1
|
Tiwari A, Chaskar J, Ali A, Arivarasan VK, Chaskar AC. Role of Sensor Technology in Detection of the Breast Cancer. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-021-00921-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
2
|
Orlandella FM, Auletta L, Greco A, Zannetti A, Salvatore G. Preclinical Imaging Evaluation of miRNAs' Delivery and Effects in Breast Cancer Mouse Models: A Systematic Review. Cancers (Basel) 2021; 13:6020. [PMID: 34885130 PMCID: PMC8656589 DOI: 10.3390/cancers13236020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND We have conducted a systematic review focusing on the advancements in preclinical molecular imaging to study the delivery and therapeutic efficacy of miRNAs in mouse models of breast cancer. METHODS A systematic review of English articles published in peer-reviewed journals using PubMed, EMBASE, BIOSIS™ and Scopus was performed. Search terms included breast cancer, mouse, mice, microRNA(s) and miRNA(s). RESULTS From a total of 2073 records, our final data extraction was from 114 manuscripts. The most frequently used murine genetic background was Balb/C (46.7%). The most frequently used model was the IV metastatic model (46.8%), which was obtained via intravenous injection (68.9%) in the tail vein. Bioluminescence was the most used frequently used tool (64%), and was used as a surrogate for tumor growth for efficacy treatment or for the evaluation of tumorigenicity in miRNA-transfected cells (29.9%); for tracking, evaluation of engraftment and for response to therapy in metastatic models (50.6%). CONCLUSIONS This review provides a systematic and focused analysis of all the information available and related to the imaging protocols with which to test miRNA therapy in an in vivo mice model of breast cancer, and has the purpose of providing an important tool to suggest the best preclinical imaging protocol based on available evidence.
Collapse
Affiliation(s)
| | - Luigi Auletta
- Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, 80145 Naples, Italy; (L.A.); (A.Z.)
| | - Adelaide Greco
- InterDepartmental Center of Veterinary Radiology, University of Naples Federico II, 80131 Naples, Italy
| | - Antonella Zannetti
- Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, 80145 Naples, Italy; (L.A.); (A.Z.)
| | - Giuliana Salvatore
- IRCCS SDN, 80143 Naples, Italy;
- Department of Motor Sciences and Wellness, University of Naples Parthenope, 80133 Naples, Italy
- CEINGE-Biotecnologie Avanzate S.C.A.R.L., 80145 Naples, Italy
| |
Collapse
|
3
|
Wang D, Wang X, Wang L, Zhang J, Ma J, Xia G, Hong B. Antisense microRNA185 loaded liposome for efficient inhibition of the hepatic endogenous microRNA185 level. Eur J Pharm Sci 2021; 161:105803. [PMID: 33722732 DOI: 10.1016/j.ejps.2021.105803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/08/2021] [Accepted: 03/07/2021] [Indexed: 02/06/2023]
Abstract
MicroRNA185 (miR185), an endogenous noncoding RNA with 23 nucleotides, is one of key posttranscriptional modulators of cholesterol metabolism in hepatic cells. The antisense inhibitor of miR185 (miR185i) could decrease cholesterol level in vivo, providing a promising agent for anti-atherosclerosis strategy. In this work, a novel LipomiR185i was constructed by thin film hydration method and post-PEGylation as DOPE: DOTAP: Chol: DSPE-PEG2000 at the molar ratio of 1:1:1:0.1 with a nitrogen-to-phosphate ratio of 3, through the optimization of three cationic lipids (DOTAP, DODMA and DLin-MC3-DMA), six helper lipids (PC-98T, HSPC, DOPE, DMPC, DPPC and DSPC), different amounts and incorporation approaches of DSPE-PEG2000 and nitrogen-to-phosphate ratio. LipomiR185i was characterized with a particle size of 174 ± 11 nm, a zeta potential of 7.0 ± 3.3 mV, high encapsulation efficiency and transfection activity. It could protect miR185i from the rapid degradation by nucleases in serum, enhance cellular uptake and promote lysosomal escape in HepG2 cells. LipomiR185i could accumulate in the liver and remain for at least two weeks. More importantly, LipomiR185i significantly down-regulated the hepatic endogenous miR185 level in vitro and in vivo without significant tissue damage at 14 mg⋅kg-1. The construction of LipomiR185i provides a potential anti-atherosclerotic nanodrug as well as a platform for delivering small RNAs to the liver efficiently and safely.
Collapse
Affiliation(s)
- Dan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xuelei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Li Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Jin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jie Ma
- Department of Biotherapy, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Bin Hong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing 100050, China.
| |
Collapse
|
4
|
Altieri R, Barbagallo D, Certo F, Broggi G, Ragusa M, Di Pietro C, Caltabiano R, Magro G, Peschillo S, Purrello M, Barbagallo G. Peritumoral Microenvironment in High-Grade Gliomas: From FLAIRectomy to Microglia-Glioma Cross-Talk. Brain Sci 2021; 11:200. [PMID: 33561993 PMCID: PMC7915863 DOI: 10.3390/brainsci11020200] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/28/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Cellular composition and molecular signatures of the glioma core compared with infiltrative margins are different, and it is well known that the tumor edge is enriched in microglia. In this review of the literature, we summarize the role of the peritumoral area in high-grade gliomas (HGGs) from surgical and biological points of view. There is evidence on the dual role of microglia in HGGs-a scavenger-tumoricidal role when microglia are activated in an M1 phenotype and a role favoring tumor growth and infiltration/migration when microglia are activated in an M2 phenotype. Microglia polarization is mediated by complex pathways involving cross-talk with glioma cells. In this scenario, extracellular vesicles and their miRNA cargo seem to play a central role. The switch to a specific phenotype correlates with prognosis and the pathological assessment of a specific microglial setting can predict a patient's outcome. Some authors have designed an engineered microglial cell as a biologically active vehicle for the delivery of intraoperative near-infrared fluorescent dye with the aim of helping surgeons detect peritumoral infiltrated areas during resection. Furthermore, the pharmacological modulation of microglia-glioma cross-talk paves the way to more effective therapies.
Collapse
Affiliation(s)
- Roberto Altieri
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95121 Catania, Italy; (F.C.); (S.P.); (G.B.)
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy; (D.B.); (M.R.); (M.P.)
| | - Davide Barbagallo
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy; (D.B.); (M.R.); (M.P.)
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy;
| | - Francesco Certo
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95121 Catania, Italy; (F.C.); (S.P.); (G.B.)
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy; (D.B.); (M.R.); (M.P.)
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (R.C.); (G.M.)
| | - Marco Ragusa
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy; (D.B.); (M.R.); (M.P.)
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy;
- Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy;
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (R.C.); (G.M.)
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (R.C.); (G.M.)
| | - Simone Peschillo
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95121 Catania, Italy; (F.C.); (S.P.); (G.B.)
| | - Michele Purrello
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy; (D.B.); (M.R.); (M.P.)
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy;
| | - Giuseppe Barbagallo
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95121 Catania, Italy; (F.C.); (S.P.); (G.B.)
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy; (D.B.); (M.R.); (M.P.)
| |
Collapse
|
5
|
Visentin S, Sedić M, Pavelić SK, Pavelić K. Targeting Tumour Metastasis: The Emerging Role of Nanotechnology. Curr Med Chem 2020; 27:1367-1381. [DOI: 10.2174/0929867326666181220095343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/13/2018] [Accepted: 11/12/2018] [Indexed: 12/29/2022]
Abstract
The metastatic process has still not been completely elucidated, probably due to insufficient knowledge of the underlying mechanisms. Here, we provide an overview of the current findings that shed light on specific molecular alterations associated with metastasis and present novel concepts in the treatment of the metastatic process. In particular, we discuss novel pharmacological approaches in the clinical setting that target metastatic progression. New insights into the process of metastasis allow optimisation and design of new treatment strategies, especially in view of the fact that metastatic cells share common features with stem cells. Nano- and micro-technologies are herein elaborated in details as a promising therapeutic concept in targeted drug delivery for metastatic cancer. Progression in the field could provide a more efficient way to tackle metastasis and thus bring about advancements in the treatment and management of patients with advanced cancer.
Collapse
Affiliation(s)
- Sarah Visentin
- Department of Biotechnology, University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejcic 2, 51 000 Rijeka, Croatia
| | - Mirela Sedić
- Department of Biotechnology, University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejcic 2, 51 000 Rijeka, Croatia
| | - Sandra Kraljević Pavelić
- Department of Biotechnology, University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejcic 2, 51 000 Rijeka, Croatia
| | - Krešimir Pavelić
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebacka 30, 52 100 Pula, Croatia
| |
Collapse
|
6
|
Yoo B, Kavishwar A, Ross A, Wang P, Tabassum DP, Polyak K, Barteneva N, Petkova V, Pantazopoulos P, Tena A, Moore A, Medarova Z. Combining miR-10b-Targeted Nanotherapy with Low-Dose Doxorubicin Elicits Durable Regressions of Metastatic Breast Cancer. Cancer Res 2015; 75:4407-15. [PMID: 26359455 PMCID: PMC4609288 DOI: 10.1158/0008-5472.can-15-0888] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 07/31/2015] [Indexed: 12/22/2022]
Abstract
The therapeutic promise of microRNA (miRNA) in cancer has yet to be realized. In this study, we identified and therapeutically exploited a new role for miR-10b at the metastatic site, which links its overexpression to tumor cell viability and proliferation. In the protocol developed, we combined a miR-10b-inhibitory nanodrug with low-dose anthracycline to achieve complete durable regressions of metastatic disease in a murine model of metastatic breast cancer. Mechanistic investigations suggested a potent antiproliferative, proapoptotic effect of the nanodrug in the metastatic cells, potentiated by a cell-cycle arrest produced by administration of the low-dose anthracycline. miR-10b was overexpressed specifically in cells with high metastatic potential, suggesting a role for this miRNA as a metastasis-specific therapeutic target. Taken together, our results implied the existence of pathways that regulate the viability and proliferation of tumor cells only after they have acquired the ability to grow at distant metastatic sites. As illustrated by miR-10b targeting, such metastasis-dependent apoptotic pathways would offer attractive targets for further therapeutic exploration.
Collapse
Affiliation(s)
- Byunghee Yoo
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Amol Kavishwar
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Alana Ross
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ping Wang
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Doris P Tabassum
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Natalia Barteneva
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Victoria Petkova
- Molecular Medicine Core, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Pamela Pantazopoulos
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Aseda Tena
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Anna Moore
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Zdravka Medarova
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|