1
|
Alsawaftah N, Farooq A, Dhou S, Majdalawieh AF. Bioluminescence Imaging Applications in Cancer: A Comprehensive Review. IEEE Rev Biomed Eng 2021; 14:307-326. [PMID: 32746363 DOI: 10.1109/rbme.2020.2995124] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Bioluminescence imaging (BLI), an optical preclinical imaging modality, is an invaluable imaging modality due to its low-cost, high throughput, fast acquisition times, and functional imaging capabilities. BLI is being extensively used in the field of cancer imaging, especially with the recent developments in genetic-engineering, stem cell, and gene therapy treatments. The purpose of this paper is to provide a comprehensive review of the principles, developments, and current status of BLI in cancer research. This paper covers the fundamental BLI concepts including BLI reporters and enzyme-substrate systems, data acquisition, and image characteristics. It reviews the studies discussing the use of BLI in cancer research such as imaging tumor-characteristic phenomena including tumorigenesis, metastasis, cancer metabolism, apoptosis, hypoxia, and angiogenesis, and response to cancer therapy treatments including chemotherapy, radiotherapy, immunotherapy, gene therapy, and stem cell therapy. The key advantages and disadvantages of BLI compared to other common imaging modalities are also discussed.
Collapse
|
2
|
Mrozik KM, Cheong CM, Hewett DR, Noll JE, Opperman KS, Adwal A, Russell DL, Blaschuk OW, Vandyke K, Zannettino ACW. LCRF-0006, a small molecule mimetic of the N-cadherin antagonist peptide ADH-1, synergistically increases multiple myeloma response to bortezomib. FASEB Bioadv 2020; 2:339-353. [PMID: 32617520 PMCID: PMC7325588 DOI: 10.1096/fba.2019-00073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
N-cadherin is a homophilic cell-cell adhesion molecule that plays a critical role in maintaining vascular stability and modulating endothelial barrier permeability. Pre-clinical studies have shown that the N-cadherin antagonist peptide, ADH-1, increases the permeability of tumor-associated vasculature thereby increasing anti-cancer drug delivery to tumors and enhancing tumor response. Small molecule library screens have identified a novel compound, LCRF-0006, that is a mimetic of the classical cadherin His-Ala-Val sequence-containing region of ADH-1. Here, we evaluated the vascular permeability-enhancing and anti-cancer properties of LCRF-0006 using in vitro vascular disruption and cell apoptosis assays, and a well-established pre-clinical model (C57BL/KaLwRij/5TGM1) of the hematological cancer multiple myeloma (MM). We found that LCRF-0006 disrupted endothelial cell junctions in a rapid, transient and reversible manner, and increased vascular permeability in vitro and at sites of MM tumor in vivo. Notably, LCRF-0006 synergistically increased the in vivo anti-MM tumor response to low-dose bortezomib, a frontline anti-MM agent, leading to regression of disease in 100% of mice. Moreover, LCRF-0006 and bortezomib synergistically induced 5TGM1 MM tumor cell apoptosis in vitro. Our findings demonstrate the potential clinical utility of LCRF-0006 to significantly increase bortezomib effectiveness and enhance the depth of tumor response in patients with MM.
Collapse
Affiliation(s)
- Krzysztof M. Mrozik
- Myeloma Research LaboratoryAdelaide Medical SchoolFaculty of Health and Medical SciencesThe University of AdelaideAdelaideAustralia
- Precision Medicine ThemeSouth Australian Health and Medical Research Institute (SAHMRI)AdelaideAustralia
| | - Chee M. Cheong
- Myeloma Research LaboratoryAdelaide Medical SchoolFaculty of Health and Medical SciencesThe University of AdelaideAdelaideAustralia
- Precision Medicine ThemeSouth Australian Health and Medical Research Institute (SAHMRI)AdelaideAustralia
| | - Duncan R. Hewett
- Myeloma Research LaboratoryAdelaide Medical SchoolFaculty of Health and Medical SciencesThe University of AdelaideAdelaideAustralia
- Precision Medicine ThemeSouth Australian Health and Medical Research Institute (SAHMRI)AdelaideAustralia
| | - Jacqueline E. Noll
- Myeloma Research LaboratoryAdelaide Medical SchoolFaculty of Health and Medical SciencesThe University of AdelaideAdelaideAustralia
- Precision Medicine ThemeSouth Australian Health and Medical Research Institute (SAHMRI)AdelaideAustralia
| | - Khatora S. Opperman
- Myeloma Research LaboratoryAdelaide Medical SchoolFaculty of Health and Medical SciencesThe University of AdelaideAdelaideAustralia
- Precision Medicine ThemeSouth Australian Health and Medical Research Institute (SAHMRI)AdelaideAustralia
| | - Alaknanda Adwal
- Ovarian and Reproductive Cancer Biology LaboratoryRobinson Research InstituteThe University of AdelaideAdelaideAustralia
| | - Darryl L. Russell
- Ovarian and Reproductive Cancer Biology LaboratoryRobinson Research InstituteThe University of AdelaideAdelaideAustralia
| | - Orest W. Blaschuk
- Division of UrologyDepartment of SurgeryMcGill UniversityMontrealCanada
| | - Kate Vandyke
- Myeloma Research LaboratoryAdelaide Medical SchoolFaculty of Health and Medical SciencesThe University of AdelaideAdelaideAustralia
- Precision Medicine ThemeSouth Australian Health and Medical Research Institute (SAHMRI)AdelaideAustralia
| | - Andrew C. W. Zannettino
- Myeloma Research LaboratoryAdelaide Medical SchoolFaculty of Health and Medical SciencesThe University of AdelaideAdelaideAustralia
- Precision Medicine ThemeSouth Australian Health and Medical Research Institute (SAHMRI)AdelaideAustralia
- Central Adelaide Local Health NetworkAdelaideAustralia
| |
Collapse
|
3
|
Bose RJC, Mattrey RF. Accomplishments and challenges in stem cell imaging in vivo. Drug Discov Today 2018; 24:492-504. [PMID: 30342245 DOI: 10.1016/j.drudis.2018.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 09/24/2018] [Accepted: 10/13/2018] [Indexed: 02/08/2023]
Abstract
Stem cell therapies have demonstrated promising preclinical results, but very few applications have reached the clinic owing to safety and efficacy concerns. Translation would benefit greatly if stem cell survival, distribution and function could be assessed in vivo post-transplantation, particularly in patients. Advances in molecular imaging have led to extraordinary progress, with several strategies being deployed to understand the fate of stem cells in vivo using magnetic resonance, scintigraphy, PET, ultrasound and optical imaging. Here, we review the recent advances, challenges and future perspectives and opportunities in stem cell tracking and functional assessment, as well as the advantages and challenges of each imaging approach.
Collapse
Affiliation(s)
- Rajendran J C Bose
- Department of Radiology and Advanced Imaging Research Center, 5323 Harry Hines Blvd, UT Southwestern Medical Center, Dallas, TX 75390-8514, USA; Current affiliation: Molecular Imaging Program at Stanford (MIPS) and the Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305-5427, USA
| | - Robert F Mattrey
- Department of Radiology and Advanced Imaging Research Center, 5323 Harry Hines Blvd, UT Southwestern Medical Center, Dallas, TX 75390-8514, USA.
| |
Collapse
|
4
|
Optical Bioluminescence Protocol for Imaging Mice. Methods Mol Biol 2018. [PMID: 29858781 DOI: 10.1007/978-1-4939-7860-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The presence, growth, or decline of transfected cell populations expressing the enzyme Luciferase can be followed in live mice using bioluminescence optical imaging techniques. This protocol describes how to verify the imaging equipment, options for injecting the substrate Luciferin into mice, image acquisition considerations, and commonly used data analysis techniques.
Collapse
|
5
|
Abstract
Stem cell based-therapies are novel therapeutic strategies that hold key for developing new treatments for diseases conditions with very few or no cures. Although there has been an increase in the number of clinical trials involving stem cell-based therapies in the last few years, the long-term risks and benefits of these therapies are still unknown. Detailed in vivo studies are needed to monitor the fate of transplanted cells, including their distribution, differentiation, and longevity over time. Advancements in non-invasive cellular imaging techniques to track engrafted cells in real-time present a powerful tool for determining the efficacy of stem cell-based therapies. In this review, we describe the latest approaches to stem cell labeling and tracking using different imaging modalities.
Collapse
Affiliation(s)
- Amit K Srivastava
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, 217 Traylor Building, 720 Rutland Avenue, Baltimore, MD, 21205-1832, USA
| | | |
Collapse
|
6
|
Adamczak JM, Schneider G, Nelles M, Que I, Suidgeest E, van der Weerd L, Löwik C, Hoehn M. In vivo bioluminescence imaging of vascular remodeling after stroke. Front Cell Neurosci 2014; 8:274. [PMID: 25249937 PMCID: PMC4155794 DOI: 10.3389/fncel.2014.00274] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/21/2014] [Indexed: 12/14/2022] Open
Abstract
Thrombolysis remains the only beneficial therapy for ischemic stroke, but is restricted to a short therapeutic window following the infarct. Currently research is focusing on spontaneous regenerative processes during the sub-acute and chronic phase. Angiogenesis, the formation of new blood vessels from pre-existing ones, was observed in stroke patients, correlates with longer survival and positively affects the formation of new neurons. Angiogenesis takes place in the border zones of the infarct, but further insight into the temporal profile is needed to fully apprehend its therapeutic potential and its relevance for neurogenesis and functional recovery. Angiogenesis is a multistep process, involving extracellular matrix degradation, endothelial cell proliferation, and, finally, new vessel formation. Interaction between vascular endothelial growth factor and its receptor 2 (VEGFR2) plays a central role in these angiogenic signaling cascades. In the present study we investigated non-invasively the dynamics of VEGFR2 expression following cerebral ischemia in a mouse model of middle cerebral artery occlusion (MCAO). We used a transgenic mouse expressing firefly luciferase under the control of the VEGFR2 promotor to non-invasively elucidate the temporal profile of VEGFR2 expression after stroke as a biomarker for VEGF/VEGFR2 signaling. We measured each animal repetitively up to 2 weeks after stroke and found increased VEGFR2 expression starting 3 days after the insult with peak values at 7 days. These were paralleled by increased VEGFR2 protein levels and increased vascular volume in peri-infarct areas at 14 days after the infarct, indicating that signaling via VEGFR2 leads to successful vascular remodeling. This study describes VEGFR2-related signaling is active at least up to 2 weeks after the infarct and results in increased vascular volume. Further, this study presents a novel strategy for the non-invasive evaluation of angiogenesis-based therapies.
Collapse
Affiliation(s)
- Joanna M Adamczak
- In-vivo-NMR Laboratory, Max-Planck-Institute for Neurological Research Cologne, Germany
| | - Gabriele Schneider
- In-vivo-NMR Laboratory, Max-Planck-Institute for Neurological Research Cologne, Germany
| | - Melanie Nelles
- In-vivo-NMR Laboratory, Max-Planck-Institute for Neurological Research Cologne, Germany
| | - Ivo Que
- Department of Endocrinology, Leiden University Medical Center Leiden, Netherlands
| | - Ernst Suidgeest
- Department of Radiology, Leiden University Medical Center Leiden, Netherlands
| | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Center Leiden, Netherlands ; Department of Human Genetics, Leiden University Medical Center Leiden, Netherlands
| | - Clemens Löwik
- Department of Endocrinology, Leiden University Medical Center Leiden, Netherlands ; Department of Radiology, Leiden University Medical Center Leiden, Netherlands
| | - Mathias Hoehn
- In-vivo-NMR Laboratory, Max-Planck-Institute for Neurological Research Cologne, Germany ; Department of Radiology, Leiden University Medical Center Leiden, Netherlands
| |
Collapse
|
7
|
Inouye S, Sahara-Miura Y. A Novel Catalytic Function of Synthetic IgG-Binding Domain (Z Domain) from Staphylococcal Protein A: Light Emission with Coelenterazine. Photochem Photobiol 2013; 90:137-44. [DOI: 10.1111/php.12192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 10/15/2013] [Indexed: 11/29/2022]
|
8
|
Lindberg E, Mizukami S, Ibata K, Miyawaki A, Kikuchi K. Development of luminescent coelenterazine derivatives activatable by β-galactosidase for monitoring dual gene expression. Chemistry 2013; 19:14970-6. [PMID: 24105816 DOI: 10.1002/chem.201302002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/08/2013] [Indexed: 11/06/2022]
Abstract
Two bioluminogenic caged coelenterazine derivatives (bGalCoel and bGalNoCoel) were designed and synthesized to detect β-galactosidase activity and expression by means of bioluminescence imaging. Our approach addresses the instability of coelenterazine by introducing β-galactose caging groups to block the auto-oxidation of coelenterazine. Both probes contain β-galactosidase cleavable caging groups at the carbonyl group of the imidazo-pyrazinone moiety. One of the probes in particular, bGalNoCoel, displayed a fast cleavage profile, high stability, and high specificity for β-galactosidase over other glycoside hydrolases. bGalN-oCoel could detect β-galactosidase activity in living HEK-293T cell cultures that expressed a mutant Gaussia luciferase. It was determined that coelenterazine readily diffuses in and out of cells after uncaging by β-galactosidase. We showed that this new caged coelenterazine derivative, bGalNoCoel, could function as a dual-enzyme substrate and detect enzyme activity across two separate cell populations.
Collapse
Affiliation(s)
- Eric Lindberg
- Graduate School of Engineering, Osaka University, Osaka, 565-0871 (Japan), Fax: (+81) 6-6879-7925
| | | | | | | | | |
Collapse
|
9
|
Kia A, Przystal JM, Nianiaris N, Mazarakis ND, Mintz PJ, Hajitou A. Dual systemic tumor targeting with ligand-directed phage and Grp78 promoter induces tumor regression. Mol Cancer Ther 2012; 11:2566-77. [PMID: 23053496 DOI: 10.1158/1535-7163.mct-12-0587] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The tumor-specific Grp78 promoter is overexpressed in aggressive tumors. Cancer patients would benefit greatly from application of this promoter in gene therapy and molecular imaging; however, clinical benefit is limited by lack of strategies to target the systemic delivery of Grp78-driven transgenes to tumors. This study aims to assess the systemic efficacy of Grp78-guided expression of therapeutic and imaging transgenes relative to the standard cytomegalovirus (CMV) promoter. Combination of ligand and Grp78 transcriptional targeting into a single vector would facilitate systemic applications of the Grp78 promoter. We generated a dual tumor-targeted phage containing the arginine-glycine-aspartic acid tumor homing ligand and Grp78 promoter. Next, we combined flow cytometry, Western blot analysis, bioluminescence imaging of luciferase, and HSVtk/ganciclovir gene therapy and compared efficacy to conventional phage carrying the CMV promoter in vitro and in vivo in subcutaneous models of rat and human glioblastoma. We show that double-targeted phage provides persistent transgene expression in vitro and in tumors in vivo after systemic administration compared with conventional phage. Next, we showed significant tumor killing in vivo using the HSVtk/ganciclovir gene therapy and found a systemic antitumor effect of Grp78-driven HSVtk against therapy-resistant tumors. Finally, we uncovered a novel mechanism of Grp78 promoter activation whereby HSVtk/ganciclovir therapy upregulates Grp78 and transgene expression via the conserved unfolded protein response signaling cascade. These data validate the potential of Grp78 promoter in systemic cancer gene therapy and report the efficacy of a dual tumor targeting phage that may prove useful for translation into gene therapy and molecular imaging applications.
Collapse
Affiliation(s)
- Azadeh Kia
- Centre for Neuroinflammation and Degeneration, Division of Brain Sciences, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, United Kingdom
| | | | | | | | | | | |
Collapse
|
10
|
De Vocht N, Reekmans K, Bergwerf I, Praet J, Hoornaert C, Le Blon D, Daans J, Berneman Z, Van der Linden A, Ponsaerts P. Multimodal imaging of stem cell implantation in the central nervous system of mice. J Vis Exp 2012:e3906. [PMID: 22733218 DOI: 10.3791/3906] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
During the past decade, stem cell transplantation has gained increasing interest as primary or secondary therapeutic modality for a variety of diseases, both in preclinical and clinical studies. However, to date results regarding functional outcome and/or tissue regeneration following stem cell transplantation are quite diverse. Generally, a clinical benefit is observed without profound understanding of the underlying mechanism(s). Therefore, multiple efforts have led to the development of different molecular imaging modalities to monitor stem cell grafting with the ultimate aim to accurately evaluate survival, fate and physiology of grafted stem cells and/or their micro-environment. Changes observed in one or more parameters determined by molecular imaging might be related to the observed clinical effect. In this context, our studies focus on the combined use of bioluminescence imaging (BLI), magnetic resonance imaging (MRI) and histological analysis to evaluate stem cell grafting. BLI is commonly used to non-invasively perform cell tracking and monitor cell survival in time following transplantation, based on a biochemical reaction where cells expressing the Luciferase-reporter gene are able to emit light following interaction with its substrate (e.g. D-luciferin). MRI on the other hand is a non-invasive technique which is clinically applicable and can be used to precisely locate cellular grafts with very high resolution, although its sensitivity highly depends on the contrast generated after cell labeling with an MRI contrast agent. Finally, post-mortem histological analysis is the method of choice to validate research results obtained with non-invasive techniques with highest resolution and sensitivity. Moreover end-point histological analysis allows us to perform detailed phenotypic analysis of grafted cells and/or the surrounding tissue, based on the use of fluorescent reporter proteins and/or direct cell labeling with specific antibodies. In summary, we here visually demonstrate the complementarities of BLI, MRI and histology to unravel different stem cell- and/or environment-associated characteristics following stem cell grafting in the CNS of mice. As an example, bone marrow-derived stromal cells, genetically engineered to express the enhanced Green Fluorescent Protein (eGFP) and firefly Luciferase (fLuc), and labeled with blue fluorescent micron-sized iron oxide particles (MPIOs), will be grafted in the CNS of immune-competent mice and outcome will be monitored by BLI, MRI and histology (Figure 1).
Collapse
|
11
|
Keyaerts M, Caveliers V, Lahoutte T. Bioluminescence imaging: looking beyond the light. Trends Mol Med 2012; 18:164-72. [PMID: 22321645 DOI: 10.1016/j.molmed.2012.01.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/04/2012] [Accepted: 01/16/2012] [Indexed: 11/17/2022]
Abstract
Bioluminescence imaging (BLI) enables in vivo imaging of molecular and cellular processes. It has gained in popularity over the past decade because of its easy translation from in vitro to in vivo experiments, its sensitivity, and its ease of use. However, experience in applying BLI in living subjects is still limited, and many researchers have encountered unexpected or biased BLI readout and reported important influencing factors. In this review, we summarize both the biological and physical effects that occur at the enzyme level or during light propagation towards the camera. The knowledge and detection of such factors, together with the development of new strategies and better BLI compounds, will improve the accuracy of the technique in the future.
Collapse
Affiliation(s)
- Marleen Keyaerts
- In Vivo Cellular and Molecular Imaging (ICMI) Laboratory, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | | | | |
Collapse
|
12
|
Keyaerts M, Remory I, Caveliers V, Breckpot K, Bos TJ, Poelaert J, Bossuyt A, Lahoutte T. Inhibition of firefly luciferase by general anesthetics: effect on in vitro and in vivo bioluminescence imaging. PLoS One 2012; 7:e30061. [PMID: 22253879 PMCID: PMC3254645 DOI: 10.1371/journal.pone.0030061] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 12/12/2011] [Indexed: 11/19/2022] Open
Abstract
Bioluminescence imaging is routinely performed in anesthetized mice. Often isoflurane anesthesia is used because of its ease of use and fast induction/recovery. However, general anesthetics have been described as important inhibitors of the luciferase enzyme reaction. Aim To investigate frequently used mouse anesthetics for their direct effect on the luciferase reaction, both in vitro and in vivo. Materials and Methods isoflurane, sevoflurane, desflurane, ketamine, xylazine, medetomidine, pentobarbital and avertin were tested in vitro on luciferase-expressing intact cells, and for non-volatile anesthetics on intact cells and cell lysates. In vivo, isoflurane was compared to unanesthetized animals and different anesthetics. Differences in maximal photon emission and time-to-peak photon emission were analyzed. Results All volatile anesthetics showed a clear inhibitory effect on the luciferase activity of 50% at physiological concentrations. Avertin had a stronger inhibitory effect of 80%. For ketamine and xylazine, increased photon emission was observed in intact cells, but this was not present in cell lysate assays, and was most likely due to cell toxicity and increased cell membrane permeability. In vivo, the highest signal intensities were measured in unanesthetized mice and pentobarbital anesthetized mice, followed by avertin. Isoflurane and ketamine/medetomidine anesthetized mice showed the lowest photon emission (40% of unanesthetized), with significantly longer time-to-peak than unanesthetized, pentobarbital or avertin-anesthetized mice. We conclude that, although strong inhibitory effects of anesthetics are present in vitro, their effect on in vivo BLI quantification is mainly due to their hemodynamic effects on mice and only to a lesser extent due to the direct inhibitory effect.
Collapse
Affiliation(s)
- Marleen Keyaerts
- In Vivo Cellular and Molecular Imaging (ICMI) Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|