug target is mostly based on the understanding that it is an outer mitochondrial membrane protein required for the translocation of cholesterol, which thus regulates the rate of steroid synthesis. This pivotal role together with the evolutionary conservation of TSPO has underpinned the belief that any loss or mutation of TSPO should be associated with significant physiological deficits or be outright incompatible with life. However, against prediction, full Tspo knockout mice are viable and across their lifespan do not show the phenotype expected if cholesterol transport and steroid synthesis were significantly impaired. Thus, the "translocation" function of TSPO remains to be better substantiated. Here, we discuss the literature before and after the introduction of the new nomenclature for TSPO and review some of the newer findings. In light of the controversy surrounding the function of TSPO, we emphasize the continued importance of identifying compounds with confirmed selectivity and suggest that TSPO expression is analyzed within specific disease contexts rather than merely equated with the reified concept of "neuroinflammation."
Collapse
Affiliation(s)
- Guo‐Jun Liu
- Life SciencesAustralian Nuclear Science and Technology OrganisationNSWAustralia
- Brain & Mind Research InstituteThe University of SydneyNSWAustralia
- Discipline of Medical Imaging & Radiation SciencesFaculty of Health SciencesThe University of SydneyNSWAustralia
| | - Ryan J. Middleton
- Life SciencesAustralian Nuclear Science and Technology OrganisationNSWAustralia
| | - Claire R. Hatty
- Brain & Mind Research InstituteThe University of SydneyNSWAustralia
- Discipline of Medical Imaging & Radiation SciencesFaculty of Health SciencesThe University of SydneyNSWAustralia
| | - Winnie Wai‐Ying Kam
- Life SciencesAustralian Nuclear Science and Technology OrganisationNSWAustralia
- Brain & Mind Research InstituteThe University of SydneyNSWAustralia
- Discipline of Medical Imaging & Radiation SciencesFaculty of Health SciencesThe University of SydneyNSWAustralia
| | - Ronald Chan
- Brain & Mind Research InstituteThe University of SydneyNSWAustralia
- Discipline of Medical Imaging & Radiation SciencesFaculty of Health SciencesThe University of SydneyNSWAustralia
| | - Tien Pham
- Life SciencesAustralian Nuclear Science and Technology OrganisationNSWAustralia
| | - Meredith Harrison‐Brown
- Life SciencesAustralian Nuclear Science and Technology OrganisationNSWAustralia
- Discipline of Medical Imaging & Radiation SciencesFaculty of Health SciencesThe University of SydneyNSWAustralia
| | - Eoin Dodson
- Life SciencesAustralian Nuclear Science and Technology OrganisationNSWAustralia
| | - Kelly Veale
- Discipline of Medical Imaging & Radiation SciencesFaculty of Health SciencesThe University of SydneyNSWAustralia
| | - Richard B. Banati
- Life SciencesAustralian Nuclear Science and Technology OrganisationNSWAustralia
- Brain & Mind Research InstituteThe University of SydneyNSWAustralia
- Discipline of Medical Imaging & Radiation SciencesFaculty of Health SciencesThe University of SydneyNSWAustralia
- National Imaging Facility and Ramaciotti Brain Imaging CentreSydneyNSWAustralia
| |
Collapse
|
7
|
Early cytokine elevation, PrPres deposition, and gliosis in mouse scrapie: no effect on disease by deletion of cytokine genes IL-12p40 and IL-12p35. J Virol 2012; 86:10377-83. [PMID: 22787236 DOI: 10.1128/jvi.01340-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases are typically associated with an activation of glia and an increased level of cytokines. In our previous studies of prion disease, the cytokine response in the brains of clinically sick scrapie-infected mice was restricted to a small group of cytokines, of which IL-12p40, CCL2, and CXCL10 were present at the highest levels. The goal of our current research was to determine the relationship between cytokine responses, gliosis, and neuropathology during prion disease. Here, in time course studies of C57BL/10 mice intracerebrally inoculated with 22L scrapie, abnormal protease-resistant prion protein (PrPres), astrogliosis, and microgliosis were first detected at 40 days after intracerebral scrapie inoculation. In cytokine studies, IL-12p40 was first elevated by 60 days; CCL3, IL-1β, and CXCL1 were elevated by 80 days; and CCL2 and CCL5 were elevated by 115 days. IL-12p40 showed the most extensive increase throughout disease and was 30-fold above control levels at the terminal stage. Because of the early onset and dramatic elevation of IL-12p40 during scrapie, we investigated whether IL-12p40 contributed to the development of prion disease neuropathogenesis by using three different scrapie strains (22L, RML, 79A) to infect knockout mice in which the gene encoding IL-12p40 was deleted. We also studied knockout mice lacking IL-12p35, which combines with IL-12p40 to form active IL-12 heterodimers. In all instances, knockout mice did not differ from control mice in survival time, clinical tempo, or levels of spongiosis, gliosis, or PrPres in the brain. Thus, neither IL-12p40 nor IL-12p35 molecules were required for prion disease-associated neurodegeneration or neuroinflammation.
Collapse
|
8
|
Kobayashi H, Longmire MR, Ogawa M, Choyke PL. Rational chemical design of the next generation of molecular imaging probes based on physics and biology: mixing modalities, colors and signals. Chem Soc Rev 2011; 40:4626-48. [PMID: 21607237 PMCID: PMC3417232 DOI: 10.1039/c1cs15077d] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In recent years, numerous in vivo molecular imaging probes have been developed. As a consequence, much has been published on the design and synthesis of molecular imaging probes focusing on each modality, each type of material, or each target disease. More recently, second generation molecular imaging probes with unique, multi-functional, or multiplexed characteristics have been designed. This critical review focuses on (i) molecular imaging using combinations of modalities and signals that employ the full range of the electromagnetic spectra, (ii) optimized chemical design of molecular imaging probes for in vivo kinetics based on biology and physiology across a range of physical sizes, (iii) practical examples of second generation molecular imaging probes designed to extract complementary data from targets using multiple modalities, color, and comprehensive signals (277 references).
Collapse
Affiliation(s)
- Hisataka Kobayashi
- Molecular Imaging Program, National Cancer Institute/NIH, Bldg. 10, Room B3B69, MSC 1088, 10 Center Dr Bethesda, Maryland 20892-1088, USA.
| | | | | | | |
Collapse
|