1
|
de Bartolomeis A, Vellucci L, Austin MC, De Simone G, Barone A. Rational and Translational Implications of D-Amino Acids for Treatment-Resistant Schizophrenia: From Neurobiology to the Clinics. Biomolecules 2022; 12:biom12070909. [PMID: 35883465 PMCID: PMC9312470 DOI: 10.3390/biom12070909] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia has been conceptualized as a neurodevelopmental disorder with synaptic alterations and aberrant cortical–subcortical connections. Antipsychotics are the mainstay of schizophrenia treatment and nearly all share the common feature of dopamine D2 receptor occupancy, whereas glutamatergic abnormalities are not targeted by the presently available therapies. D-amino acids, acting as N-methyl-D-aspartate receptor (NMDAR) modulators, have emerged in the last few years as a potential augmentation strategy in those cases of schizophrenia that do not respond well to antipsychotics, a condition defined as treatment-resistant schizophrenia (TRS), affecting almost 30–40% of patients, and characterized by serious cognitive deficits and functional impairment. In the present systematic review, we address with a direct and reverse translational perspective the efficacy of D-amino acids, including D-serine, D-aspartate, and D-alanine, in poor responders. The impact of these molecules on the synaptic architecture is also considered in the light of dendritic spine changes reported in schizophrenia and antipsychotics’ effect on postsynaptic density proteins. Moreover, we describe compounds targeting D-amino acid oxidase and D-aspartate oxidase enzymes. Finally, other drugs acting at NMDAR and proxy of D-amino acids function, such as D-cycloserine, sarcosine, and glycine, are considered in the light of the clinical burden of TRS, together with other emerging molecules.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
- Correspondence: ; Tel.: +39-081-7463673 or +39-081-7463884 or +39-3662745592; Fax: +39-081-7462644
| | - Licia Vellucci
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| | - Mark C. Austin
- Clinical Psychopharmacology Program, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA;
| | - Giuseppe De Simone
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| | - Annarita Barone
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| |
Collapse
|
2
|
Maly IV, Morales MJ, Pletnikov MV. Astrocyte Bioenergetics and Major Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:173-227. [PMID: 34888836 DOI: 10.1007/978-3-030-77375-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ongoing research continues to add new elements to the emerging picture of involvement of astrocyte energy metabolism in the pathophysiology of major psychiatric disorders, including schizophrenia, mood disorders, and addictions. This review outlines what is known about the energy metabolism in astrocytes, the most numerous cell type in the brain, and summarizes the recent work on how specific perturbations of astrocyte bioenergetics may contribute to the neuropsychiatric conditions. The role of astrocyte energy metabolism in mental health and disease is reviewed on the organism, organ, and cell level. Data arising from genomic, metabolomic, in vitro, and neurobehavioral studies is critically analyzed to suggest future directions in research and possible metabolism-focused therapeutic interventions.
Collapse
Affiliation(s)
- Ivan V Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Michael J Morales
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
3
|
Reduced Firing of Nucleus Accumbens Parvalbumin Interneurons Impairs Risk Avoidance in DISC1 Transgenic Mice. Neurosci Bull 2021; 37:1325-1338. [PMID: 34143365 PMCID: PMC8423984 DOI: 10.1007/s12264-021-00731-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 04/07/2021] [Indexed: 12/21/2022] Open
Abstract
A strong animal survival instinct is to approach objects and situations that are of benefit and to avoid risk. In humans, a large proportion of mental disorders are accompanied by impairments in risk avoidance. One of the most important genes involved in mental disorders is disrupted-in-schizophrenia-1 (DISC1), and animal models in which this gene has some level of dysfunction show emotion-related impairments. However, it is not known whether DISC1 mouse models have an impairment in avoiding potential risks. In the present study, we used DISC1-N terminal truncation (DISC1-NTM) mice to investigate risk avoidance and found that these mice were impaired in risk avoidance on the elevated plus maze (EPM) and showed reduced social preference in a three-chamber social interaction test. Following EPM tests, c-Fos expression levels indicated that the nucleus accumbens (NAc) was associated with risk-avoidance behavior in DISC1-NTM mice. In addition, in vivo electrophysiological recordings following tamoxifen administration showed that the firing rates of fast-spiking neurons (FS) in the NAc were significantly lower in DISC1-NTM mice than in wild-type (WT) mice. In addition, in vitro patch clamp recording revealed that the frequency of action potentials stimulated by current injection was lower in parvalbumin (PV) neurons in the NAc of DISC1-NTM mice than in WT controls. The impairment of risk avoidance in DISC1-NTM mice was rescued using optogenetic tools that activated NAcPV neurons. Finally, inhibition of the activity of NAcPV neurons in PV-Cre mice mimicked the risk-avoidance impairment found in DISC1-NTM mice during tests on the elevated zero maze. Taken together, our findings confirm an impairment in risk avoidance in DISC1-NTM mice and suggest that reduced excitability of NAcPV neurons is responsible.
Collapse
|
4
|
Noda Y, Soeda K, Uchida M, Goto S, Ito T, Kitagaki S, Mamiya T, Yoshimi A, Ozaki N, Mouri A. Multiple nicotinic acetylcholine receptor subtypes regulate social or cognitive behaviors in mice repeatedly administered phencyclidine. Behav Brain Res 2021; 408:113284. [PMID: 33819533 DOI: 10.1016/j.bbr.2021.113284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/21/2021] [Accepted: 03/30/2021] [Indexed: 11/15/2022]
Abstract
Habitual smoking in patients with schizophrenia (SCZ) is considered to improve their own psychoses or to develop a vulnerability to psychological dependence on (-)-nicotine ([-]-NIC) by stimulating nicotinic acetylcholine receptors (nAChRs) in the central nervous system. In the present study, we investigated whether habitual smoking is due to get therapeutic effect or to psychological dependence and which nAChR subunits are associated with them using mice that were repeatedly administered phencyclidine (PCP: 10 mg/kg/day, s.c. for 14 days) as SCZ-like model mice. Mice that were repeatedly administered PCP showed impairments in social or cognitive behaviors; decreased expression of α7 and/or α4 nAChR subunits in the prefrontal cortex (PFC); and increased expression of α7, α4, and β2 nAChR subunits in the nucleus accumbens (NAc). These changes were attenuated by repeated administration of (-)-NIC. The attenuating effects on behavioral impairments were prevented by a selective α7 nAChR antagonist and a selective α4β2 nAChR antagonist. At non- or weak effective dose by themselves, co-administration of (-)-NIC (0.03 mg/kg) and risperidone (0.03 mg/kg) showed synergistic effects on behavioral impairments in PCP-administered mice. Repeated (-)-NIC administration did not affect the performance of conditioned place preference, while it showed behavioral sensitization to (-)-NIC in the PCP-administered mice. Repeated (-)-NIC administration did not affect the performance of conditioned place preference, while it showed behavioral sensitization to (-)-NIC and attenuating effect on haloperidol-induced catalepsy in the PCP-administered mice. Our findings suggest that habitual smoking in SCZ might be attributed to get therapeutic and reduce side effects mediated by α7 and α4β2 nAChR activation by (-)-NIC.
Collapse
Affiliation(s)
- Yukihiro Noda
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, 468-8503, Japan.
| | - Koki Soeda
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, 468-8503, Japan
| | - Mizuki Uchida
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, 468-8503, Japan
| | - Sakika Goto
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, 468-8503, Japan
| | - Takahiro Ito
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, 468-8503, Japan
| | - Shinji Kitagaki
- Department of Medical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, 468-8503, Japan
| | - Takayoshi Mamiya
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, 468-8503, Japan
| | - Akira Yoshimi
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, 468-8503, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, 466-8560, Japan
| | - Akihiro Mouri
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals and Devices, Graduate School of Health Science, Fujita Health University, Toyoake, 470-1192, Japan
| |
Collapse
|
5
|
Gawel K, Banono NS, Michalak A, Esguerra CV. A critical review of zebrafish schizophrenia models: Time for validation? Neurosci Biobehav Rev 2019; 107:6-22. [PMID: 31381931 DOI: 10.1016/j.neubiorev.2019.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/02/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
Abstract
Schizophrenia is a mental disorder that affects 1% of the population worldwide and is manifested as a broad spectrum of symptoms, from hallucinations to memory impairment. It is believed that genetic and/or environmental factors may contribute to the occurrence of this disease. Recently, the zebrafish has emerged as a valuable and attractive model for various neurological disorders including schizophrenia. In this review, we describe current pharmacological models of schizophrenia with special emphasis on providing insights into the pros and cons of using zebrafish as a behavioural model of this disease. Moreover, we highlight the advantages and utility of using zebrafish for elucidating the genetic mechanisms underlying this psychiatric disorder. We believe that the zebrafish has high potential also in the area of precision medicine and may complement the development of therapeutics, especially for pharmacoresistant patients.
Collapse
Affiliation(s)
- Kinga Gawel
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349, Oslo, Norway; Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego St. 8b, 20-090, Lublin, Poland.
| | - Nancy Saana Banono
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349, Oslo, Norway
| | - Agnieszka Michalak
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki St. 4A, 20-093, Lublin, Poland
| | - Camila V Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349, Oslo, Norway; Department of Pharmacy, University of Oslo, Oslo, Norway.
| |
Collapse
|
6
|
Liu YP, Yang YY, Wan FJ, Tung CS. Importance of intervention timing in the effectiveness of antipsychotics. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:493-500. [PMID: 28174128 DOI: 10.1016/j.pnpbp.2017.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 11/08/2016] [Accepted: 02/03/2017] [Indexed: 11/16/2022]
Abstract
The use of early pharmacological intervention in treating young patients with schizophrenia is a debating issue for psychiatrists. However, on the basis of developmental theory, early antipsychotic intervention can be beneficial in terms of protecting neurons from further deterioration. This study investigated whether the initiation of second-generation antipsychotic (SGA) treatment at a younger age can effectively reverse schizophrenia-relevant behavioral and neurochemical features, namely acoustic prepulse inhibition (PPI) and accumbal dopamine (DA) efflux, respectively. Risperidone (RIS, 1mg/kg/day) or olanzapine (OLA, 2.5mg/kg/day) was administered for 6weeks in rats subjected to isolation rearing (IR) in adolescence or young adulthood. Behavioral testing was performed at 3 and 5 (for locomotor activity) and 2 and 4 (for PPI) weeks after the initiation of the pharmacological regimen. An additional PPI test was performed 6weeks after the initiation of the pharmacological regimen to assess the acute add-on effect of RIS or OLA. Dopamine (DA) efflux of the nucleus accumbens was evaluated through in vivo microdialysis at the end of the study, for measuring both the baseline levels after the chronic regimen and the responsiveness to acute add-on RIS or OLA treatment. Our results demonstrated that the effects of SGAs on PPI and accumbal DA efflux were dissociated. Specifically, RIS intervention was more beneficial for adolescent than young adult IR rats in restoring their PPI deficit, whereas OLA was age-independently effective in stimulating the accumbal DA efflux. Both PPI and accumbal DA could be employed to reflect IR-induced abnormalities, in which accumbal DA appeared to be more suitable in depicting the long-term effect of IR, whereas PPI might be a more accurate biological index for revealing the advantages of early RIS intervention.
Collapse
Affiliation(s)
- Yia-Ping Liu
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan, ROC; Department of Psychiatry, Tri-Service General Hospital, Taipei, Taiwan, ROC.
| | - Yu-Yin Yang
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Fang-Jung Wan
- Department of Psychiatry, Tri-Service General Hospital, Taipei, Taiwan, ROC
| | - Che-Se Tung
- Division of Medical Research and Education, Cheng Hsin General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
7
|
The role of N-methyl-d-aspartate receptors and metabotropic glutamate receptor 5 in the prepulse inhibition paradigms for studying schizophrenia: pharmacology, neurodevelopment, and genetics. Behav Pharmacol 2018; 29:13-27. [DOI: 10.1097/fbp.0000000000000352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Abstract
Autism spectrum disorder (ASD) is a condition with onset in early childhood characterized by marked deficits in interpersonal interactions and communication and by a restricted and repetitive range of interests and activities. This review points out key recent findings utilizing molecular imaging including magnetic resonance spectroscopy (MRS) and nuclear neuroimaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). MRS indicates an excitatory/inhibitory imbalance in high-functioning autism. Dysfunction of neurotransmitter and glucose metabolism has been demonstrated by PET and SPECT. Levels of serotonin synthesis in typically developing children are approximately twice those of adults; after the age of 5 years, levels decrease to those of adults. In contrast, levels of serotonin synthesis of children with ASD increase between ages 2 and 15 to 1.5-times adult values. The dopamine transporter is increased in the orbitofrontal cortex of men with ASD. The serotonin transporter is reduced in the brains of children, adolescents, and adults with ASD. Reduced serotonin receptors in the thalamus of adults with ASD are associated with communication difficulties. Glucose metabolism is reduced in the brains of people with ASD. Molecular imaging will provide the preliminary data for promising therapeutic interventions.
Collapse
Affiliation(s)
- Brian Jaeho Hwang
- a Department of Neuroscience , Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University , Baltimore , MD , USA
| | - Mona Adel Mohamed
- b Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science School of Medicine , Johns Hopkins University , Baltimore , MD , USA
| | - James Robert Brašić
- c Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science , School of Medicine, Johns Hopkins University , Baltimore , MD , USA
| |
Collapse
|
9
|
Mühle C, Kreczi J, Rhein C, Richter-Schmidinger T, Alexopoulos P, Doerfler A, Lenz B, Kornhuber J. Additive sex-specific influence of common non-synonymous DISC1 variants on amygdala, basal ganglia, and white cortical surface area in healthy young adults. Brain Struct Funct 2016; 222:881-894. [PMID: 27369464 DOI: 10.1007/s00429-016-1253-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 06/16/2016] [Indexed: 01/30/2023]
Abstract
The disrupted-in-schizophrenia-1 (DISC1) gene is known for its role in the development of mental disorders. It is also involved in neurodevelopment, cognition, and memory. To investigate the association between DISC1 variants and brain morphology, we analyzed the influence of the three common non-synonymous polymorphisms in DISC1 on specific brain structures in healthy young adults. The volumes of brain regions were determined in 145 subjects by magnetic resonance imaging and automated analysis using FreeSurfer. Genotyping was performed by high resolution melting of amplified products. In an additive genetic model, rs6675281 (Leu607Phe), rs3738401 (Arg264Gln), and rs821616 (Ser704Cys) significantly explained the volume variance of the amygdala (p = 0.007) and the pallidum (p = 0.004). A higher cumulative portion of minor alleles was associated with larger volumes of the amygdala (p = 0.005), the pallidum (p = 0.001), the caudate (p = 0.024), and the putamen (p = 0.007). Sex-stratified analysis revealed a strong genetic effect of rs6675281 on putamen and pallidum in females but not in males and an opposite influence of rs3738401 on the white cortical surface in females compared to males. The strongest single association was found for rs821616 and the amygdala volume in male subjects (p < 0.001). No effect was detected for the nucleus accumbens. We report-to our knowledge-for the first time a significant and sex-specific influence of common DISC1 variants on volumes of the basal ganglia, the amygdala and on the cortical surface area. Our results demonstrate that the additive model of all three polymorphisms outperforms their single analysis.
Collapse
Affiliation(s)
- Christiane Mühle
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany.
| | - Jakob Kreczi
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Cosima Rhein
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Tanja Richter-Schmidinger
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Panagiotis Alexopoulos
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany.,Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar of the Technical University Munich, Munich, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Bernd Lenz
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| |
Collapse
|
10
|
Tomoda T, Sumitomo A, Jaaro-Peled H, Sawa A. Utility and validity of DISC1 mouse models in biological psychiatry. Neuroscience 2016; 321:99-107. [PMID: 26768401 PMCID: PMC4803604 DOI: 10.1016/j.neuroscience.2015.12.061] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/31/2015] [Accepted: 12/31/2015] [Indexed: 11/26/2022]
Abstract
We have seen an era of explosive progress in translating neurobiology into etiological understanding of mental disorders for the past 10-15 years. The discovery of Disrupted-in-schizophrenia 1 (DISC1) gene was one of the major driving forces that have contributed to the progress. The finding that DISC1 plays crucial roles in neurodevelopment and synapse regulation clearly underscored the utility and validity of DISC1-related biology in advancing our understanding of pathophysiological processes underlying psychiatric conditions. Despite recent genetic studies that failed to identify DISC1 as a risk gene for sporadic cases of schizophrenia, DISC1 mutant mice, coupled with various environmental stressors, have proven successful in satisfying face validity as models of a wide range of human psychiatric conditions. Investigating mental disorders using these models is expected to further contribute to the circuit-level understanding of the pathological mechanisms, as well as to the development of novel therapeutic strategies in the future.
Collapse
Affiliation(s)
- T Tomoda
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - A Sumitomo
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - H Jaaro-Peled
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - A Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|