1
|
Wolff AW, Peine J, Höfler J, Zurek G, Hemker C, Lingor P. SAFE-ROCK: A Phase I Trial of an Oral Application of the ROCK Inhibitor Fasudil to Assess Bioavailability, Safety, and Tolerability in Healthy Participants. CNS Drugs 2024; 38:291-302. [PMID: 38416402 PMCID: PMC10980656 DOI: 10.1007/s40263-024-01070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND The intravenous (IV) formulation of Rho-kinase (ROCK) inhibitor fasudil has been approved for the treatment of subarachnoid haemorrhage since 1995. Additionally, fasudil has shown promising preclinical results for various chronic diseases, including neurodegenerative diseases such as amyotrophic lateral sclerosis, Parkinson's disease, and dementia, in which long-term intravenous (IV) administration might not be suitable. OBJECTIVE The objective of this study was to assess the absolute bioavailability of oral, in comparison to IV, application of the approved formulation of fasudil (ERIL®) and to evaluate the safety and tolerability of the oral application of fasudil. METHODS This was a phase I, single-center, open-label, randomized, two period cross-over clinical trial in healthy women and men. By applying a cross-over design, each subject served as their own control. Two treatments were investigated, separated by a wash out phase of at least 3 days. Oral fasudil was administered once on day 1 to assess pharmacokinetics and three times on day 2, at an interval of 8 ± 1 h, to assess safety and gastrointestinal tolerability. For pharmacometrics of IV fasudil, it was administered once on day 1. Plasma profiles of fasudil and its active metabolite hydroxyfasudil after oral or IV administration were measured by liquid chromatography electrospray tandem mass spectrometry. Tolerability was assessed as proportion of subjects without significant drug intolerance, and safety was assessed by the proportion of subjects without clinical or laboratory treatment-associated serious adverse events. Gastrointestinal safety was assessed by applying the gastrointestinal symptom rating scale (GSRS). RESULTS Fourteen subjects aged 30-70 years were included in this trial. After oral administration, fasudil concentrations in blood were mostly very low [1.4 g/L; coefficient of variation (CV) 41.0%]. After IV application, the peak concentration was 100.6 µg/L (CV 74.2%); however, a high variance in peak concentrations were assessed for both treatments. The maximal concentrations of hydroxyfasudil in blood were similar after oral and IV treatment [111.6 µg/L (CV 24.1%) and 108.4 µg/L (CV 19.7%), respectively]. Exposure of hydroxyfasudil (assessed as AUC0-tz) differed between both treatments, with 449 µg × h/L after IV treatment and 309 µg × h/L after oral treatment. Therefore, the absolute bioavailability of hydroxyfasudil after the oral treatment was approximately 69% of the IV treatment. No serious adverse events (SAEs) occurred during this trial, and good tolerability of oral fasudil (90 mg/day) was documented. CONCLUSIONS Oral fasudil was generally well tolerated in the studied population, and no safety concerns were identified. However, systemic bioavailability of oral hydroxyfasudil corresponded to 69%, and dose adjustments need to considered. The results presented here lay grounds for future trials of fasudil in chronic diseases, which require an oral long-term application. This trial was registered with EudraCT (no. 2019-001805-26).
Collapse
Affiliation(s)
- Andreas W Wolff
- Clinical Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Jörg Peine
- Institute for Clinical Research, AtoZ-CRO GmbH, Overath, Germany
| | | | | | - Claus Hemker
- CTC North GmbH & Co. KG at the University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Lingor
- Clinical Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
2
|
Wolff AW, Bidner H, Remane Y, Zimmer J, Aarsland D, Rascol O, Wyse RK, Hapfelmeier A, Lingor P. Protocol for a randomized, placebo-controlled, double-blind phase IIa study of the safety, tolerability, and symptomatic efficacy of the ROCK-inhibitor Fasudil in patients with Parkinson's disease (ROCK-PD). Front Aging Neurosci 2024; 16:1308577. [PMID: 38419648 PMCID: PMC10899319 DOI: 10.3389/fnagi.2024.1308577] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Background The Rho-kinase (ROCK) inhibitor Fasudil has shown symptomatic and disease-modifying effects in Parkinson's disease (PD) models in vitro and in vivo. In Japan, Fasudil has been approved for the treatment of subarachnoid haemorrhage since 1995 and shows a favourable safety profile. Objectives/design To investigate the safety, tolerability, and symptomatic efficacy of ROCK-inhibitor Fasudil in comparison to placebo in a randomized, national, multicenter, double-blind phase IIa study in patients with PD. Methods/analysis We plan to include 75 patients with at least 'probable' PD (MDS criteria), Hoehn and Yahr stages 1-3, and age 30-80 years in 13 German study sites. Patients must be non-fluctuating and their response to PD medication must have been stable for 6 weeks. Patients will be randomly allocated to treatment with the oral investigational medicinal product (IMP) containing either Fasudil in two dosages, or placebo, for a total of 22 days. As primary analysis, non-inferiority of low/high dose of Fasudil on the combined endpoint consisting of occurrence of intolerance and/or treatment-related serious adverse events (SAEs) over 22 days will be assessed in a sequential order, starting with the lower dose. Secondary endpoints will include tolerability alone over 22 days and occurrence of treatment-related SAEs (SARs) over 22 and 50 days and will be compared on group level. Additional secondary endpoints include efficacy on motor and non-motor symptoms, measured on established scales, and will be assessed at several timepoints. Biomaterial will be collected to determine pharmacokinetics of Fasudil and its active metabolite, and to evaluate biomarkers of neurodegeneration. Ethics/registration/discussion After positive evaluation by the competent authority and the ethics committee, patient recruitment started in the 3rd quarter of 2023. ROCK-PD is registered with Eudra-CT (2021-003879-34) and clinicaltrials.gov (NCT05931575). Results of this trial can pave way for conducting extended-duration studies assessing both symptomatic efficacy and disease-modifying properties of Fasudil.
Collapse
Affiliation(s)
- Andreas W Wolff
- Department of Neurology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Helen Bidner
- Münchner Studienzentrum (MSZ), School of Medicine, Technical University of Munich, Munich, Germany
| | - Yvonne Remane
- Department of Clinical Pharmacy and Drug Safety Center, Leipzig University, Leipzig, Germany
| | - Janine Zimmer
- Department of Clinical Pharmacy and Drug Safety Center, Leipzig University, Leipzig, Germany
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Centre for Age-Related Research, Stavanger University Hospital, Stavanger, Norway
| | - Olivier Rascol
- Clinical Investigation Center CIC1436, Departments of Clinical Pharmacology and Neurosciences, University of Toulouse 3, University Hospital of Toulouse, INSERM, Toulouse, France
| | | | - Alexander Hapfelmeier
- Institute of AI and Informatics in Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of General Practice and Health Services Research, School of Medicine, Technical University of Munich, Munich, Germany
| | - Paul Lingor
- Department of Neurology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
3
|
Martín-Cámara O, Cores Á, López-Alvarado P, Menéndez JC. Emerging targets in drug discovery against neurodegenerative diseases: Control of synapsis disfunction by the RhoA/ROCK pathway. Eur J Med Chem 2021; 225:113742. [PMID: 34388381 DOI: 10.1016/j.ejmech.2021.113742] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 01/11/2023]
Abstract
Synaptic spine morphology is controlled by the activity of Rac1, Cdc42 and RhoA, which need to be finely balanced, and in particular RhoA/ROCK prevents the formation of new protrusions by stabilizing actin formation. These processes are crucial to the maturation process, slowing the de novo generation of new spines. The RhoA/ROCK also influences plasticity processes, and selective modulation by ROCK1 of MLC-dependent actin dynamics leads to neurite retraction, but not to spine retraction. ROCK1 is also responsible for the reduction of the readily releasable pool of synaptic vesicles. These and other evidences suggest that ROCK1 is the main isoform acting on the presynaptic neuron. On the other hand, ROCK2 seems to have broad effects on LIMK/cofilin-dependent plasticity processes such as cofilin-dependent PSD changes. The RhoA/ROCK pathway is an important factor in several different brain-related pathologies via both downstream and upstream pathways. In the aggregate, these evidences show that the RhoA/ROCK pathway has a central role in the etiopathogenesis of a large group of CNS diseases, which underscores the importance of the pharmacological modulation of RhoA/ROCK as an important pathway to drug discovery in the neurodegenerative disease area. This article aims at providing the first review of the role of compounds acting on the RhoA/ROCK pathway in the control of synaptic disfunction.
Collapse
Affiliation(s)
- Olmo Martín-Cámara
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Ángel Cores
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Pilar López-Alvarado
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain.
| |
Collapse
|
4
|
Palomo V, Nozal V, Rojas-Prats E, Gil C, Martinez A. Protein kinase inhibitors for amyotrophic lateral sclerosis therapy. Br J Pharmacol 2020; 178:1316-1335. [PMID: 32737989 DOI: 10.1111/bph.15221] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/03/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that causes the progressive loss of motoneurons and, unfortunately, there is no effective treatment for this disease. Interconnecting multiple pathological mechanisms are involved in the neuropathology of this disease, including abnormal aggregation of proteins, neuroinflammation and dysregulation of the ubiquitin proteasome system. Such complex mechanisms, together with the lack of reliable animal models of the disease have hampered the development of drugs for this disease. Protein kinases, a key pharmacological target in several diseases, have been linked to ALS as they play a central role in the pathology of many diseases. Therefore several inhibitors are being currently trailed for clinical proof of concept in ALS patients. In this review, we examine the recent literature on protein kinase inhibitors currently in pharmaceutical development for this diseaseas future therapy for AS together with their involvement in the pathobiology of ALS. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.6/issuetoc.
Collapse
Affiliation(s)
- Valle Palomo
- Centro de Investigaciones Biológicas-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Vanesa Nozal
- Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | | | - Carmen Gil
- Centro de Investigaciones Biológicas-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biológicas-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Wang L, Xu J, Guo D, Zhou X, Jiang W, Wang J, Tang J, Zou Y, Bi M, Li Q. Fasudil alleviates brain damage in rats after carbon monoxide poisoning through regulating neurite outgrowth inhibitor/oligodendrocytemyelin glycoprotein signalling pathway. Basic Clin Pharmacol Toxicol 2019; 125:152-165. [PMID: 30916885 DOI: 10.1111/bcpt.13233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/07/2019] [Indexed: 12/21/2022]
Abstract
Carbon monoxide (CO) poisoning can lead to many serious neurological symptoms. Currently, there are no effective therapies for CO poisoning. In this study, rats exposed to CO received hyperbaric oxygen therapy, and those in the Fasudil group were given additional Fasudil injection once daily. We found that the escape latency in CO poisoning group (CO group) was significantly prolonged, the T1 /Ttotal was obviously decreased, and the mean escape time and the active escape latency were notably extended compared with those in normal control group (NC group, P < 0.05). After administration of Fasudil, the escape latency was significantly shortened, T1 /Ttotal was gradually increased as compared with CO group (>1 week, P < 0.05). Ultrastructural damage of neurons and blood-brain barrier of rats was serious in CO group, while the structural and functional integrity of neuron and mitochondria maintained relatively well in Fasudil group. Moreover, we also noted that the expressions of neurite outgrowth inhibitor (Nogo), oligodendrocyte-myelin glycoprotein (OMgp) and Rock in brain tissue were significantly increased in CO group, and the elevated levels of the three proteins were still observed at 2 months after CO poisoning. Fasudil markedly reduced their expressions compared with those of CO group (P < 0.05). In summary, the activation of Nogo-OMgp/Rho signalling pathway is associated with brain injury in rats with CO poisoning. Fasudil can efficiently down-regulate the expressions of Nogo, OMgp and Rock proteins, paving a way for the treatment of acute brain damage after CO poisoning.
Collapse
Affiliation(s)
- Li Wang
- Department of Neurology, Qianfoshan Hospital Affiliated to Shandong University, Jinan Shandong, China.,Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai Shandong, China
| | - Jianghua Xu
- Department of neurology, Yantai YEDA Hospital, Yantai Shandong, China
| | - Dadong Guo
- Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan Shandong, China
| | - Xudong Zhou
- The First Affiliated Hospital of Shandong, University of Traditional Chinese Medicine, Jinan Shandong, China
| | - Wenwen Jiang
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai Shandong, China
| | - Jinglin Wang
- Emergency Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai Shandong, China
| | - Jiyou Tang
- Department of Neurology, Qianfoshan Hospital Affiliated to Shandong University, Jinan Shandong, China
| | - Yong Zou
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai Shandong, China
| | - Mingjun Bi
- Emergency Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai Shandong, China
| | - Qin Li
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai Shandong, China
| |
Collapse
|
6
|
Lingor P, Weber M, Camu W, Friede T, Hilgers R, Leha A, Neuwirth C, Günther R, Benatar M, Kuzma-Kozakiewicz M, Bidner H, Blankenstein C, Frontini R, Ludolph A, Koch JC. ROCK-ALS: Protocol for a Randomized, Placebo-Controlled, Double-Blind Phase IIa Trial of Safety, Tolerability and Efficacy of the Rho Kinase (ROCK) Inhibitor Fasudil in Amyotrophic Lateral Sclerosis. Front Neurol 2019; 10:293. [PMID: 30972018 PMCID: PMC6446974 DOI: 10.3389/fneur.2019.00293] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022] Open
Abstract
Objectives: Disease-modifying therapies for amyotrophic lateral sclerosis (ALS) are still not satisfactory. The Rho kinase (ROCK) inhibitor fasudil has demonstrated beneficial effects in cell culture and animal models of ALS. For many years, fasudil has been approved in Japan for the treatment of vasospasm in patients with subarachnoid hemorrhage with a favorable safety profile. Here we describe a clinical trial protocol to repurpose fasudil as a disease-modifying therapy for ALS patients. Methods: ROCK-ALS is a multicenter, double-blind, randomized, placebo-controlled phase IIa trial of fasudil in ALS patients (EudraCT: 2017-003676-31, NCT: 03792490). Safety and tolerability are the primary endpoints. Efficacy is a secondary endpoint and will be assessed by the change in ALSFRS-R, ALSAQ-5, slow vital capacity (SVC), ECAS, and the motor unit number index (MUNIX), as well as survival. Efficacy measures will be assessed before (baseline) and immediately after the infusion therapy as well as on days 90 and 180. Patients will receive a daily dose of either 30 or 60 mg fasudil, or placebo in two intravenous applications for a total of 20 days. Regular assessments of safety will be performed throughout the treatment period, and in the follow-up period until day 180. Additionally, we will collect biological fluids to assess target engagement and evaluate potential biomarkers for disease progression. A total of 120 patients with probable or definite ALS (revised El Escorial criteria) and within 6-18 months of the onset of weakness shall be included in 16 centers in Germany, Switzerland and France. Results and conclusions: The ROCK-ALS trial is a phase IIa trial to evaluate the ROCK-inhibitor fasudil in early-stage ALS-patients that started patient recruitment in 2019.
Collapse
Affiliation(s)
- Paul Lingor
- Department of Neurology, Technical University of Munich, Munich, Germany
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Weber
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, St., Gallen, Switzerland
| | - William Camu
- Reference Center for ALS and Other Rare Motoneuron Disorders, University Hospital Gui de Chauliac, Montpellier, France
| | - Tim Friede
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Reinhard Hilgers
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas Leha
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Christoph Neuwirth
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, St., Gallen, Switzerland
| | - René Günther
- Department of Neurology, Technical University of Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Michael Benatar
- Department of Neurology, University of Miami, Miami, FL, United States
| | | | - Helen Bidner
- Münchner Studienzentrum, Technical University of Munich, Munich, Germany
| | | | - Roberto Frontini
- Pharmacy at the University of Leipzig Medical Center, Leipzig, Germany
| | - Albert Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Jan C. Koch
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
ROCK inhibition in models of neurodegeneration and its potential for clinical translation. Pharmacol Ther 2018; 189:1-21. [DOI: 10.1016/j.pharmthera.2018.03.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Fasudil attenuates aggregation of α-synuclein in models of Parkinson's disease. Acta Neuropathol Commun 2016; 4:39. [PMID: 27101974 PMCID: PMC4840958 DOI: 10.1186/s40478-016-0310-y] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 04/09/2016] [Indexed: 12/23/2022] Open
Abstract
Parkinson’s disease (PD) is the most common neurodegenerative movement disorder, yet disease-modifying treatments do not currently exist. Rho-associated protein kinase (ROCK) was recently described as a novel neuroprotective target in PD. Since alpha-synuclein (α-Syn) aggregation is a major hallmark in the pathogenesis of PD, we aimed to evaluate the anti-aggregative potential of pharmacological ROCK inhibition using the isoquinoline derivative Fasudil, a small molecule inhibitor already approved for clinical use in humans. Fasudil treatment significantly reduced α-Syn aggregation in vitro in a H4 cell culture model as well as in a cell-free assay. Nuclear magnetic resonance spectroscopy analysis revealed a direct binding of Fasudil to tyrosine residues Y133 and Y136 in the C-terminal region of α-Syn. Importantly, this binding was shown to be biologically relevant using site-directed mutagenesis of these residues in the cell culture model. Furthermore, we evaluated the impact of long-term Fasudil treatment on α-Syn pathology in vivo in a transgenic mouse model overexpressing human α-Syn bearing the A53T mutation (α-SynA53T mice). Fasudil treatment improved motor and cognitive functions in α-SynA53T mice as determined by CatwalkTM gait analysis and novel object recognition (NOR), without apparent side effects. Finally, immunohistochemical analysis revealed a significant reduction of α-Syn pathology in the midbrain of α-SynA53T mice after Fasudil treatment. Our results demonstrate that Fasudil, next to its effects mediated by ROCK-inhibition, directly interacts with α-Syn and attenuates α-Syn pathology. This underscores the translational potential of Fasudil as a disease-modifying drug for the treatment of PD and other synucleinopathies.
Collapse
|
9
|
Yu JZ, Chen C, Zhang Q, Zhao YF, Feng L, Zhang HF, Meng J, Ma CG, Xiao BG. Changes of synapses in experimental autoimmune encephalomyelitis by using Fasudil. Wound Repair Regen 2016; 24:317-27. [PMID: 26789651 DOI: 10.1111/wrr.12407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 12/22/2015] [Indexed: 11/29/2022]
Abstract
The ROCK signaling pathway is involved in numerous fundamental cellular functions such as cell migration, apoptosis, inflammatory responses, and neurite outgrowth. Previous studies demonstrate that Fasudil exhibited therapeutic potential of experimental autoimmune encephalomyelitis (EAE) possibly through immune-modulation and anti-inflammation. In this study, we observed the effect of Fasudil on synaptic protection of EAE mice. Fasudil ameliorated the clinical severity of EAE and inhibited Rho kinase (ROCK), especially ROCK II, in brain and spinal cord of EAE mice. Protein extracts from spinal cord of Fasudil-treated EAE mice promoted the formation of neurite outgrowth when co-cultured with primary neurons, indicating that peripheral administration of Fasudil can enter the central nervous system (CNS) and exhibited its biological effect on the formation of neurite outgrowth. Synapse-related molecule synaptophysin was enhanced, and CRMP-2, AMPA receptor, and GSK-3β were declined in spinal cord of Fasudil-treated mice. Neurotrophic factor BDNF and GDNF as well as immunomodulatory cytokine IL-10 in spinal cord were elevated in Fasudil-treated mice, while inflammatory cytokine IL-17, IL-1β, IL-6, and TNF-α were obviously inhibited, accompanied by the decrease of inflammatory M1 iNOS and the increase of anti-inflammatory M2 Arg-1, providing a microenvironment that contributes to synaptic protection. Our results indicate that Fasudil treatment protected against synaptic damage and promoted synaptic formation, which may be related with increased neurotrophic factors as well as decreased inflammatory microenvironment in the CNS of EAE mice.
Collapse
Affiliation(s)
- Jie-Zhong Yu
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | - Chan Chen
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Qiong Zhang
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yong-Fei Zhao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Ling Feng
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | - Hai-Fei Zhang
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | - Jian Meng
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China
| | - Cun-Gen Ma
- Institute of Brain Science, Department of Neurology, Medical School, Shanxi Datong University, Datong, China.,"2011" Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Recent Advances in the Development and Application of Radiolabeled Kinase Inhibitors for PET Imaging. Molecules 2015; 20:22000-27. [PMID: 26690113 PMCID: PMC6332294 DOI: 10.3390/molecules201219816] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/18/2015] [Accepted: 12/01/2015] [Indexed: 12/20/2022] Open
Abstract
Over the last 20 years, intensive investigation and multiple clinical successes targeting protein kinases, mostly for cancer treatment, have identified small molecule kinase inhibitors as a prominent therapeutic class. In the course of those investigations, radiolabeled kinase inhibitors for positron emission tomography (PET) imaging have been synthesized and evaluated as diagnostic imaging probes for cancer characterization. Given that inhibitor coverage of the kinome is continuously expanding, in vivo PET imaging will likely find increasing applications for therapy monitoring and receptor density studies both in- and outside of oncological conditions. Early investigated radiolabeled inhibitors, which are mostly based on clinically approved tyrosine kinase inhibitor (TKI) isotopologues, have now entered clinical trials. Novel radioligands for cancer and PET neuroimaging originating from novel but relevant target kinases are currently being explored in preclinical studies. This article reviews the literature involving radiotracer design, radiochemistry approaches, biological tracer evaluation and nuclear imaging results of radiolabeled kinase inhibitors for PET reported between 2010 and mid-2015. Aspects regarding the usefulness of pursuing selective vs. promiscuous inhibitor scaffolds and the inherent challenges associated with intracellular enzyme imaging will be discussed.
Collapse
|