1
|
Okechukwu CC, Ma X, Sah N, Mani C, Palle K, Gmeiner WH. Enhanced Therapeutic Efficacy of the Nanoscale Fluoropyrimidine Polymer CF10 in a Rat Colorectal Cancer Liver Metastasis Model. Cancers (Basel) 2024; 16:1360. [PMID: 38611037 PMCID: PMC11011147 DOI: 10.3390/cancers16071360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Combination chemotherapy regimens that include fluoropyrimidine (FP) drugs, e.g., 5-fluorouracil (5-FU), are central to the treatment of colorectal cancer liver metastases (CRLMs), a major cause of cancer mortality. We tested a second-generation FP polymer, CF10, in a CC531/WAGRij syngeneic orthotopic rat model of liver metastasis to determine if CF10 improved response relative to 5-FU. CF10 displayed increased potency relative to 5-FU in CC531 rat colorectal cancer cells based on clonogenic assay results and caused increased apoptosis, as shown using a live/dead assay. The increased potency of CF10 to CC531 cells was associated with increased replication stress, as assessed by Western blot for biomarkers of ATR/Chk1 and ATM/Chk2 pathway activation. CF10 dosed to deliver equivalent FP content as an established dose of 5-FU in rats (50 mg/kg) did not cause weight loss in WAGRij rats even when combined with ethynyl uracil (EU), an inhibitor of dihydropyrimidine dehydrogenase, the enzyme primarily responsible for 5-FU degradation in the liver. In contrast, 5-FU caused significant weight loss that was exacerbated in combination with EU. Importantly, CF10 was significantly more effective than 5-FU at inhibiting tumor progression (~90% reduction) in the CC531/WAG/Rij CRLM model. Our results reveal strong potential for CF10 to be used for CRLM treatment.
Collapse
Affiliation(s)
- Charles Chidi Okechukwu
- Integrative Physiology and Pharmacology Graduate Program and Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA;
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Xue Ma
- Department of Orthopedic Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA;
| | - Naresh Sah
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX 79430, USA; (N.S.); (C.M.); (K.P.)
| | - Chinnadurai Mani
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX 79430, USA; (N.S.); (C.M.); (K.P.)
| | - Komaraiah Palle
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX 79430, USA; (N.S.); (C.M.); (K.P.)
| | - William H. Gmeiner
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
2
|
Drewes R, Pech M, Powerski M, Omari J, Heinze C, Damm R, Wienke A, Surov A. Apparent Diffusion Coefficient Can Predict Response to Chemotherapy of Liver Metastases in Colorectal Cancer. Acad Radiol 2021; 28 Suppl 1:S73-S80. [PMID: 33008734 DOI: 10.1016/j.acra.2020.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/07/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023]
Abstract
RATIONALE AND OBJECTIVES The aim of this meta-analysis was to evaluate the suitability of apparent diffusion coefficient (ADC) as a predictor of response to systemic chemotherapy in patients with metastatic colorectal carcinoma (CRC). MATERIALS AND METHODS MEDLINE library, SCOPUS database, and EMBASE database were screened for relationships between pretreatment ADC values of hepatic CRC metastases and response to systemic chemotherapy. Overall, five eligible studies were identified. The following data were extracted: authors, year of publication, study design, number of patients, mean value ADC and standard-deviation, measure method, b-values, and Tesla-strength. The methodological quality of every study was checked according to the Quality Assessment of Diagnostic Studies-2 instrument. The meta-analysis was undertaken by employing RevMan 5.3 software. DerSimonian and Laird random-effects models with inverse-variance weights were used to account for heterogeneity. Mean ADC values including 95% confidence intervals were calculated. RESULTS Five studies (n = 114 patients) were included. The pretreatment mean ADC in the responder group was 1.15 × 10-3 mm2/s (1.03, 1.28) and 1.37 × 10-3 mm2/s (1.3, 1.44) in the nonresponder group. An ADC baseline threshold of 1.2 × 10-3 mm2/s, below which no nonresponder was found, can distinguish both groups. CONCLUSION The results indicate ADC can serve as a predictor of response to chemotherapy for CRC patients.
Collapse
|
3
|
Herrero de la Parte B, Rodeño-Casado M, Iturrizaga Correcher S, Mar Medina C, García-Alonso I. Curcumin Reduces Colorectal Cancer Cell Proliferation and Migration and Slows In Vivo Growth of Liver Metastases in Rats. Biomedicines 2021; 9:biomedicines9091183. [PMID: 34572369 PMCID: PMC8467247 DOI: 10.3390/biomedicines9091183] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/20/2021] [Accepted: 09/05/2021] [Indexed: 12/22/2022] Open
Abstract
Background: New therapeutic approaches are an essential need for patients suffering from colorectal cancer liver metastases. Curcumin, a well-known plant-derived polyphenol, has been shown to play a role in the modulation of multiple signaling pathways involved in the development and progression of certain cancer cells in vitro. This study aims to assess the anti-tumor effect of curcumin on CC531 colorectal cancer cells, both in vitro and in vivo. Methods: On CC531 cultures, the cell viability and cell migration capacity were analyzed (wound healing test) 24, 48, and 72 h after treatment with curcumin (15, 20, 25, or 30 µM). Additionally, in WAG/RijHsd tumor-bearing rats, the total and individual liver lobe tumor volume was quantified in untreated and curcumin-treated animals (200 mg/kg/day, oral). Furthermore, serum enzyme measurements (GOT, GPT, glucose, bilirubin, etc.) were carried out to assess the possible effects on the liver function. Results: In vitro studies showed curcumin’s greatest effects 48h after application, when all of the tested doses reduced cell proliferation by more than 30%. At 72 h, the highest doses of curcumin (25 and 30 µM) reduced cell viability to less than 50%. The wound healing test also showed that curcumin inhibits migration capacity. In vivo, curcumin slowed down the tumor volume of liver implants by 5.6-fold (7.98 ± 1.45 vs. 1.41 ± 1.33; p > 0.0001). Conclusions: Curcumin has shown an anti-tumor effect against liver implants from colorectal cancer, both in vitro and in vivo, in this experimental model.
Collapse
Affiliation(s)
- Borja Herrero de la Parte
- Department of Surgery and Radiology and Physical Medicine, University of The Basque Country, ES48940 Leioa, Spain; (M.R.-C.); (I.G.-A.)
- Biocruces Bizkaia Health Research Institute, ES48903 Barakaldo, Spain
- Correspondence:
| | - Mikel Rodeño-Casado
- Department of Surgery and Radiology and Physical Medicine, University of The Basque Country, ES48940 Leioa, Spain; (M.R.-C.); (I.G.-A.)
| | - Sira Iturrizaga Correcher
- Department of Clinical Analyses, Osakidetza Basque Health Service, Galdakao-Usansolo Hospital, ES48960 Galdakao, Spain; (S.I.C.); (C.M.M.)
| | - Carmen Mar Medina
- Department of Clinical Analyses, Osakidetza Basque Health Service, Galdakao-Usansolo Hospital, ES48960 Galdakao, Spain; (S.I.C.); (C.M.M.)
| | - Ignacio García-Alonso
- Department of Surgery and Radiology and Physical Medicine, University of The Basque Country, ES48940 Leioa, Spain; (M.R.-C.); (I.G.-A.)
- Biocruces Bizkaia Health Research Institute, ES48903 Barakaldo, Spain
| |
Collapse
|
4
|
Fliedner FP, Engel TB, El-Ali HH, Hansen AE, Kjaer A. Diffusion weighted magnetic resonance imaging (DW-MRI) as a non-invasive, tissue cellularity marker to monitor cancer treatment response. BMC Cancer 2020; 20:134. [PMID: 32075610 PMCID: PMC7031987 DOI: 10.1186/s12885-020-6617-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 02/11/2020] [Indexed: 01/21/2023] Open
Abstract
Background Diffusion weighted magnetic resonance imaging (DW-MRI) holds great potential for monitoring treatment response in cancer patients shortly after initiation of radiotherapy. It is hypothesized that a decrease in cellular density of irradiated cancerous tissue will lead to an increase in quantitative apparent diffusion coefficient (ADC) values. DW-MRI can therefore serve as a non-invasive marker of cell death and apoptosis in response to treatment. In the present study, we aimed to investigate the applicability of DW-MRI in preclinical models to monitor radiation-induced treatment response. In addition, we compared DW-MRI with ex vivo measures of cell density, cell death and apoptosis. Methods DW-MRI was tested in two different syngeneic mouse models, a colorectal cancer (CT26) and a breast cancer (4 T1). ADC values were compared with quantitative determinations of apoptosis and cell death by flow cytometry. Furthermore, ADC-values were also compared to histological measurement of cell density on tumor sections. Results We found a significant correlation between ADC-values and apoptotic state in the CT26 model (P = 0.0031). A strong correlation between the two measurements of ADC-value and apoptotic state was found in both models, which were also present when comparing ADC-values to cell densities. Conclusions Our findings demonstrate that DW-MRI can be used for non-invasive monitoring of radiation-induced changes in cell state during cancer therapy. ADC values reflect ex vivo cell density and correlates well with apoptotic state, and can hereby be described as a marker for the cell state after therapy and used as a non-invasive response marker.
Collapse
Affiliation(s)
- Frederikke Petrine Fliedner
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Trine Bjørnbo Engel
- Colloids and Biological Interface Group, Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby, Denmark
| | - Henrik H El-Ali
- Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Elias Hansen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark.,Colloids and Biological Interface Group, Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark. .,Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Baseline 3D-ADC outperforms 2D-ADC in predicting response to treatment in patients with colorectal liver metastases. Eur Radiol 2019; 30:291-300. [PMID: 31209620 DOI: 10.1007/s00330-019-06289-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/13/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To examine the value of baseline 3D-ADC and to predict short-term response to treatment in patients with hepatic colorectal metastases (CLMs). METHODS Liver MR images of 546 patients with CLMs (2008-2015) were reviewed retrospectively and 68 patients fulfilled inclusion criteria. Patients had received systemic chemotherapy (n = 17), hepatic trans-arterial chemoembolization or TACE (n = 34), and 90Y radioembolization (n = 17). Baseline (pre-treatment) 3D-ADC (volumetric) of metastatic lesions was calculated employing prototype software. RECIST 1.1 was used to assess short-term response to treatment. Prediction of response to treatment by baseline 3D-ADC and 2D-ADC (ROI-based) was also compared in all patients. RESULTS Partial response to treatment (minimum 30% decrease in tumor largest transverse diameter) was seen in 35.3% of patients; 41.2% with systemic chemotherapy, 32.4% with TACE, and 35.3% with 90Y radioembolization (p = 0.82). Median baseline 3D-ADC was significantly lower in responding than in nonresponding lesions. Area under the curve (AUC) of 3D-ADC was 0.90 in 90Y radioembolization patients, 0.88 in TACE patients, and 0.77 in systemic chemotherapy patients (p < 0.01). Optimal prediction was observed with the 10th percentile of ADC (1006 × 10-6 mm2/s), yielding sensitivity and specificity of 77.4% and 91.3%, respectively. 3D-ADC outperformed 2D-ADC in predicting response to treatment (AUC; 0.86 vs. 0.71; p < 0.001). CONCLUSION Baseline 3D-ADC is a highly specific biomarker in predicting partial short-term response to treatment in hepatic CLMs. KEY POINTS • Baseline 3D-ADC is a highly specific biomarker in predicting response to different treatments in hepatic CLMs. • The prediction level of baseline ADC is better for90Y radioembolization than for systemic chemotherapy/TACE in hepatic CLMs. • 3D-ADC outperforms 2D-ADC in predicting short-term response to treatment in hepatic CLMs.
Collapse
|
6
|
Chen X, Yang Y, Katz S. Early detection of thymidylate synthase resistance in non-small cell lung cancer with FLT-PET imaging. Oncotarget 2017; 8:82705-82713. [PMID: 29137296 PMCID: PMC5669922 DOI: 10.18632/oncotarget.19751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/01/2017] [Indexed: 11/25/2022] Open
Abstract
Introduction Inhibition of thymidylate synthase (TS) results in a transient compensatory "flare" in thymidine salvage pathway activity measureable with 18F-thymidine (FLT)- positron emission tomography (PET) at 2hrs. of therapy which may predict non-small cell lung cancer (NSCLC) sensitivity to TS inhibition. Materials and Methods Resistance to TS inhibition by pemetrexed was induced in NSCLC cell lines H460 and H1299 through TS overexpression. TS overexpression was confirmed with RT-PCR and Western blotting and pemetrexed resistance confirmed with IC50 assays. The presence of a pemetrexed-induced thymidine salvage pathway "flare" was then measured using 3H-thymidine in both pemetrexed sensitive (H460 and H1299) and resistant (H460R, H1299R, CALU-6, H522, H650, H661, H820, H1838) lines in vitro, and validated with FLT-PET in vivo using H460 and H460R xenografts. Results Overexpression of TS induced pemetrexed resistance with IC50 for H460, H1299, H460R and H1299R measured as 0.141 μM, 0.656 μM, 22.842 μM, 213.120 μM, respectively. Thymidine salvage pathway 3H-thymidine "flare" was observed following pemetrexed in H460 and H1299 but not H460R, H1299R, CALU-6, H522, H650, H661, H820 or H1838 in vitro. Similarly, a FLT "flare" was observed in vivo following pemetrexed therapy in H460 but not H460R tumor-bearing xenografts. Conclusions Imaging of TS inhibition is predictive of NSCLC sensitivity to pemetrexed.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yizeng Yang
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sharyn Katz
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|