1
|
Jimenez IA, Stilin AP, Morohaku K, Hussein MH, Koganti PP, Selvaraj V. Mitochondrial translocator protein deficiency exacerbates pathology in acute experimental ulcerative colitis. Front Physiol 2022; 13:896951. [PMID: 36060674 PMCID: PMC9437295 DOI: 10.3389/fphys.2022.896951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
In human patients and animal models of ulcerative colitis (UC), upregulation of the mitochondrial translocator protein (TSPO) in the colon is consistent with inflammation. Although the molecular function for TSPO remains unclear, it has been investigated as a therapeutic target for ameliorating UC pathology. In this study, we examined the susceptibility of Tspo gene-deleted (Tspo -/- ) mice to insults as provided by the dextran sodium sulfate (DSS)-induced acute UC model. Our results show that UC clinical signs and pathology were severely exacerbated in Tspo -/- mice compared to control Tspo fl/fl cohorts. Histopathology showed extensive inflammation and epithelial loss in Tspo -/- mice that caused an aggravated disease. Colonic gene expression in UC uncovered an etiology linked to precipitous loss of epithelial integrity and disproportionate mast cell activation assessed by tryptase levels in Tspo -/- colons. Evaluation of baseline homeostatic shifts in Tspo -/- colons revealed gene expression changes noted in elevated epithelial Cdx2, mast cell Cd36 and Mcp6, with general indicators of lower proliferation capacity and elevated mitochondrial fatty acid oxidation. These findings demonstrate that intact physiological TSPO function serves to limit inflammation in acute UC, and provide a systemic basis for investigating TSPO-targeting mechanistic therapeutics.
Collapse
Affiliation(s)
- Isabel A. Jimenez
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States,Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Allison P. Stilin
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Kanako Morohaku
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States,School of Science and Technology, Institute of Agriculture, Shinshu University, Nagano, Japan
| | - Mahmoud H. Hussein
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Prasanthi P. Koganti
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States,*Correspondence: Vimal Selvaraj,
| |
Collapse
|
2
|
Lyubashina OA, Sivachenko IB, Panteleev SS. Supraspinal Mechanisms of Intestinal Hypersensitivity. Cell Mol Neurobiol 2022; 42:389-417. [PMID: 33030712 PMCID: PMC11441296 DOI: 10.1007/s10571-020-00967-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Gut inflammation or injury causes intestinal hypersensitivity (IHS) and hyperalgesia, which can persist after the initiating pathology resolves, are often referred to somatic regions and exacerbated by psychological stress, anxiety or depression, suggesting the involvement of both the spinal cord and the brain. The supraspinal mechanisms of IHS remain to be fully elucidated, however, over the last decades the series of intestinal pathology-associated neuroplastic changes in the brain has been revealed, being potentially responsible for the phenomenon. This paper reviews current clinical and experimental data, including the authors' own findings, on these functional, structural, and neurochemical/molecular changes within cortical, subcortical and brainstem regions processing and modulating sensory signals from the gut. As concluded in the review, IHS can develop and maintain due to the bowel inflammation/injury-induced persistent hyperexcitability of viscerosensory brainstem and thalamic nuclei and sensitization of hypothalamic, amygdala, hippocampal, anterior insular, and anterior cingulate cortical areas implicated in the neuroendocrine, emotional and cognitive modulation of visceral sensation and pain. An additional contribution may come from the pathology-triggered dysfunction of the brainstem structures inhibiting nociception. The mechanism underlying IHS-associated regional hyperexcitability is enhanced NMDA-, AMPA- and group I metabotropic receptor-mediated glutamatergic neurotransmission in association with altered neuropeptide Y, corticotropin-releasing factor, and cannabinoid 1 receptor signaling. These alterations are at least partially mediated by brain microglia and local production of cytokines, especially tumor necrosis factor α. Studying the IHS-related brain neuroplasticity in greater depth may enable the development of new therapeutic approaches against chronic abdominal pain in inflammatory bowel disease.
Collapse
Affiliation(s)
- Olga A Lyubashina
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Nab. Makarova, Saint Petersburg, 199034, Russia.
| | - Ivan B Sivachenko
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Nab. Makarova, Saint Petersburg, 199034, Russia
| | - Sergey S Panteleev
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Nab. Makarova, Saint Petersburg, 199034, Russia
| |
Collapse
|
3
|
Tournier BB, Tsartsalis S, Ceyzériat K, Fraser BH, Grégoire MC, Kövari E, Millet P. Astrocytic TSPO Upregulation Appears Before Microglial TSPO in Alzheimer's Disease. J Alzheimers Dis 2021; 77:1043-1056. [PMID: 32804124 PMCID: PMC7683091 DOI: 10.3233/jad-200136] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background: In vivo PET/SPECT imaging of neuroinflammation is primarily based on the estimation of the 18 kDa-translocator-protein (TSPO). However, TSPO is expressed by different cell types which complicates the interpretation. Objective: The present study evaluates the cellular origin of TSPO alterations in Alzheimer’s disease (AD). Methods: The TSPO cell origin was evaluated by combining radioactive imaging approaches using the TSPO radiotracer [125I]CLINDE and fluorescence-activated cell sorting, in a rat model of AD (TgF344-AD) and in AD subjects. Results: In the hippocampus of TgF344-AD rats, TSPO overexpression not only concerns glial cells but the increase is visible at 12 and 24 months in astrocytes and only at 24 months in microglia. In the temporal cortex of AD subjects, TSPO upregulation involved only glial cells. However, the mechanism of this upregulation appears different with an increase in the number of TSPO binding sites per cell without cell proliferation in the rat, and a microglial cell population expansion with a constant number of binding sites per cell in human AD. Conclusion: These data indicate an earlier astrocyte intervention than microglia and that TSPO in AD probably is an exclusive marker of glial activity without interference from other TSPO-expressing cells. This observation indicates that the interpretation of TSPO imaging depends on the stage of the pathology, and highlights the particular role of astrocytes.
Collapse
Affiliation(s)
- Benjamin B Tournier
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Switzerland
| | - Stergios Tsartsalis
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Switzerland
| | - Kelly Ceyzériat
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Switzerland.,Division of Nuclear medicine, University Hospitals of Geneva, Switzerland
| | - Ben H Fraser
- ANSTO LifeSciences, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Sydney, NSW, Australia
| | - Marie-Claude Grégoire
- ANSTO LifeSciences, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Sydney, NSW, Australia
| | - Enikö Kövari
- Division of Geriatric Psychiatry, Department of Mental Health and Psychiatry, University Hospitals of Geneva, Switzerland.,Department of Psychiatry, University of Geneva, Switzerland
| | - Philippe Millet
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Switzerland.,Department of Psychiatry, University of Geneva, Switzerland
| |
Collapse
|
4
|
Jewells VL, Yuan H, Merrill JR, Frank JE, Patel A, Cohen SM, Giglio B, Feinberg NN, Matsushima GK, Li Z. Assessment of 18F-PBR-111 in the Cuprizone Mouse Model of Multiple Sclerosis. Diagnostics (Basel) 2021; 11:diagnostics11050786. [PMID: 33925560 PMCID: PMC8145256 DOI: 10.3390/diagnostics11050786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/28/2022] Open
Abstract
The study aims to assess site assessment of the performance of 18F-PBR-111 as a neuroinflammation marker in the cuprizone mouse model of multiple sclerosis (MS). 18F-PBR-111 PET imaging has not been well evaluated in multiple sclerosis applications both in preclinical and clinical research. This study will help establish the potential utility of 18F-PBR-111 PET in preclinical MS research and future animal and future human applications. 18F-PBR-111 PET/CT was conducted at 3.5 weeks (n = 7) and 5.0 weeks (n = 7) after cuprizone treatment or sham control (n = 3) in the mouse model. A subgroup of mice underwent autoradiography with cryosectioned brain tissue. T2 weighted MRI was performed to obtain the brain structural data of each mouse. 18F-PBR-111 uptake was assessed in multiple brain regions with PET and autoradiography images. The correlation between autoradiography and immunofluorescence staining of neuroinflammation (F4/80 and CD11b) was measured. Compared to control mice, significant 18F-PBR-111 uptake in the corpus callosum (p < 0.001), striatum (caudate and internal capsule, p < 0.001), and hippocampus (p < 0.05) was identified with PET images at both 3.5 weeks and 5.0 weeks, and validated with autoradiography. No significant uptake differences were detected between 3.5 weeks and 5.0 weeks assessing these regions as a whole, although there was a trend of increased uptake at 5.0 weeks compared to 3.5 weeks in the CC. High 18F-PBR-111 uptake regions correlated with microglial/macrophage locations by immunofluorescence staining with F4/80 and CD11b antibodies. 18F-PBR-111 uptake in anatomic locations correlated with activated microglia at histology in the cuprizone mouse model of MS suggests that 18F-PBR-111 has potential for in vivo evaluation of therapy response and potential for use in MS patients and animal studies.
Collapse
Affiliation(s)
- Valerie L. Jewells
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (H.Y.); (Z.L.)
- Correspondence: ; Fax: +1-(919)-966-1994
| | - Hong Yuan
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (H.Y.); (Z.L.)
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.R.M.); (J.E.F.); (B.G.)
| | - Joseph R. Merrill
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.R.M.); (J.E.F.); (B.G.)
| | - Jonathan E. Frank
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.R.M.); (J.E.F.); (B.G.)
| | - Akhil Patel
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.P.); (G.K.M.)
| | - Stephanie M. Cohen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.M.C.); (N.N.F.)
| | - Ben Giglio
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.R.M.); (J.E.F.); (B.G.)
| | - Nana Nikolaishvili Feinberg
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.M.C.); (N.N.F.)
| | - Glenn K. Matsushima
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.P.); (G.K.M.)
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zibo Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (H.Y.); (Z.L.)
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.R.M.); (J.E.F.); (B.G.)
| |
Collapse
|
5
|
Adhikari A, Singh P, Mahar KS, Adhikari M, Adhikari B, Zhang MR, Tiwari AK. Mapping of Translocator Protein (18 kDa) in Peripheral Sterile Inflammatory Disease and Cancer through PET Imaging. Mol Pharm 2021; 18:1507-1529. [PMID: 33645995 DOI: 10.1021/acs.molpharmaceut.1c00002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Positron emission tomography (PET) imaging of the translocator 18 kDa protein (TSPO) with radioligands has become an effective means of research in peripheral inflammatory conditions that occur in many diseases and cancers. The peripheral sterile inflammatory diseases (PSIDs) are associated with a diverse group of disorders that comprises numerous enduring insults including the cardiovascular, respiratory, gastrointestinal, or musculoskeletal system. TSPO has recently been introduced as a potential biomarker for peripheral sterile inflammatory diseases (PSIDs). The major critical issue related to PSIDs is its timely characterization and localization of inflammatory foci for proper therapy of patients. As an alternative to metabolic imaging, protein imaging expressed on immune cells after activation is of great importance. The five transmembrane domain translocator protein-18 kDa (TSPO) is upregulated on the mitochondrial cell surface of macrophages during inflammation, serving as a potential ligand for PET tracers. Additionally, the overexpressed TSPO protein has been positively correlated with various tumor malignancies. In view of the association of escalated TSPO expression in both disease conditions, it is an immensely important biomarker for PET imaging in oncology and PSIDs. In this review, we summarize the most outstanding advances on TSPO-targeted PSIDs and cancer in the development of TSPO ligands as a potential diagnostic tool, specifically discussing the last five years.
Collapse
Affiliation(s)
- Anupriya Adhikari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, (A Central University), Lucknow, Uttar Pradesh 226025, India
| | - Priya Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, A Central University, Lucknow, Uttar Pradesh 226025, India
| | - Kamalesh S Mahar
- Birbal Sahni Institute of Palaeosciences, Lucknow, Uttar Pradesh 226007, India
| | - Manish Adhikari
- The George Washington University, Washington, D.C. 20052, United States
| | - Bhawana Adhikari
- Plasma Bio-science Research Center, Kwangwoon University, Seoul 01897, South Korea
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Anjani Kumar Tiwari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, (A Central University), Lucknow, Uttar Pradesh 226025, India
| |
Collapse
|
6
|
Liu L, Tian C, Dong B, Xia M, Cai Y, Hu R, Chu X. Models to evaluate the barrier properties of mucus during drug diffusion. Int J Pharm 2021; 599:120415. [PMID: 33647411 DOI: 10.1016/j.ijpharm.2021.120415] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/07/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
Mucus is widely disseminated in the nasal cavity, oral cavity, respiratory tract, eyes, gastrointestinal tract, and reproductive tract to prevent the invasion of pathogenic bacteria and toxins. The mucus layer through its continuous secretion can prevent the passage of macromolecular substances such as pathogenic bacteria and toxins, thereby reducing the occurrence of inflammation. Without a doubt, mucus also hinders oral absorption. The physiological and biochemical properties of intestinal mucus and the different types of mucus barrier models need to be predominated. To find ways to increase the bioavailability of drugs in the future, this article summarizes mucus composition, barrier properties, mucus models, and mucoadhesive/mucopenetrating particles to highlight the information they can afford. Collectively, the review seeks to provide a state-of-the-art roadmap for researchers who must contend with this critical barrier to drug delivery.
Collapse
Affiliation(s)
- Liu Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Chunling Tian
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Baoqi Dong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Mengqiu Xia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ye Cai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Rongfeng Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
7
|
Molecular Imaging of Autoimmune Diseases. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00055-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
8
|
Electroacupuncture and Moxibustion Improved Anxiety Behavior in DSS-Induced Colitis Mice. Gastroenterol Res Pract 2019; 2019:2345890. [PMID: 30881446 PMCID: PMC6383400 DOI: 10.1155/2019/2345890] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/18/2018] [Accepted: 10/31/2018] [Indexed: 12/19/2022] Open
Abstract
Background and Aims Psychological disorders are prevalent in patients with inflammatory bowel disease, but the underlying mechanisms remain unknown. The aim of this study was to study whether electroacupuncture (EA) and moxibustion (MB) can improve anxiety behavior in DSS-induced colitis mice and to investigate whether this effect is related to hypothalamic-pituitary-adrenocortical (HPA) axis. Methods The colitis model was established by drinking 2.5% dextran sodium sulfate (DSS). DSS-induced colitis mice were treated by EA or MB. Disease activity index (DAI) was scored; intestinal morphological and pathological structure was observed; anxiety behavior was tested by the elevated plus maze and open field. The concentration of corticotropin-releasing hormone (CRH) and cortisol (CORT) in serum was measured by enzyme-linked immunosorbent assay (ELISA). The protein expression of CRH in the colon and hypothalamus was detected by Western blot (WB). Results Both EA and MB treatments can improvethe morphology of their distal colonic mucosal epithelia, as well as the disease activity index. Meanwhile, anxiety behavior in colitis mice was improved slightly after EA and MB treatment. In addition, the levels of CRH and CORT in the serum were slightly improved after EA and MB treatment. These effects are further supported by WB results. The expression of CRH in the colon and hypothalamus was increased significantly after treatment, compared with the model group. Conclusion EA and MB were able to regulate the concentration of CRH in serum and protein expression in the peripheral and central at different levels and promote the recovery of the HPA axis that may be the basis for EA and MB to improve colonic pathology and alleviate anxiety behavior in DSS-induced colitis.
Collapse
|
9
|
Bai P, Wey HY, Patnaik D, Lu X, Lan Y, Rokka J, Stephanie F, Haggarty SJ, Wang C. Positron emission tomography probes targeting bromodomain and extra-terminal (BET) domains to enable in vivo neuroepigenetic imaging. Chem Commun (Camb) 2019; 55:12932-12935. [DOI: 10.1039/c9cc06734e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Novel PET radiotracer of BET proteins enable in vivo neuroepigenetic imaging.
Collapse
Affiliation(s)
- Ping Bai
- Chengdu Institute of Biology
- Chinese Academy of Sciences
- Chengdu 610041
- P. R. China
- Athinoula A. Martinos Center for Biomedical Imaging
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging
- Department of Radiology
- Massachusetts General Hospital, Harvard Medical School
- Charlestown
- USA
| | - Debasis Patnaik
- Chemical Neurobiology Laboratory
- Center for Genomic Medicine
- Department of Neurology
- Massachusetts General Hospital
- Harvard Medical School
| | - Xiaoxia Lu
- Chengdu Institute of Biology
- Chinese Academy of Sciences
- Chengdu 610041
- P. R. China
| | - Yu Lan
- Athinoula A. Martinos Center for Biomedical Imaging
- Department of Radiology
- Massachusetts General Hospital, Harvard Medical School
- Charlestown
- USA
| | - Johanna Rokka
- Athinoula A. Martinos Center for Biomedical Imaging
- Department of Radiology
- Massachusetts General Hospital, Harvard Medical School
- Charlestown
- USA
| | - Fiedler Stephanie
- Athinoula A. Martinos Center for Biomedical Imaging
- Department of Radiology
- Massachusetts General Hospital, Harvard Medical School
- Charlestown
- USA
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory
- Center for Genomic Medicine
- Department of Neurology
- Massachusetts General Hospital
- Harvard Medical School
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging
- Department of Radiology
- Massachusetts General Hospital, Harvard Medical School
- Charlestown
- USA
| |
Collapse
|
10
|
Lanfranca MP, Lazarus J, Shao X, Nathan H, Di Magliano MP, Zou W, Piert M, Frankel TL. Tracking Macrophage Infiltration in a Mouse Model of Pancreatic Cancer with the Positron Emission Tomography Tracer [11C]PBR28. J Surg Res 2018; 232:570-577. [PMID: 30463776 DOI: 10.1016/j.jss.2018.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/26/2018] [Accepted: 07/10/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND The tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) contains abundant immunosuppressive tumor-associated macrophages. High level of infiltration is associated with poor outcome and is thought to represent a major roadblock to lymphocyte-based immunotherapy. Efforts to block macrophage infiltration have been met with some success, but noninvasive means to track tumor-associated macrophagess in PDAC are lacking. Translocator protein (TSPO) is a mitochondrial membrane receptor which is upregulated in activated macrophages. We sought to identify if a radiotracer-labeled cognate ligand could track macrophages in PDAC. MATERIALS AND METHODS A murine PDAC cell line was established from a transgenic mouse with pancreas-specific mutations in KRAS and p53. After confirming lack of endogenous TSPO expression, tumors were established in syngeneic mice. A radiolabeled TSPO-specific ligand ([11C] peripheral benzodiazepine receptor [PBR]28) was delivered intravenously, and tumor uptake was assessed by autoradiography, ex vivo, or micro-positron emission tomography imaging. RESULTS Resected tumors contained abundant macrophages as determined by immunohistochemistry and flow cytometry. Immunoblotting revealed murine macrophages expressed TSPO with increasing concentration on activation and polarization. Autoradiography of resected tumors confirmed [11C]PBR28 uptake, and whole mount sections demonstrated the ability to localize tumors. To confirm the findings were macrophage specific, experiments were repeated in CD11b-deficient mice, and the radiotracer uptake was diminished. Micro-positron emission tomography imaging validated radiotracer uptake and tumor localization in a clinically applicable manner. CONCLUSIONS As new immunotherapeutics reshape the PDAC microenvironment, tools are needed to better measure and track immune cell subsets. We have demonstrated the potential to measure changes in macrophage infiltration in PDAC using [11C]PBR28.
Collapse
Affiliation(s)
| | - Jenny Lazarus
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Xia Shao
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Hari Nathan
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | | | - Weiping Zou
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Morand Piert
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
11
|
Berroterán-Infante N, Balber T, Fürlinger P, Bergmann M, Lanzenberger R, Hacker M, Mitterhauser M, Wadsak W. [ 18F]FEPPA: Improved Automated Radiosynthesis, Binding Affinity, and Preliminary in Vitro Evaluation in Colorectal Cancer. ACS Med Chem Lett 2018. [PMID: 29541356 DOI: 10.1021/acsmedchemlett.7b00367] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The overexpression of the translocator protein (TSPO) has been amply reported for a variety of conditions, including neurodegenerative disorders, heart failure, and cancer. Thus, TSPO has been proposed as an excellent imaging biomarker, allowing, in this manner, to obtain an accurate diagnosis and to follow disease progression and therapy response. Accordingly, several radioligands have been developed to accomplish this purpose. In this work, we selected [18F]FEPPA, as one of the clinical established tracers, and assessed its in vitro performance in colorectal cancer. Moreover, we setup an improved radiosynthesis method and assessed the in vitro binding affinity of the nonradioactive ligand toward the human TSPO. Our results show an excellent to moderate affinity, in the subnanomolar and nanomolar range, as well as the suitability of [18F]FEPPA as an imaging agent for the TSPO in colorectal cancer.
Collapse
Affiliation(s)
- Neydher Berroterán-Infante
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna A-1090, Austria
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna A-1090, Austria
| | - Theresa Balber
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna A-1090, Austria
- Department of Pharmaceutical Technology, Faculty of Life Sciences, University of Vienna, Vienna A-1090, Austria
| | - Petra Fürlinger
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna A-1090, Austria
| | - Michael Bergmann
- Surgical Research Laboratories, Department of Surgery, Medical University of Vienna, Vienna A-1090, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna A-1090, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna A-1090, Austria
| | - Markus Mitterhauser
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna A-1090, Austria
- Department of Pharmaceutical Technology, Faculty of Life Sciences, University of Vienna, Vienna A-1090, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna A-1090, Austria
| | - Wolfgang Wadsak
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna A-1090, Austria
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna A-1090, Austria
- Center for Biomarker Research in Medicine, CBmed GmbH, Graz A-8010, Austria
| |
Collapse
|
12
|
Holzer P, Farzi A, Hassan AM, Zenz G, Jačan A, Reichmann F. Visceral Inflammation and Immune Activation Stress the Brain. Front Immunol 2017; 8:1613. [PMID: 29213271 PMCID: PMC5702648 DOI: 10.3389/fimmu.2017.01613] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022] Open
Abstract
Stress refers to a dynamic process in which the homeostasis of an organism is challenged, the outcome depending on the type, severity, and duration of stressors involved, the stress responses triggered, and the stress resilience of the organism. Importantly, the relationship between stress and the immune system is bidirectional, as not only stressors have an impact on immune function, but alterations in immune function themselves can elicit stress responses. Such bidirectional interactions have been prominently identified to occur in the gastrointestinal tract in which there is a close cross-talk between the gut microbiota and the local immune system, governed by the permeability of the intestinal mucosa. External stressors disturb the homeostasis between microbiota and gut, these disturbances being signaled to the brain via multiple communication pathways constituting the gut-brain axis, ultimately eliciting stress responses and perturbations of brain function. In view of these relationships, the present article sets out to highlight some of the interactions between peripheral immune activation, especially in the visceral system, and brain function, behavior, and stress coping. These issues are exemplified by the way through which the intestinal microbiota as well as microbe-associated molecular patterns including lipopolysaccharide communicate with the immune system and brain, and the mechanisms whereby overt inflammation in the GI tract impacts on emotional-affective behavior, pain sensitivity, and stress coping. The interactions between the peripheral immune system and the brain take place along the gut-brain axis, the major communication pathways of which comprise microbial metabolites, gut hormones, immune mediators, and sensory neurons. Through these signaling systems, several transmitter and neuropeptide systems within the brain are altered under conditions of peripheral immune stress, enabling adaptive processes related to stress coping and resilience to take place. These aspects of the impact of immune stress on molecular and behavioral processes in the brain have a bearing on several disturbances of mental health and highlight novel opportunities of therapeutic intervention.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Aitak Farzi
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Ahmed M Hassan
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Geraldine Zenz
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Angela Jačan
- CBmed GmbH-Center for Biomarker Research in Medicine, Graz, Austria
| | - Florian Reichmann
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
13
|
TSPO PET Imaging: From Microglial Activation to Peripheral Sterile Inflammatory Diseases? CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:6592139. [PMID: 29114179 PMCID: PMC5632884 DOI: 10.1155/2017/6592139] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 02/07/2023]
Abstract
Peripheral sterile inflammatory diseases (PSIDs) are a heterogeneous group of disorders that gathers several chronic insults involving the cardiovascular, respiratory, gastrointestinal, or musculoskeletal system and wherein inflammation is the cornerstone of the pathophysiology. In PSID, timely characterization and localization of inflammatory foci are crucial for an adequate care for patients. In brain diseases, in vivo positron emission tomography (PET) exploration of inflammation has matured over the last 20 years, through the development of radiopharmaceuticals targeting the translocator protein-18 kDa (TSPO) as molecular biomarkers of activated microglia. Recently, TSPO has been introduced as a possible molecular target for PSIDs PET imaging, making this protein a potential biomarker to address disease heterogeneity, to assist in patient stratification, and to contribute to predicting treatment response. In this review, we summarized the major research advances recently made in the field of TSPO PET imaging in PSIDs. Promising preliminary results have been reported in bowel, cardiovascular, and rheumatic inflammatory diseases, consolidated by preclinical studies. Limitations of TSPO PET imaging in PSIDs, regarding both its large expression in healthy peripheral tissues, unlike in central nervous system, and the production of peripheral radiolabeled metabolites, are also discussed, regarding their possible consequences on TSPO PET signal's quantification.
Collapse
|