1
|
Verger A, Tolboom N, Cicone F, Chang SM, Furtner J, Galldiks N, Gempt J, Guedj E, Huang RY, Johnson DR, Law I, Le Rhun E, Short SC, Bent MJVD, Weehaeghe DV, Vogelbaum MA, Wen PY, Albert NL, Preusser M. Joint EANM/EANO/RANO/SNMMI practice guideline/procedure standard for PET imaging of brain metastases: version 1.0. Eur J Nucl Med Mol Imaging 2025; 52:1822-1839. [PMID: 39762634 PMCID: PMC11928372 DOI: 10.1007/s00259-024-07038-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/15/2024] [Indexed: 03/22/2025]
Abstract
This joint practice guideline/procedure standard was collaboratively developed by the European Association of Nuclear Medicine (EANM), the Society of Nuclear Medicine and Molecular Imaging (SNMMI), the European Association of Neuro-Oncology (EANO), and the PET task force of the Response Assessment in Neurooncology Working Group (PET/RANO). Brain metastases are the most common malignant central nervous system (CNS) tumors. PET imaging with radiolabeled amino acids and to lesser extent [18F]FDG has gained considerable importance in the assessment of brain metastases, especially for the differential diagnosis between recurrent metastases and treatment-related changes which remains a limitation using conventional MRI. The aim of this guideline is to assist nuclear medicine physicians in recommending, performing, interpreting and reporting the results of brain PET imaging in patients with brain metastases. This practice guideline will define procedure standards for the application of PET imaging in patients with brain metastases in routine practice and clinical trials and will help to harmonize data acquisition and interpretation across centers.
Collapse
Affiliation(s)
- Antoine Verger
- Department of Nuclear Medicine & Nancyclotep Imaging Platform, CHRU Nancy and IADI INSERM, UMR 1254, Université de Lorraine, Nancy, France.
| | - Nelleke Tolboom
- Department of Radiology and Nuclear Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Francesco Cicone
- Nuclear Medicine Unit, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Susan M Chang
- Division of NeuroOncology, Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Julia Furtner
- Research Center for Medical Image Analysis and Artificial Intelligence (MIAAI), Faculty of Medicine and Dentistry, Danube Private University, Krems, 3500, Austria
| | - Norbert Galldiks
- Department of Neurology, Medical Faculty and University Hospital of Cologne, Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, University of Cologne, Juelich, Germany
| | - Jens Gempt
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eric Guedj
- Département de Médecine Nucléaire, Hôpital de la Timone, CERIMED, Institut Fresnel, Aix Marseille University, APHM, CNRS, Centrale Marseille, Marseille, France
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Ian Law
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Emilie Le Rhun
- Departments of Neurosurgery and Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Susan C Short
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - M J Van den Bent
- Department of Neurology, Brain Tumor Center at Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Donatienne Van Weehaeghe
- Department of Radiology and Nuclear Medicine, Ghent University Hospital, C. Heymanslaan 10, Ghent, 9000, Belgium
| | - Michael A Vogelbaum
- Department of NeuroOncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, USA
| | - Nathalie L Albert
- Department of Nuclear Medicine, LMU Hospital, LMU Munich, Munich, Germany
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Krause S, Florea A, Choi CH, Worthoff WA, Heinzel A, Fischer S, Burda N, Neumaier B, Shah NJ, Lohmann P, Mottaghy FM, Langen KJ, Stegmayr C. Autoradiography of Intracerebral Tumours in the Chick Embryo Model: A Feasibility Study Using Different PET Tracers. Mol Imaging Biol 2025; 27:151-162. [PMID: 39838234 PMCID: PMC12062108 DOI: 10.1007/s11307-025-01983-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025]
Abstract
PURPOSE In addition to rodent models, the chick embryo model has gained attention for radiotracer evaluation. Previous studies have investigated tumours on the chorioallantoic membrane (CAM), but its value for radiotracer imaging of intracerebral tumours has yet to be demonstrated. PROCEDURES Human U87 glioblastoma cells and U87-IDH1 mutant glioma cells were implanted into the brains of chick embryos at developmental day 5. After 12-14 days of tumour growth, blood-brain-barrier integrity was evaluated in vivo using MRI contrast enhancement or ex vivo with Evans blue dye. The tracers O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) (n = 5), 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine ([18F]FDOPA) (n = 3), or [68Ga] labelled quinoline-based small molecule fibroblast activation protein inhibitor ([68Ga]FAPI-46) (n = 4) were injected intravenously if solid tumours were detected with MRI. For time-activity curves for [18F]FET, additional micro PET (µPET) was performed. The chick embryos were sacrificed 60 min post-injection, and cryosections of the tumour-bearing brains were produced and evaluated with autoradiography and immunohistochemistry. RESULTS Intracerebral tumours were produced with a 100% success rate in viable chick embryos at the experimental endpoint. However, 52% of chick embryos (n = 85) did not survive the procedure to embryonic development day 20. For the evaluated radiotracers, the tumour-to-brain ratios (TBR) derived from ex vivo autoradiography, as well as the tracer kinetics derived from µPET for intracerebral chick embryo tumours, were comparable to those previously reported in rodents and patients: the TBRmean for [18F]FET was 1.69 ± 0.54 (n = 5), and 3.8 for one hypermetabolic tumour and < 2.0 for two isometabolic tumors using [18F]FDOPA, with a TBRmean of 1.92 ± 1,11 (n = 3). The TBRmean of [68Ga]FAPI-46 for intracerebral chick embryo tumours was 19.13 ± 0.64 (n = 4). An intact blood-tumour barrier was observed in one U87-MG tumour (n = 5). CONCLUSIONS Radiotracer imaging of intracerebral tumours in the chick embryo offers a fast model for the evaluation of radiotracer uptake, accumulation, and kinetics. Our results indicate a high comparability between intracerebral tumour imaging in chick embryos and xenograft rodent models or brain tumour patients.
Collapse
Affiliation(s)
- Sandra Krause
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - Alexandru Florea
- Department of Nuclear Medicine, RWTH Aachen University Hospital, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Chang-Hoon Choi
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Wieland A Worthoff
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Alexander Heinzel
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany
- Department for Nuclear Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Saskia Fischer
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Nicole Burda
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Bernd Neumaier
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany
- Department of Neurology, RWTH Aachen University Hospital, Aachen, Germany
- JARA - BRAIN - Translational Medicine, Aachen, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany
- Department of Nuclear Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, RWTH Aachen University Hospital, Aachen, Germany
- JARA - BRAIN - Translational Medicine, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany
- Department of Nuclear Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Carina Stegmayr
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany
- Department of Nuclear Medicine, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
3
|
Harat M, Miechowicz I, Rakowska J, Zarębska I, Małkowski B. A Biopsy-Controlled Prospective Study of Contrast-Enhancing Diffuse Glioma Infiltration Based on FET-PET and FLAIR. Cancers (Basel) 2024; 16:1265. [PMID: 38610944 PMCID: PMC11010945 DOI: 10.3390/cancers16071265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 04/14/2024] Open
Abstract
Accurately defining glioma infiltration is crucial for optimizing radiotherapy and surgery, but glioma infiltration is heterogeneous and MRI imperfectly defines the tumor extent. Currently, it is impossible to determine the tumor infiltration gradient within a FLAIR signal. O-(2-[18F]fluoroethyl)-L-tyrosine (FET)-PET often reveals high-grade glioma infiltration beyond contrast-enhancing areas on MRI. Here, we studied FET uptake dynamics in tumor and normal brain structures by dual-timepoint (10 min and 40-60 min post-injection) acquisition to optimize analysis protocols for defining glioma infiltration. Over 300 serial stereotactic biopsies from 23 patients (mean age 47, 12 female/11 male) of diffuse contrast-enhancing gliomas were taken from areas inside and outside contrast enhancement or outside the FET hotspot but inside FLAIR. The final diagnosis was G4 in 11, grade 3 in 10, and grade 2 in 2 patients. The target-to-background (TBRs) ratios and standardized uptake values (SUVs) were calculated in areas used for biopsy planning and in background structures. The optimal method and threshold values were determined to find a preferred strategy for defining glioma infiltration. Standard thresholding (1.6× uptake in the contralateral brain) in standard acquisition PET images differentiated a tumor of any grade from astrogliosis, although the uptake in astrogliosis and grade 2 glioma was similar. Analyzing an optimal strategy for infiltration volume definition astrogliosis could be accurately differentiated from tumor samples using a choroid plexus as a background. Early acquisition improved the AUC in many cases, especially within FLAIR, from 56% to 90% sensitivity and 41% to 61% specificity (standard TBR 1.6 vs. early TBR plexus). The current FET-PET evaluation protocols for contrast-enhancing gliomas are limited, especially at the tumor border where grade 2 tumor and astrogliosis have similar uptake, but using choroid plexus uptake in early acquisitions as a background, we can precisely define a tumor within FLAIR that was outside of the scope of current FET-PET protocols.
Collapse
Affiliation(s)
- Maciej Harat
- Department of Neurooncology and Radiosurgery, Franciszek Lukaszczyk Oncology Center, 85-796 Bydgoszcz, Poland
- Department of Clinical Medicine, Faculty of Medicine, University of Science and Technology, 85-796 Bydgoszcz, Poland
| | - Izabela Miechowicz
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 61-701 Poznań, Poland;
| | - Józefina Rakowska
- Department of Neurosurgery, 10th Military Research Hospital, 85-681 Bydgoszcz, Poland;
| | - Izabela Zarębska
- Department of Radiotherapy, Franciszek Lukaszczyk Oncology Center, 85-796 Bydgoszcz, Poland;
| | - Bogdan Małkowski
- Department of Nuclear Medicine, Franciszek Lukaszczyk Oncology Center, 85-796 Bydgoszcz, Poland
- Department of Diagnostic Imaging, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 85-067 Bydgoszcz, Poland
| |
Collapse
|
4
|
Norikane T, Mitamura K, Yamamoto Y, Manabe Y, Murao M, Arai-Okuda H, Hatakeyama T, Miyake K, Nishiyama Y. Comparative evaluation of 11C-methionine and 18F-fluorodeoxyglucose positron emission tomography for distinguishing between primary central nervous system lymphoma and isocitrate dehydrogenase-wildtype glioblastoma. J Neurooncol 2024; 166:195-201. [PMID: 38160415 DOI: 10.1007/s11060-023-04534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE Distinguishing between primary central nervous system lymphoma (PCNSL) and isocitrate dehydrogenase (IDH)-wildtype glioblastoma is important for therapeutic decision-making. This study aimed to compare the performance of 11C-methionine (MET) and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) for distinguishing between these two major malignant brain tumors. METHODS We retrospectively conducted qualitative and semiquantitative analyses of pre-treatment MET and FDG PET/computed tomography (CT) images of 22 patients with PCNSL and 64 patients with IDH-wildtype glioblastoma. For semiquantitative analysis, we calculated the tumor-to-normal tissue (T/N) ratio by dividing the maximum standardized uptake value (SUV) for the tumor (T) by the average SUV for the normal tissue (N). For performance evaluation, we employed receiver operating characteristic curve analysis and calculated the areas under the curve (AUC) values. RESULTS In the qualitative analysis, all PCNSLs and IDH-wildtype glioblastomas were MET-positive, while 95% and 84% of PCNSLs and IDH-wildtype glioblastomas, respectively, were FDG-positive. Eleven patients were excluded from the FDG PET/CT semiquantitative analysis because of hyperglycemia. There was no difference in MET T/N ratio between PCNSL and IDH-wildtype glioblastoma (p = 0.37). FDG T/N ratio was significantly higher in PCNSL than in IDH-wildtype glioblastoma (p < 0.001). The AUC value for distinguishing PCNSL from IDH-wildtype glioblastoma was significantly higher for the FDG T/N ratio (0.871) than for the MET T/N ratio (0.565) (p = 0.0027). CONCLUSION MET PET could detect both PCNSL and IDH-wildtype glioblastoma, but unlike FDG PET, it could not distinguish between these two major malignant brain tumors.
Collapse
Affiliation(s)
- Takashi Norikane
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Katsuya Mitamura
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Yuka Yamamoto
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan.
| | - Yuri Manabe
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Mitsumasa Murao
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Hanae Arai-Okuda
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Tetsuhiro Hatakeyama
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | - Keisuke Miyake
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | - Yoshihiro Nishiyama
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| |
Collapse
|
5
|
Cicone F, Galldiks N, Papa A, Langen KJ, Cascini GL, Minniti G. Repeated amino acid PET imaging for longitudinal monitoring of brain tumors. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00504-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Kaiser L, Holzgreve A, Quach S, Ingrisch M, Unterrainer M, Dekorsy FJ, Lindner S, Ruf V, Brosch-Lenz J, Delker A, Böning G, Suchorska B, Niyazi M, Wetzel CH, Riemenschneider MJ, Stöcklein S, Brendel M, Rupprecht R, Thon N, von Baumgarten L, Tonn JC, Bartenstein P, Ziegler S, Albert NL. Differential Spatial Distribution of TSPO or Amino Acid PET Signal and MRI Contrast Enhancement in Gliomas. Cancers (Basel) 2021; 14:cancers14010053. [PMID: 35008218 PMCID: PMC8750092 DOI: 10.3390/cancers14010053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 01/14/2023] Open
Abstract
Simple Summary Radiotracers targeting the translocator protein (TSPO) have recently gained substantial interest, since TSPO is overexpressed in malignant gliomas, where it correlates inversely with patient’s survival. The high-affinity TSPO PET ligand [18F]GE180 was found to depict tumor areas with a remarkably high contrast and has been shown to provide non-invasive information on histological tumor grades. Yet, its significance was questioned with the argument, that the high contrast may solely arise from nonspecific accumulation in tissue supplied by leaky vessels. This study aimed to address this question by providing a detailed evaluation of spatial associations between TSPO and amino acid PET with relative contrast enhancement in T1-weighted MRI. The results show that [18F]GE180 contrast does not reflect a disrupted blood–brain barrier (BBB) only and that multi-modal imaging generates complementary information, which may better depict spatial heterogeneity of tumor biology and may be used to individualize the therapy for each patient. Abstract In this study, dual PET and contrast enhanced MRI were combined to investigate their correlation per voxel in patients at initial diagnosis with suspected glioblastoma. Correlation with contrast enhancement (CE) as an indicator of BBB leakage was further used to evaluate whether PET signal is likely caused by BBB disruption alone, or rather attributable to specific binding after BBB passage. PET images with [18F]GE180 and the amino acid [18F]FET were acquired and normalized to healthy background (tumor-to-background ratio, TBR). Contrast enhanced images were normalized voxel by voxel with the pre-contrast T1-weighted MRI to generate relative CE values (rCE). Voxel-wise analysis revealed a high PET signal even within the sub-volumes without detectable CE. No to moderate correlation of rCE with TBR voxel-values and a small overlap as well as a larger distance of the hotspots delineated in rCE and TBR-PET images were detected. In contrast, voxel-wise correlation between both PET modalities was strong for most patients and hotspots showed a moderate overlap and distance. The high PET signal in tumor sub-volumes without CE observed in voxel-wise analysis as well as the discordant hotspots emphasize the specificity of the PET signals and the relevance of combined differential information from dual PET and MRI images.
Collapse
Affiliation(s)
- Lena Kaiser
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
- Correspondence:
| | - Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
| | - Stefanie Quach
- Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany; (S.Q.); (N.T.); (L.v.B.); (J.-C.T.)
| | - Michael Ingrisch
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.I.); (S.S.)
| | - Marcus Unterrainer
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.I.); (S.S.)
| | - Franziska J. Dekorsy
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, LMU Munich, 81377 Munich, Germany; (V.R.); (R.R.)
| | - Julia Brosch-Lenz
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
| | - Astrid Delker
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
| | - Guido Böning
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
| | | | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, 81377 Munich, Germany;
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christian H. Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany;
| | | | - Sophia Stöcklein
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.I.); (S.S.)
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany;
| | - Niklas Thon
- Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany; (S.Q.); (N.T.); (L.v.B.); (J.-C.T.)
| | - Louisa von Baumgarten
- Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany; (S.Q.); (N.T.); (L.v.B.); (J.-C.T.)
| | - Jörg-Christian Tonn
- Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany; (S.Q.); (N.T.); (L.v.B.); (J.-C.T.)
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
| | - Nathalie L. Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
7
|
Alshehri S, Prior J, Moshebah M, Schiappacasse L, Dunet V. Negative 18F-FET PET/CT in brain metastasis recurrence: a teaching case report. Eur J Hybrid Imaging 2021; 5:21. [PMID: 34806124 PMCID: PMC8606481 DOI: 10.1186/s41824-021-00115-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/08/2021] [Indexed: 12/01/2022] Open
Abstract
Positron emission tomography (PET) using O-(2-[18F]fluoroethyl)-L-tyrosine (18F-FET) PET has been shown to be a useful tool for differentiating radiation therapy outcomes, such as brain metastasis recurrence or radiation necrosis. We present the case of a female patient with brain metastases from pulmonary mucinous adenocarcinoma with suspicion of tumor recurrence on follow-up magnetic resonance imaging (MRI) after radiosurgery. 18F-FET PET/computed tomography (CT) was indicative of radiation necrosis. Due to the patient's medical history and the discrepancy between the brain MRI and PET/CT results, surgical biopsies were decided, which were positive for brain metastasis recurrence. The diagnosis of metastasis recurrence may also be challenging on 18F-FET PET/CT. In case of discrepancies between MRI and PET/CT results, false-negative 18F-FET PET/CT remains a possibility and requires careful follow-up or biopsy.
Collapse
Affiliation(s)
- Samirah Alshehri
- Service of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - John Prior
- Service of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Mohammed Moshebah
- Service of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Luis Schiappacasse
- Service of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Vincent Dunet
- Service of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Moon H, Byun BH, Lim I, Kim BI, Choi CW, Rhee CH, Lee KC, Woo SK, Park C, Kil HS, Chi DY, Youn SM, Lim SM. A Phase 0 Microdosing PET/CT Study Using O-[18F]Fluoromethyl-d-Tyrosine in Normal Human Brain and Brain Tumor. Clin Nucl Med 2021; 46:717-722. [PMID: 34034333 DOI: 10.1097/rlu.0000000000003735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The aim of the present study was to obtain information about distribution, radiation dosimetry, toxicity, and pharmacokinetics of O-[18F]fluoromethyl-d-tyrosine (d-18F-FMT), an amino acid PET tracer, in patients with brain tumors. PATIENTS AND METHODS A total of 6 healthy controls (age = 19-25 years, 3 males and 3 females) with brain PET images and radiation dosimetry and 12 patients (median age = 60 years, 6 males and 6 females) with primary (n = 5) or metastatic brain tumor (n = 7) were enrolled. We acquired 60-minute dynamic brain PET images after injecting 370 MBq of d-18F-FMT. Time-activity curves of d-18F-FMT uptake in normal brain versus brain tumors and tumor-to-background ratio were analyzed for each PET data set. RESULTS Normal cerebral uptake of d-18F-FMT decreased from 0 to 5 minutes after injection, but gradually increased from 10 to 60 minutes. Tumoral uptake of d-18F-FMT reached a peak before 30 minutes. Tumor-to-background ratio peaked at less than 15 minutes for 8 patients and more than 15 minutes for 4 patients. The mean effective dose was calculated to be 13.2 μSv/MBq. CONCLUSIONS Using d-18F-FMT as a PET radiotracer is safe. It can distinguish brain tumor from surrounding normal brain tissues with a high contrast. Early-time PET images of brain tumors should be acquired because the tumor-to-background ratio tended to reach a peak within 15 minutes after injection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kyo Chul Lee
- Division of RI Convergence, Korea Institute of Radiological and Medical Sciences
| | - Sang-Keun Woo
- Division of RI Convergence, Korea Institute of Radiological and Medical Sciences
| | | | | | | | | | | |
Collapse
|
9
|
Girard A, Le Reste PJ, Metais A, Chaboub N, Devillers A, Saint-Jalmes H, Jeune FL, Palard-Novello X. Additive Value of Dynamic FDOPA PET/CT for Glioma Grading. Front Med (Lausanne) 2021; 8:705996. [PMID: 34307430 PMCID: PMC8299331 DOI: 10.3389/fmed.2021.705996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 11/29/2022] Open
Abstract
Purpose: The aim of this study was to assess the value of the FDOPA PET kinetic parameters extracted using full kinetic analysis for tumor grading with neuronavigation-guided biopsies as reference in patients with newly-diagnosed gliomas. Methods: Fourteen patients with untreated gliomas were investigated. Twenty minutes of dynamic positron-emission tomography (PET) imaging and a 20-min static image 10 min after injection were reconstructed from a 40-min list-mode acquisition immediately after FDOPA injection. Tumors volume-of-interest (VOI) were generated based on the MRI-guided brain biopsies. Static parameters (TBRmax and TBRmean) and kinetic parameters [K1 and k2 using full kinetic analysis with the reversible single-tissue compartment model with blood volume parameter and the time-to-peak (TTP)] were extracted. Performances of each parameter for differentiating low-grade gliomas (LGG) from high-grade gliomas (HGG) were evaluated by receiver-operating characteristic analyses (area under the curve; AUC). Results: Thirty-two tumoral VOI were analyzed. K1, k2, and TTP were significantly higher for HGG than for LGG (median K1-value = 0.124 vs. 0.074 ml/ccm/min, p = 0.025, median k2-value = 0.093 vs. 0.063 min−1, p = 0.025, and median TTP-value = 10.0 vs. 15.0 min, p = 0.025). No significant difference was observed for the static parameters. The AUC for the kinetic parameters was higher than the AUC for the static parameters (respectively, AUCK1 = 0.787, AUCk2 = 0.785, AUCTTP = 0.775, AUCTBRmax = 0.551, AUCTBRmean = 0.575), significantly compared to TBRmax (respectively, p = 0.001 for K1, p = 0.031 for k2, and p = 0.029 for TTP). Conclusion: The present study suggests an additive value of FDOPA PET/CT kinetic parameters for newly-diagnosed gliomas grading.
Collapse
Affiliation(s)
- Antoine Girard
- Univ Rennes, CLCC Eugène Marquis, Noyau Gris Centraux EA 4712, Rennes, France
| | | | | | - Nibras Chaboub
- Univ Rennes, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, Rennes, France
| | - Anne Devillers
- Univ Rennes, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, Rennes, France
| | - Hervé Saint-Jalmes
- Univ Rennes, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, Rennes, France
| | - Florence Le Jeune
- Univ Rennes, CLCC Eugène Marquis, Noyau Gris Centraux EA 4712, Rennes, France
| | | |
Collapse
|
10
|
Cicone F, Carideo L, Scaringi C, Romano A, Mamede M, Papa A, Tofani A, Cascini GL, Bozzao A, Scopinaro F, Minniti G. Long-term metabolic evolution of brain metastases with suspected radiation necrosis following stereotactic radiosurgery: longitudinal assessment by F-DOPA PET. Neuro Oncol 2021; 23:1024-1034. [PMID: 33095884 DOI: 10.1093/neuonc/noaa239] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The evolution of radiation necrosis (RN) varies depending on the combination of radionecrotic tissue and active tumor cells. In this study, we characterized the long-term metabolic evolution of RN by sequential PET/CT imaging with 3,4-dihydroxy-6-[18F]-fluoro-l-phenylalanine (F-DOPA) in patients with brain metastases following stereotactic radiosurgery (SRS). METHODS Thirty consecutive patients with 34 suspected radionecrotic brain metastases following SRS repeated F-DOPA PET/CT every 6 months or yearly in addition to standard MRI monitoring. Diagnoses of local progression (LP) or RN were confirmed histologically or by clinical follow-up. Semi-quantitative parameters of F-DOPA uptake were extracted at different time points, and their diagnostic performances were compared with those of corresponding contrast-enhanced MRI. RESULTS Ninety-nine F-DOPA PET scans were acquired over a median period of 18 (range: 12-66) months. Median follow-up from the baseline F-DOPA PET/CT was 48 (range 21-95) months. Overall, 24 (70.6%) and 10 (29.4%) lesions were classified as RN and LP, respectively. LP occurred after a median of 18 (range: 12-30) months from baseline PET. F-DOPA tumor-to-brain ratio (TBR) and relative standardized uptake value (rSUV) increased significantly over time in LP lesions, while remaining stable in RN lesions. The parameter showing the best diagnostic performance was rSUV (accuracy = 94.1% for the optimal threshold of 1.92). In contrast, variations of the longest tumor dimension measured on contrast-enhancing MRI did not distinguish between RN and LP. CONCLUSION F-DOPA PET has a high diagnostic accuracy for assessing the long-term evolution of brain metastases following SRS.
Collapse
Affiliation(s)
- Francesco Cicone
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Luciano Carideo
- Nuclear Medicine Unit, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Claudia Scaringi
- Radiation Oncology Unit, UPMC Hillman Cancer Center, San Pietro Hospital FBF, Rome, Italy
| | - Andrea Romano
- Neuroradiology Unit, Sant'Andrea Hospital, Department of Neuroscience, Mental Health and Sense Organs (NESMOS) Sapienza University of Rome, Rome, Italy
| | - Marcelo Mamede
- Department of Anatomy and Imaging, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Annalisa Papa
- Nuclear Medicine Unit, University Hospital "Mater Domini," Catanzaro, Italy
| | - Anna Tofani
- Nuclear Medicine Unit, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Lucio Cascini
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy.,Nuclear Medicine Unit, University Hospital "Mater Domini," Catanzaro, Italy
| | - Alessandro Bozzao
- Neuroradiology Unit, Sant'Andrea Hospital, Department of Neuroscience, Mental Health and Sense Organs (NESMOS) Sapienza University of Rome, Rome, Italy
| | - Francesco Scopinaro
- Nuclear Medicine Unit, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Minniti
- Radiation Oncology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, Siena, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy
| |
Collapse
|
11
|
Castellano A, Bailo M, Cicone F, Carideo L, Quartuccio N, Mortini P, Falini A, Cascini GL, Minniti G. Advanced Imaging Techniques for Radiotherapy Planning of Gliomas. Cancers (Basel) 2021; 13:1063. [PMID: 33802292 PMCID: PMC7959155 DOI: 10.3390/cancers13051063] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
The accuracy of target delineation in radiation treatment (RT) planning of cerebral gliomas is crucial to achieve high tumor control, while minimizing treatment-related toxicity. Conventional magnetic resonance imaging (MRI), including contrast-enhanced T1-weighted and fluid-attenuated inversion recovery (FLAIR) sequences, represents the current standard imaging modality for target volume delineation of gliomas. However, conventional sequences have limited capability to discriminate treatment-related changes from viable tumors, owing to the low specificity of increased blood-brain barrier permeability and peritumoral edema. Advanced physiology-based MRI techniques, such as MR spectroscopy, diffusion MRI and perfusion MRI, have been developed for the biological characterization of gliomas and may circumvent these limitations, providing additional metabolic, structural, and hemodynamic information for treatment planning and monitoring. Radionuclide imaging techniques, such as positron emission tomography (PET) with amino acid radiopharmaceuticals, are also increasingly used in the workup of primary brain tumors, and their integration in RT planning is being evaluated in specialized centers. This review focuses on the basic principles and clinical results of advanced MRI and PET imaging techniques that have promise as a complement to RT planning of gliomas.
Collapse
Affiliation(s)
- Antonella Castellano
- Neuroradiology Unit, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (A.C.); (A.F.)
| | - Michele Bailo
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (M.B.); (P.M.)
| | - Francesco Cicone
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, and Nuclear Medicine Unit, University Hospital “Mater Domini”, 88100 Catanzaro, Italy;
| | - Luciano Carideo
- National Cancer Institute, G. Pascale Foundation, 80131 Naples, Italy;
| | - Natale Quartuccio
- A.R.N.A.S. Ospedale Civico Di Cristina Benfratelli, 90144 Palermo, Italy;
| | - Pietro Mortini
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (M.B.); (P.M.)
| | - Andrea Falini
- Neuroradiology Unit, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (A.C.); (A.F.)
| | - Giuseppe Lucio Cascini
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, and Nuclear Medicine Unit, University Hospital “Mater Domini”, 88100 Catanzaro, Italy;
| | - Giuseppe Minniti
- Radiation Oncology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, 53100 Siena, Italy;
- IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| |
Collapse
|
12
|
Zaragori T, Ginet M, Marie PY, Roch V, Grignon R, Gauchotte G, Rech F, Blonski M, Lamiral Z, Taillandier L, Imbert L, Verger A. Use of static and dynamic [ 18F]-F-DOPA PET parameters for detecting patients with glioma recurrence or progression. EJNMMI Res 2020; 10:56. [PMID: 32472232 PMCID: PMC7260331 DOI: 10.1186/s13550-020-00645-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/13/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Static [18F]-F-DOPA PET images are currently used for identifying patients with glioma recurrence/progression after treatment, although the additional diagnostic value of dynamic parameters remains unknown in this setting. The aim of this study was to evaluate the performances of static and dynamic [18F]-F-DOPA PET parameters for detecting patients with glioma recurrence/progression as well as assess further relationships with patient outcome. METHODS Fifty-one consecutive patients who underwent an [18F]-F-DOPA PET for a suspected glioma recurrence/progression at post-resection MRI, were retrospectively included. Static parameters, including mean and maximum tumor-to-normal-brain (TBR) ratios, tumor-to-striatum (TSR) ratios, and metabolic tumor volume (MTV), as well as dynamic parameters with time-to-peak (TTP) values and curve slope, were tested for predicting the following: (1) glioma recurrence/progression at 6 months after the PET exam and (2) survival on longer follow-up. RESULTS All static parameters were significant predictors of glioma recurrence/progression (accuracy ≥ 94%) with all parameters also associated with mean progression-free survival (PFS) in the overall population (all p < 0.001, 29.7 vs. 0.4 months for TBRmax, TSRmax, and MTV). The curve slope was the sole dynamic PET predictor of glioma recurrence/progression (accuracy = 76.5%) and was also associated with mean PFS (p < 0.001, 18.0 vs. 0.4 months). However, no additional information was provided relative to static parameters in multivariate analysis. CONCLUSION Although patients with glioma recurrence/progression can be detected by both static and dynamic [18F]-F-DOPA PET parameters, most of this diagnostic information can be achieved by conventional static parameters.
Collapse
Affiliation(s)
- Timothée Zaragori
- Department of Nuclear Medicine & Nancyclotep Imaging platform, Université de Lorraine, CHRU-Nancy, F-54000, Nancy, France.,IADI, INSERM, UMR 1254, Université de Lorraine, F-54000, Nancy, France
| | - Merwan Ginet
- Department of Nuclear Medicine & Nancyclotep Imaging platform, Université de Lorraine, CHRU-Nancy, F-54000, Nancy, France
| | - Pierre-Yves Marie
- Department of Nuclear Medicine & Nancyclotep Imaging platform, Université de Lorraine, CHRU-Nancy, F-54000, Nancy, France.,INSERM, U1116, Université de Lorraine, F-54000, Nancy, France
| | - Véronique Roch
- Department of Nuclear Medicine & Nancyclotep Imaging platform, Université de Lorraine, CHRU-Nancy, F-54000, Nancy, France
| | - Rachel Grignon
- Department of Nuclear Medicine & Nancyclotep Imaging platform, Université de Lorraine, CHRU-Nancy, F-54000, Nancy, France
| | - Guillaume Gauchotte
- Department of Pathology, Université de Lorraine, CHRU-Nancy, F-54000, Nancy, France.,INSERM U1256, Université de Lorraine, F-54000, Nancy, France
| | - Fabien Rech
- Department of Neurosurgery, Université de Lorraine, CHRU-Nancy, F-54000, Nancy, France.,Centre de Recherche en Automatique de Nancy CRAN, CNRS UMR 7039, Université de Lorraine, F-54000, Nancy, France
| | - Marie Blonski
- Centre de Recherche en Automatique de Nancy CRAN, CNRS UMR 7039, Université de Lorraine, F-54000, Nancy, France.,Department of Neuro-oncology, Université de Lorraine, CHRU-Nancy, F-54000, Nancy, France
| | - Zohra Lamiral
- INSERM, U1116, Université de Lorraine, F-54000, Nancy, France
| | - Luc Taillandier
- Centre de Recherche en Automatique de Nancy CRAN, CNRS UMR 7039, Université de Lorraine, F-54000, Nancy, France.,Department of Neuro-oncology, Université de Lorraine, CHRU-Nancy, F-54000, Nancy, France
| | - Laëtitia Imbert
- Department of Nuclear Medicine & Nancyclotep Imaging platform, Université de Lorraine, CHRU-Nancy, F-54000, Nancy, France.,IADI, INSERM, UMR 1254, Université de Lorraine, F-54000, Nancy, France
| | - Antoine Verger
- Department of Nuclear Medicine & Nancyclotep Imaging platform, Université de Lorraine, CHRU-Nancy, F-54000, Nancy, France. .,IADI, INSERM, UMR 1254, Université de Lorraine, F-54000, Nancy, France.
| |
Collapse
|
13
|
|
14
|
The mean striatal 18F-DOPA uptake is not a reliable cut-off threshold for biological tumour volume definition of glioma. Eur J Nucl Med Mol Imaging 2019; 46:1051-1053. [DOI: 10.1007/s00259-019-4276-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 12/27/2022]
|