1
|
Gawne P, Man F, Blower PJ, T. M. de Rosales R. Direct Cell Radiolabeling for in Vivo Cell Tracking with PET and SPECT Imaging. Chem Rev 2022; 122:10266-10318. [PMID: 35549242 PMCID: PMC9185691 DOI: 10.1021/acs.chemrev.1c00767] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 02/07/2023]
Abstract
The arrival of cell-based therapies is a revolution in medicine. However, its safe clinical application in a rational manner depends on reliable, clinically applicable methods for determining the fate and trafficking of therapeutic cells in vivo using medical imaging techniques─known as in vivo cell tracking. Radionuclide imaging using single photon emission computed tomography (SPECT) or positron emission tomography (PET) has several advantages over other imaging modalities for cell tracking because of its high sensitivity (requiring low amounts of probe per cell for imaging) and whole-body quantitative imaging capability using clinically available scanners. For cell tracking with radionuclides, ex vivo direct cell radiolabeling, that is, radiolabeling cells before their administration, is the simplest and most robust method, allowing labeling of any cell type without the need for genetic modification. This Review covers the development and application of direct cell radiolabeling probes utilizing a variety of chemical approaches: organic and inorganic/coordination (radio)chemistry, nanomaterials, and biochemistry. We describe the key early developments and the most recent advances in the field, identifying advantages and disadvantages of the different approaches and informing future development and choice of methods for clinical and preclinical application.
Collapse
Affiliation(s)
- Peter
J. Gawne
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| | - Francis Man
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
- Institute
of Pharmaceutical Science, School of Cancer
and Pharmaceutical Sciences, King’s College London, London, SE1 9NH, U.K.
| | - Philip J. Blower
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| | - Rafael T. M. de Rosales
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| |
Collapse
|
2
|
Ha B, Kim TJ, Moon E, Giaccia AJ, Pratx G. Flow radiocytometry using droplet optofluidics. Biosens Bioelectron 2021; 194:113565. [PMID: 34492500 PMCID: PMC8530933 DOI: 10.1016/j.bios.2021.113565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/22/2021] [Accepted: 08/11/2021] [Indexed: 11/29/2022]
Abstract
Flow-based cytometry methods are widely used to analyze heterogeneous cell populations. However, their use for small molecule studies remains limited due to bulky fluorescent labels that often interfere with biochemical activity in cells. In contrast, radiotracers require minimal modification of their target molecules and can track biochemical processes with negligible interference and high specificity. Here, we introduce flow radiocytometry (FRCM) that broadens the scope of current cytometry methods to include beta-emitting radiotracers as probes for single cell studies. FRCM uses droplet microfluidics and radiofluorogenesis to translate the radioactivity of single cells into a fluorescent signal that is then read out using a high-throughput optofluidic device. As a proof of concept, we quantitated [18F]fluorodeoxyglucose radiotracer uptake in single human breast cancer cells and successfully assessed the metabolic flux of glucose and its heterogeneity at the cellular level. We believe FRCM has potential applications ranging from analytical assays for cancer and other diseases to development of small-molecule drugs.
Collapse
Affiliation(s)
- Byunghang Ha
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305-5847, USA; Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305-3011, USA.
| | - Tae Jin Kim
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305-5847, USA
| | - Ejung Moon
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305-5847, USA
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305-5847, USA
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305-5847, USA.
| |
Collapse
|
3
|
Kiraga Ł, Kucharzewska P, Paisey S, Cheda Ł, Domańska A, Rogulski Z, Rygiel TP, Boffi A, Król M. Nuclear imaging for immune cell tracking in vivo – Comparison of various cell labeling methods and their application. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
Kim TJ, Ha B, Bick AD, Kim M, Tang SK, Pratx G. Microfluidics-Coupled Radioluminescence Microscopy for In Vitro Radiotracer Kinetic Studies. Anal Chem 2021; 93:4425-4433. [PMID: 33647202 PMCID: PMC8006742 DOI: 10.1021/acs.analchem.0c04321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Integrated bioassay systems that combine microfluidics and radiation detectors can deliver medical radiopharmaceuticals to live cells with precise timing, while minimizing radiation dose and sample volume. However, the spatial resolution of many radiation imaging systems is limited to bulk cell populations. Here, we demonstrate microfluidics-coupled radioluminescence microscopy (μF-RLM), a new integrated system that can image radiotracer uptake in live adherent cells growing inside microincubators with spatial resolution better than 30 μm. Our method enables on-chip radionuclide imaging by incorporating an inorganic scintillator plate (CdWO4) into a microfluidic chip. We apply this approach to investigate the factors that influence the dynamic uptake of [18F]fluorodeoxyglucose (FDG) by cancer cells. In the first experiment, we measured the effect of flow on FDG uptake of cells and found that a continuous flow of the radiotracer led to fourfold higher uptake than static incubation, suggesting that convective replenishment enhances molecular radiotracer transport into cells. In the second set of experiments, we applied pharmacokinetic modeling to show that lactic acidosis inhibits FDG uptake by cancer cells in vitro and that this decrease is primarily due to downregulation of FDG transport into the cells. The other two rate constants, which represent FDG export and FDG metabolism, were relatively unaffected by lactic acidosis. Lactic acidosis is common in solid tumors because of the dysregulated metabolism and inefficient vasculature. In conclusion, μF-RLM is a simple and practical approach for integrating high-resolution radionuclide imaging within standard microfluidics devices, thus potentially opening venues for investigating the efficacy of radiopharmaceuticals in in vitro cancer models.
Collapse
Affiliation(s)
- Tae Jin Kim
- Division of Medical Physics, Department of Radiation Oncology, Stanford University, 300 Pasteur Dr., Stanford, CA 94305, USA
| | - Byunghang Ha
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA 94305, USA
| | - Alison Dana Bick
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA 94305, USA
| | - Minkyu Kim
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA 94305, USA
| | - Sindy K.Y. Tang
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA 94305, USA
| | - Guillem Pratx
- Division of Medical Physics, Department of Radiation Oncology, Stanford University, 300 Pasteur Dr., Stanford, CA 94305, USA
| |
Collapse
|
5
|
Kim TJ, Wang Q, Shelor M, Pratx G. Single-cell radioluminescence microscopy with two-fold higher sensitivity using dual scintillator configuration. PLoS One 2020; 15:e0221241. [PMID: 32634153 PMCID: PMC7340323 DOI: 10.1371/journal.pone.0221241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 06/21/2020] [Indexed: 11/25/2022] Open
Abstract
Radioluminescence microscopy (RLM) is an imaging technique that allows quantitative analysis of clinical radiolabeled drugs and probes in single cells. However, the modality suffers from slow data acquisition (15–30 minutes), thus critically affecting experiments with short-lived radioactive drugs. To overcome this issue, we suggest an approach that significantly accelerates data collection. Instead of using a single scintillator to image the decay of radioactive molecules, we sandwiched the radiolabeled cells between two scintillators. As proof of concept, we imaged cells labeled with [18F]FDG, a radioactive glucose popularly used in oncology to image tumors. Results show that the double scintillator configuration increases the microscope sensitivity by two-fold, thus reducing the image acquisition time by half to achieve the same result as the single scintillator approach. The experimental results were also compared with Geant4 Monte Carlo simulation to confirm the two-fold increase in sensitivity with only minor degradation in spatial resolution. Overall, these findings suggest that the double scintillator configuration can be used to perform time-sensitive studies such as cell pharmacokinetics or cell uptake of short-lived radiotracers.
Collapse
Affiliation(s)
- Tae Jin Kim
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, California, United States of America
- * E-mail:
| | - Qian Wang
- Department of Bioengineering, University of California, Davis, California, United States of America
| | - Mark Shelor
- Department of Biomedical Engineering, University of California, Merced, California, United States of America
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, California, United States of America
| |
Collapse
|
6
|
Liu Z, Lan X. Microfluidic radiobioassays: a radiometric detection tool for understanding cellular physiology and pharmacokinetics. LAB ON A CHIP 2019; 19:2315-2339. [PMID: 31222194 DOI: 10.1039/c9lc00159j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The investigation of molecular uptake and its kinetics in cells is valuable for understanding the cellular physiological status, the observation of drug interventions, and the development of imaging agents and pharmaceuticals. Microfluidic radiobioassays, or microfluidic radiometric bioassays, constitute a radiometric imaging-on-a-chip technology for the assay of biological samples using radiotracers. From 2006 to date, microfluidic radiobioassays have shown advantages in many applications, including radiotracer characterization, enzyme activity radiobioassays, fast drug evaluation, single-cell imaging, facilitation of dynamic positron emission tomography (PET) imaging, and cellular pharmacokinetics (PK)/pharmacodynamics (PD) studies. These advantages lie in the minimized and integrated detection scheme, allowing real-time tracking of dynamic uptake, high sensitivity radiotracer imaging, and quantitative interpretation of imaging results. In this review, the basics of radiotracers, various radiometric detection methods, and applications of microfluidic radiobioassays will be introduced and summarized, and the potential applications and future directions of microfluidic radiobioassays will be forecasted.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Nuclear Medicine, Wuhan Union Hospital, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China.
| | | |
Collapse
|