1
|
De Rosa L, Di Stasi R, Fusco V, D'Andrea LD. AXL receptor as an emerging molecular target in colorectal cancer. Drug Discov Today 2024; 29:104005. [PMID: 38685399 DOI: 10.1016/j.drudis.2024.104005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
AXL receptor tyrosine kinase (AXL) is a receptor tyrosine kinase whose aberrant expression has recently been associated with colorectal cancer (CRC), contributing to tumor growth, epithelial-mesenchymal transition (EMT), increased invasiveness, metastatic spreading, and the development of drug resistance. In this review we summarize preclinical data, the majority of which are limited to recent years, convincingly linking the AXL receptor to CRC. These findings support the value of targeting AXL with molecules in drug discovery, offering novel and advanced therapeutic or diagnostic tools for CRC management.
Collapse
Affiliation(s)
- Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini, CNR, via P. Castellino, 111 - 80131 Naples, Italy.
| | - Rossella Di Stasi
- Istituto di Biostrutture e Bioimmagini, CNR, via P. Castellino, 111 - 80131 Naples, Italy
| | - Virginia Fusco
- Istituto di Biostrutture e Bioimmagini, CNR, via P. Castellino, 111 - 80131 Naples, Italy
| | - Luca D D'Andrea
- Istituto di Scienze e Tecnologie Chimiche 'G. Natta', CNR, via M. Bianco, 9 - 20131 Milan, Italy.
| |
Collapse
|
2
|
Neijenhuis LKA, de Myunck LDAN, Bijlstra OD, Kuppen PJK, Hilling DE, Borm FJ, Cohen D, Mieog JSD, Steup WH, Braun J, Burggraaf J, Vahrmeijer AL, Hutteman M. Near-Infrared Fluorescence Tumor-Targeted Imaging in Lung Cancer: A Systematic Review. Life (Basel) 2022; 12:life12030446. [PMID: 35330197 PMCID: PMC8950608 DOI: 10.3390/life12030446] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the most common cancer type worldwide, with non-small cell lung cancer (NSCLC) being the most common subtype. Non-disseminated NSCLC is mainly treated with surgical resection. The intraoperative detection of lung cancer can be challenging, since small and deeply located pulmonary nodules can be invisible under white light. Due to the increasing use of minimally invasive surgical techniques, tactile information is often reduced. Therefore, several intraoperative imaging techniques have been tested to localize pulmonary nodules, of which near-infrared (NIR) fluorescence is an emerging modality. In this systematic review, the available literature on fluorescence imaging of lung cancers is presented, which shows that NIR fluorescence-guided lung surgery has the potential to identify the tumor during surgery, detect additional lesions and prevent tumor-positive resection margins.
Collapse
Affiliation(s)
- Lisanne K. A. Neijenhuis
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.K.A.N.); (L.D.A.N.d.M.); (O.D.B.); (P.J.K.K.); (D.E.H.); (J.S.D.M.); (A.L.V.)
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands;
| | - Lysanne D. A. N. de Myunck
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.K.A.N.); (L.D.A.N.d.M.); (O.D.B.); (P.J.K.K.); (D.E.H.); (J.S.D.M.); (A.L.V.)
| | - Okker D. Bijlstra
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.K.A.N.); (L.D.A.N.d.M.); (O.D.B.); (P.J.K.K.); (D.E.H.); (J.S.D.M.); (A.L.V.)
| | - Peter J. K. Kuppen
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.K.A.N.); (L.D.A.N.d.M.); (O.D.B.); (P.J.K.K.); (D.E.H.); (J.S.D.M.); (A.L.V.)
| | - Denise E. Hilling
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.K.A.N.); (L.D.A.N.d.M.); (O.D.B.); (P.J.K.K.); (D.E.H.); (J.S.D.M.); (A.L.V.)
- Department of Surgery, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Frank J. Borm
- Department of Pulmonology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Danielle Cohen
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - J. Sven D. Mieog
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.K.A.N.); (L.D.A.N.d.M.); (O.D.B.); (P.J.K.K.); (D.E.H.); (J.S.D.M.); (A.L.V.)
| | - Willem H. Steup
- Department of Surgery, HAGA Hospital, 2545 AA The Hague, The Netherlands;
| | - Jerry Braun
- Department of Cardiothoracic Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | | | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.K.A.N.); (L.D.A.N.d.M.); (O.D.B.); (P.J.K.K.); (D.E.H.); (J.S.D.M.); (A.L.V.)
| | - Merlijn Hutteman
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.K.A.N.); (L.D.A.N.d.M.); (O.D.B.); (P.J.K.K.); (D.E.H.); (J.S.D.M.); (A.L.V.)
- Department of Cardiothoracic Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
- Correspondence: ; Tel.: +31-71-526-51-00
| |
Collapse
|
3
|
Di Stasi R, De Rosa L, D'Andrea LD. Therapeutic aspects of the Axl/Gas6 molecular system. Drug Discov Today 2020; 25:2130-2148. [PMID: 33002607 DOI: 10.1016/j.drudis.2020.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/14/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022]
Abstract
Axl receptor tyrosine kinase (RTK) and its ligand, growth arrest-specific protein 6 (Gas6), are involved in several biological functions and participate in the development and progression of a range of malignancies and autoimmune disorders. In this review, we present this molecular system from a drug discovery perspective, highlighting its therapeutic implications and challenges that need to be addressed. We provide an update on Axl/Gas6 axis biology, exploring its role in fields ranging from angiogenesis, cancer development and metastasis, immune response and inflammation to viral infection. Finally, we summarize the molecules that have been developed to date to target the Axl/Gas6 molecular system for therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Rossella Di Stasi
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Luca D D'Andrea
- Istituto di Biostrutture e Bioimmagini, CNR, Via Nizza 52, 10126 Torino, Italy.
| |
Collapse
|
4
|
Jeevanandam J, Tan KX, Danquah MK, Guo H, Turgeson A. Advancing Aptamers as Molecular Probes for Cancer Theranostic Applications-The Role of Molecular Dynamics Simulation. Biotechnol J 2020; 15:e1900368. [PMID: 31840436 DOI: 10.1002/biot.201900368] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/06/2019] [Indexed: 12/24/2022]
Abstract
Theranostics cover emerging technologies for cell biomarking for disease diagnosis and targeted introduction of drug ingredients to specific malignant sites. Theranostics development has become a significant biomedical research endeavor for effective diagnosis and treatment of diseases, especially cancer. An efficient biomarking and targeted delivery strategy for theranostic applications requires effective molecular coupling of binding ligands with high affinities to specific receptors on the cancer cell surface. Bioaffinity offers a unique mechanism to bind specific target and receptor molecules from a range of non-targets. The binding efficacy depends on the specificity of the affinity ligand toward the target molecule even at low concentrations. Aptamers are fragments of genetic materials, peptides, or oligonucleotides which possess enhanced specificity in targeting desired cell surface receptor molecules. Aptamer-target binding results from several inter-molecular interactions including hydrogen bond formation, aromatic stacking of flat moieties, hydrophobic interaction, electrostatic, and van der Waals interactions. Advancements in Systematic Evolution of Ligands by Exponential Enrichment (SELEX) assay has created the opportunity to artificially generate aptamers that specifically bind to desired cancer and tumor surface receptors with high affinities. This article discusses the potential application of molecular dynamics (MD) simulation to advance aptamer-mediated receptor targeting in targeted cancer therapy. MD simulation offers real-time analysis of the molecular drivers of the aptamer-receptor binding and generate optimal receptor binding conditions for theranostic applications. The article also provides an overview of different cancer types with focus on receptor biomarking and targeted treatment approaches, conventional molecular probes, and aptamers that have been explored for cancer cells targeting.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, Miri, Sarawak, 98009, Malaysia
| | - Kei Xian Tan
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, 639798
| | | | - Haobo Guo
- Department of Computer Science and Engineering, University of Tennessee, Chattanooga, TN, 37403, USA.,SimCenter, University of Tennessee, Chattanooga, TN, 37403, USA
| | - Andrew Turgeson
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN, 37403, USA
| |
Collapse
|
5
|
Total chemical synthesis by native chemical ligation of the all-D immunoglobulin-like domain 2 of Axl. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Cho JH, Okuma A, Al-Rubaye D, Intisar E, Junghans RP, Wong WW. Engineering Axl specific CAR and SynNotch receptor for cancer therapy. Sci Rep 2018; 8:3846. [PMID: 29497107 PMCID: PMC5832765 DOI: 10.1038/s41598-018-22252-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/20/2018] [Indexed: 12/14/2022] Open
Abstract
Axl is a tyrosine kinase receptor that is commonly overexpressed in many cancers. As such, Axl represents an attractive therapeutic target. The transfer of engineered T cell expressing chimeric antigen receptor (CAR) is an exciting cancer therapeutic approach that shows high efficacy against cancers in clinical trials, especially for B cell malignancies. Furthermore, recently developed synthetic Notch (synNotch) receptor has demonstrated potential in enhancing the specificity of CAR T cell therapy and delivering therapeutic payloads to tumors in an antigen-dependent manner. Therefore, a CAR or synNotch against Axl could be a valuable therapeutic reagent against many cancers. Here, we develop a single-chain variable fragment from a humanized monoclonal antibody against Axl. The scFv is attached to CD3ζ, CD28, and 4-1BB signaling domains to generate an anti-Axl CAR. When introduced into human primary T cells, the anti-Axl CAR can lead to cytokine production and cell killing in response to tumor cells expressing Axl. Moreover, an anti-Axl synNotch generated using the same scFv can be activated with Axl expressing tumor cells. Given the fact that Axl is an important cancer therapeutic target, these receptors could be valuable reagents for developing anti-Axl therapies.
Collapse
Affiliation(s)
- Jang Hwan Cho
- 0000 0004 1936 7558grid.189504.1Department of Biomedical Engineering, Boston University, Boston, MA 02215 USA ,0000 0004 1936 7558grid.189504.1Biological Design Center, Boston University, Boston, MA 02215 USA
| | - Atsushi Okuma
- 0000 0004 1936 7558grid.189504.1Department of Biomedical Engineering, Boston University, Boston, MA 02215 USA ,0000 0004 1936 7558grid.189504.1Biological Design Center, Boston University, Boston, MA 02215 USA
| | - Dalal Al-Rubaye
- 0000 0004 1936 7558grid.189504.1Department of Biomedical Engineering, Boston University, Boston, MA 02215 USA ,0000 0004 1936 7558grid.189504.1Biological Design Center, Boston University, Boston, MA 02215 USA ,0000 0001 2108 8169grid.411498.1Biotechnology Department, College of Science, University of Baghdad, Baghdad, Iraq
| | - Ejaj Intisar
- 0000 0004 1936 7558grid.189504.1Department of Biomedical Engineering, Boston University, Boston, MA 02215 USA ,0000 0004 1936 7558grid.189504.1Biological Design Center, Boston University, Boston, MA 02215 USA
| | - Richard P. Junghans
- 0000 0004 1936 7531grid.429997.8School of Medicine, Tufts University, Boston, MA 02111 USA
| | - Wilson W. Wong
- 0000 0004 1936 7558grid.189504.1Department of Biomedical Engineering, Boston University, Boston, MA 02215 USA ,0000 0004 1936 7558grid.189504.1Biological Design Center, Boston University, Boston, MA 02215 USA
| |
Collapse
|
7
|
Pool M, de Boer HR, Hooge MNLD, van Vugt MA, de Vries EG. Harnessing Integrative Omics to Facilitate Molecular Imaging of the Human Epidermal Growth Factor Receptor Family for Precision Medicine. Theranostics 2017; 7:2111-2133. [PMID: 28638489 PMCID: PMC5479290 DOI: 10.7150/thno.17934] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 03/02/2017] [Indexed: 12/13/2022] Open
Abstract
Cancer is a growing problem worldwide. The cause of death in cancer patients is often due to treatment-resistant metastatic disease. Many molecularly targeted anticancer drugs have been developed against 'oncogenic driver' pathways. However, these treatments are usually only effective in properly selected patients. Resistance to molecularly targeted drugs through selective pressure on acquired mutations or molecular rewiring can hinder their effectiveness. This review summarizes how molecular imaging techniques can potentially facilitate the optimal implementation of targeted agents. Using the human epidermal growth factor receptor (HER) family as a model in (pre)clinical studies, we illustrate how molecular imaging may be employed to characterize whole body target expression as well as monitor drug effectiveness and the emergence of tumor resistance. We further discuss how an integrative omics discovery platform could guide the selection of 'effect sensors' - new molecular imaging targets - which are dynamic markers that indicate treatment effectiveness or resistance.
Collapse
Affiliation(s)
- Martin Pool
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - H. Rudolf de Boer
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marjolijn N. Lub-de Hooge
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marcel A.T.M. van Vugt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elisabeth G.E. de Vries
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
MicroPET/CT Imaging of AXL Downregulation by HSP90 Inhibition in Triple-Negative Breast Cancer. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:1686525. [PMID: 29097911 PMCID: PMC5612679 DOI: 10.1155/2017/1686525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/02/2017] [Indexed: 11/17/2022]
Abstract
AXL receptor tyrosine kinase is overexpressed in a number of solid tumor types including triple-negative breast cancer (TNBC). AXL is considered an important regulator of epithelial-to-mesenchymal transition (EMT) and a potential therapeutic target for TNBC. In this work, we used microPET/CT with 64Cu-labeled anti-human AXL antibody (64Cu-anti-hAXL) to noninvasively interrogate the degradation of AXL in vivo in response to 17-allylamino-17-demethoxygeldanamycin (17-AAG), a potent inhibitor of HSP90. 17-AAG treatment caused significant decline in AXL expression in orthotopic TNBC MDA-MB-231 tumors, inhibited EMT, and delayed tumor growth in vivo, resulting in significant reduction in tumor uptake of 64Cu-anti-hAXL as clearly visualized by microPET/CT. Our data indicate that 64Cu-anti-hAXL can be useful for monitoring anti-AXL therapies and for assessing inhibition of HSP90 molecular chaperone using AXL as a molecular surrogate.
Collapse
|
9
|
Li Z, Hu X, Mao J, Liu X, Zhang L, Liu J, Li D, Shan H. Optimization of mesenchymal stem cells (MSCs) delivery dose and route in mice with acute liver injury by bioluminescence imaging. Mol Imaging Biol 2015; 17:185-94. [PMID: 25273323 DOI: 10.1007/s11307-014-0792-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Both experimental and initial clinical studies have shown the therapeutic potential of mesenchymal stem cells (MSCs) in liver disease. Noninvasive tracking of MSCs could facilitate its clinical translation. The purpose of this study was to optimize MSCs delivery dose and route in mice with acute liver injury using bioluminescence imaging (BLI) to track the cells. PROCEDURES MSCs were labeled with the Luc2-mKate2 dual-fusion reporter gene (MSCs-R). The fate of MSCs-R was tracked through in vivo BLI after administration of different doses or delivery through different routes. RESULTS When delivered via the superior mesenteric vein (SMV), the high-dose (1.0 × 10(6) and 5.0 × 10(5)) group mice demonstrated high liver BLI signal but also had lethal portal vein embolization (PVE). By contrast, no PVE and its related death occurred in the low-dose (2.5 × 10(5)) group mice. Thus, 2.5 × 10(5) is the optimal delivery dose. Three delivery routes, i.e., inferior vena cava (IVC), SMV, and intrahepatic (IH) injection, were also systematically compared. After IVC infusion, MSCs-R were quickly trapped inside the lungs, and no detectable homing to the liver and other organs was observed. By IH injection, lung entrapment was bypassed, but MSCs-R distribution was only localized in the injection region of the liver. By contrast, after SMV infusion, MSCs-R were dispersedly distributed and stayed as long as 7-day posttransplantation in the liver. The in vivo imaging results were further validated by ex vivo imaging, digital subtraction angiography (DSA), and tissue analysis. Therefore, SMV is the optimal MSCs delivery route for liver disease. CONCLUSIONS Collectively, BLI, which could dynamically and quantitatively track cellular location and survival, is useful in determining MSCs transplantation parameters.
Collapse
Affiliation(s)
- Zhengran Li
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Wu X, Zahari MS, Ma B, Liu R, Renuse S, Sahasrabuddhe NA, Chen L, Chaerkady R, Kim MS, Zhong J, Jelinek C, Barbhuiya MA, Leal-Rojas P, Yang Y, Kashyap MK, Marimuthu A, Ling M, Fackler MJ, Merino V, Zhang Z, Zahnow CA, Gabrielson E, Stearns V, Roa JC, Sukumar S, Gill PS, Pandey A. Global phosphotyrosine survey in triple-negative breast cancer reveals activation of multiple tyrosine kinase signaling pathways. Oncotarget 2015; 6:29143-29160. [PMID: 26356563 PMCID: PMC4745717 DOI: 10.18632/oncotarget.5020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/24/2015] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most prevalent cancer in women worldwide. About 15-20% of all breast cancers are triple negative breast cancer (TNBC) and are often highly aggressive when compared to other subtypes of breast cancers. To better characterize the biology that underlies the TNBC phenotype, we profiled the phosphotyrosine proteome of a panel of twenty-six TNBC cell lines using quantitative high resolution Fourier transform mass spectrometry. A heterogeneous pattern of tyrosine kinase activation was observed based on 1,789 tyrosine-phosphorylated peptides identified from 969 proteins. One of the tyrosine kinases, AXL, was found to be activated in a majority of aggressive TNBC cell lines and was accompanied by a higher level of AXL expression. High levels of AXL expression are correlated with a significant decrease in patient survival. Treatment of cells bearing activated AXL with a humanized AXL antibody inhibited cell proliferation and migration in vitro, and tumor growth in mice. Overall, our global phosphoproteomic analysis provided new insights into the heterogeneity in the activation status of tyrosine kinase pathways in TNBCs. Our approach presents an effective means of identifying important novel biomarkers and targets for therapy such as AXL in TNBC.
Collapse
Affiliation(s)
- Xinyan Wu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Muhammad Saddiq Zahari
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Binyun Ma
- Department of Medicine, University of Southern California, Los Angeles, USA
| | - Ren Liu
- Department of Medicine, University of Southern California, Los Angeles, USA
| | - Santosh Renuse
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Nandini A. Sahasrabuddhe
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Lily Chen
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Raghothama Chaerkady
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Min-Sik Kim
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jun Zhong
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Christine Jelinek
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Mustafa A. Barbhuiya
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Pamela Leal-Rojas
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Pathology, Center of Genetic and Immunological Studies (CEGIN) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Yi Yang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Manoj Kumar Kashyap
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Arivusudar Marimuthu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Min Ling
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Mary Jo Fackler
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Vanessa Merino
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Zhen Zhang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Cynthia A. Zahnow
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Edward Gabrielson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Vered Stearns
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Juan Carlos Roa
- Advanced Center for Chronic Diseases (ACCDiS), Department of Pathology Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Parkash S. Gill
- Department of Medicine, University of Southern California, Los Angeles, USA
| | - Akhilesh Pandey
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
11
|
Okimoto RA, Bivona TG. AXL receptor tyrosine kinase as a therapeutic target in NSCLC. LUNG CANCER-TARGETS AND THERAPY 2015; 6:27-34. [PMID: 28210148 PMCID: PMC5217513 DOI: 10.2147/lctt.s60438] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The AXL receptor tyrosine kinase and its ligand, Gas6, regulate key processes in lung cancer growth, metastasis, and epithelial–mesenchymal transition-associated drug resistance. Gas6 and AXL expression have been correlated with poor prognosis and advanced clinical stage in patients with lung cancer, and targeting the Gas6/AXL pathway demonstrates antitumor activity, decreases cellular invasion, and restores sensitivity in de novo and acquired drug resistance models. These findings implicate AXL as a promising therapeutic target in lung cancer. In this review, we explore the role of AXL in lung cancer progression, from tumor development to disseminated disease, and highlight the current clinical landscape of anti-AXL therapeutics.
Collapse
Affiliation(s)
- Ross A Okimoto
- Division of Hematology and Medical Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Trever G Bivona
- Division of Hematology and Medical Oncology, University of California San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
12
|
Wang H, Li D, Liu S, Liu R, Yuan H, Krasnoperov V, Shan H, Conti PS, Gill PS, Li Z. Small-Animal PET Imaging of Pancreatic Cancer Xenografts Using a 64Cu-Labeled Monoclonal Antibody, MAb159. J Nucl Med 2015; 56:908-13. [PMID: 25908833 DOI: 10.2967/jnumed.115.155812] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/09/2015] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED Overexpression of the GRP78 receptor on cell surfaces has been linked with tumor growth, metastasis, and resistance to therapy. We developed a (64)Cu-labeled probe for PET imaging of tumor GRP78 expression based on a novel anti-GRP78 monoclonal antibody, MAb159. METHODS MAb159 was conjugated with the (64)Cu-chelator DOTA through lysines on the antibody. DOTA-human IgG was also prepared as a control that did not bind to GRP78. The resulting PET probes were evaluated in BXPC3 pancreatic cancer xenografts in athymic nude mice. RESULTS The radiotracer was synthesized with a specific activity of 0.8 MBq/μg of antibody. In BXPC3 xenografts, (64)Cu-DOTA-MAb159 demonstrated prominent tumor accumulation (4.3 ± 1.2, 15.4 ± 2.6, and 18.3 ± 1.0 percentage injected dose per gram at 1, 17, and 48 after injection, respectively). In contrast, (64)Cu-DOTA-human IgG had low BXPC3 tumor accumulation (4.8 ± 0.5, 7.5 ± 0.7, and 4.6 ± 0.8 percentage injected dose per gram at 1, 17, and 48 h after injection, respectively). CONCLUSION We demonstrated that GRP78 can serve as a valid target for pancreatic cancer imaging. The success of this approach will be valuable for evaluating disease course and therapeutic efficacy at the earliest stages of anti-GRP78 treatment. Moreover, these newly developed probes may have important applications in other types of cancer overexpressing GRP78.
Collapse
Affiliation(s)
- Hui Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Dan Li
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China Molecular Imaging Center, Department of Radiology, University of Southern California, Los Angeles, California Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangzhou, China
| | - Shuanglong Liu
- Molecular Imaging Center, Department of Radiology, University of Southern California, Los Angeles, California
| | - Ren Liu
- Department of Pathology, University of Southern California, Los Angeles, California; and
| | - Hong Yuan
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Hong Shan
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangzhou, China
| | - Peter S Conti
- Molecular Imaging Center, Department of Radiology, University of Southern California, Los Angeles, California
| | - Parkash S Gill
- Department of Pathology, University of Southern California, Los Angeles, California; and
| | - Zibo Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina Molecular Imaging Center, Department of Radiology, University of Southern California, Los Angeles, California
| |
Collapse
|
13
|
Abstract
The control of cellular growth and proliferation is key to the maintenance of homeostasis. Survival, proliferation, and arrest are regulated, in part, by Growth Arrest Specific 6 (Gas6) through binding to members of the TAM receptor tyrosine kinase family. Activation of the TAM receptors leads to downstream signaling through common kinases, but the exact mechanism within each cellular context varies and remains to be completely elucidated. Deregulation of the TAM family, due to its central role in mediating cellular proliferation, has been implicated in multiple diseases. Axl was cloned as the first TAM receptor in a search for genes involved in the progression of chronic to acute-phase leukemia, and has since been established as playing a critical role in the progression of cancer. The oncogenic nature of Axl is demonstrated through its activation of signaling pathways involved in proliferation, migration, inhibition of apoptosis, and therapeutic resistance. Despite its recent discovery, significant progress has been made in the development of effective clinical therapeutics targeting Axl. In order to accurately define the role of Axl in normal and diseased processes, it must be analyzed in a cell type-specific context.
Collapse
|