1
|
Taheri Z, Mozafari N, Moradian G, Lovison D, Dehshahri A, De Marco R. Integrin-Specific Stimuli-Responsive Nanomaterials for Cancer Theranostics. Pharmaceutics 2024; 16:1441. [PMID: 39598564 PMCID: PMC11597626 DOI: 10.3390/pharmaceutics16111441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Cancer is one of the leading causes of death worldwide. The tumor microenvironment makes the tumor difficult to treat, favoring drug resistance and the formation of metastases, resulting in death. Methods: Stimuli-responsive nanoparticles have shown great capacity to be used as a powerful strategy for cancer treatment, diagnostic, as well as theranostic. Nanocarriers are not only able to respond to internal stimuli such as oxidative stress, weakly acidic pH, high temperature, and the high expression of particular enzymes, but also to external stimuli such as light and paramagnetic characteristics to be exploited. Results: In this work, stimulus-responsive nanocarriers functionalized with arginine-glycine-aspartic acid (Arg-Gly-Asp) sequence as well as mimetic sequences with the capability to recognize integrin receptors are analyzed. Conclusions: This review highlights the progress that has been made in the development of new nanocarriers, capable of responding to endogenous and exogenous stimuli essential to combat cancer.
Collapse
Affiliation(s)
- Zahra Taheri
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-17336, Iran; (Z.T.); (N.M.)
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-17336, Iran;
| | - Negin Mozafari
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-17336, Iran; (Z.T.); (N.M.)
| | - Ghazal Moradian
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-17336, Iran;
| | - Denise Lovison
- Department of Agricultural, Food, Environmental and Animal Sciences (Di4A), University of Udine, 33100 Udine, Italy;
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-17336, Iran
| | - Rossella De Marco
- Department of Agricultural, Food, Environmental and Animal Sciences (Di4A), University of Udine, 33100 Udine, Italy;
| |
Collapse
|
2
|
Chen L, Fu H, He H, Lou K, Li Q, Ye J, Feng G, Yu C. Automated Synthesis and Preclinical Evaluation of Optimized Integrin α6-Targeted Positron Emission Tomography Imaging of Pancreatic Cancer. Mol Pharm 2023; 20:4277-4284. [PMID: 37463487 DOI: 10.1021/acs.molpharmaceut.3c00321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Integrin α6 has been considered a promising biomarker, is overexpressed in many tumors, and plays a vital role in tumor formation, recurrence, and metastasis. In this study, we identified a novel high-affinity integrin α6-targeted peptide named RD2 (Arg-Trp-Tyr-Asp-PEG4)2-Lys-Lys and developed a 18F-radiolabeled peptide tracer ([18F]-AlF-NOTA-RD2) and evaluated its potential application in positron emission tomography (PET) imaging of pancreatic cancer. [18F]-AlF-NOTA-RD2 was produced using GMP (Good Manufacturing Practice of Medical Products)-compliant automatic radiosynthesis on a single GE FASTLab2 cassette-type synthesis module. The stability of [18F]-AlF-NOTA-RD2 was analyzed in phosphate-buffered saline (PBS) and fetal bovine serum (FBS). The cell uptake assay of the tracer was assessed using PANC-1 cells. In addition, small-animal PET imaging and biodistribution studies of [18F]-AlF-NOTA-RD2 were performed in pancreatic cancer subcutaneous tumor-bearing mice. The PET tracer [18F]-AlF-NOTA-RD2 was obtained with a radiochemical yield of 23.7 ± 4.7%, radiochemical purity of >99%, and molar activity of 165.7 ± 59.1 GBq/μmol. [18F]-AlF-NOTA-RD2 exhibited good in vitro stability in PBS and FBS. LogP octanol water value for the tracer was -2.28 ± 0.05 (n = 3). The binding affinity of RD2 to the integrin α6 protein (Kd = 0.13 ± 3.65 μM, n = 3) was significantly higher than that of the RWY (CRWYDENAC) (Kd = 6.97 ± 1.44 μM, n = 3). Small-animal PET imaging and biodistribution also revealed that [18F]-AlF-NOTA-RD2 displayed rapid and good tumor uptake and lower liver background uptake in PANC-1 tumor-bearing mice. [18F]-AlF-NOTA-RD2 showed significant radioactivity accumulation in tumors and was successfully blocked by NOTA-RD2. Compared with [18F]-FDG, [18F]-AlF-NOTA-RD2 PET imaging and biodistribution studies in PANC-1 xenograft tumor-bearing mice confirmed a good tumor-to-muscle ratio (8.69 ± 2.03 vs 1.41 ± 0.23, respectively) at 0.5 h and (2.99 ± 3.02 vs 1.43 ± 0.17, respectively) at 1 h post injection. Autoradiography of human pancreatic cancer tumor tissues further confirmed high accumulation of [18F]-AlF-NOTA-RD2. In summary, we developed an optimized integrin α6-targeted imaging tracer and obtained high radioactivity products with a cassette-type synthesis module; moreover, the tracer exhibited good binding affinity with integrin α6 and good target specificity for PANC-1 cells in xenograft pancreatic tumor-bearing mice, demonstrating its promising application as a noninvasive PET radiotracer of integrin α6 expression in pancreatic cancer.
Collapse
Affiliation(s)
- Liping Chen
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Binhu District, Wuxi 214062, P.R. China
| | - Haitian Fu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Binhu District, Wuxi 214062, P.R. China
| | - Huihui He
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Binhu District, Wuxi 214062, P.R. China
| | - Kequan Lou
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Binhu District, Wuxi 214062, P.R. China
| | - Qingbo Li
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Binhu District, Wuxi 214062, P.R. China
| | - Jiacong Ye
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, P.R. China
| | - Guokai Feng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, P.R. China
| | - Chunjing Yu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Binhu District, Wuxi 214062, P.R. China
| |
Collapse
|
3
|
Lin YZ, Wu Y, Cao DH, Peng YJ, Deng J, Lin WJ, Si-Tu MY, Zhuo L, Chen JM, Lei MX, Liu RB, Zhang WG, Li JJ, Yang XC, Feng GK. Integrin α6 Targeted Near Infrared Fluorescent Imaging and Photoacoustic Imaging of Hepatocellular Carcinoma in Mice. J Clin Transl Hepatol 2023; 11:110-117. [PMID: 36406330 PMCID: PMC9647114 DOI: 10.14218/jcth.2021.00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/15/2022] [Accepted: 03/17/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is the fourth most common cause of cancer-related death and ranks sixth in terms of incident cases worldwide. The purpose of this study was to develop an effective and sensitive method to distinguish liver cancer tissues from normal tissues in HCC patients. Integrin α6 is a promising cell surface target for molecular imaging of HCC, where it is overexpressed and is a prognostic biomarker. We previously identified an integrin α6-targeted peptide CRWYDENAC (RWY) that has been used for positron emission tomography (PET) imaging of HCC in mouse models. METHODS We labeled the integrin α6-targeted RWY peptide with cyanine 7 (Cy7) to form an optical probe (Cy7-RWY) for near infrared fluorescent (NIRF) and photoacoustic (PA) imaging in HCC. Mice transplanted with subcutaneous HCC-LM3 or orthotopic HCC-H22 cells that overexpressed integrin α6 were intravenously injected with Cy7-RWY and its corresponding Cy7-control. NIRF and PA images of mice were collected from 0 to 48 h after injection. RESULTS Both NIRF and PA signals started to accumulate in the tumor 2 h after injection of Cy7-RWY and peaked at 24 h. CONCLUSIONS Cy7-RWY is a promising optical probe for NIRF and PA imaging of HCC in mice, and has potential clinical application for HCC detection.
Collapse
Affiliation(s)
- Yan-Zhu Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - You Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - De-Hai Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yong-Jian Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jun Deng
- Guangdong Institute for Drug Control, Department of Biologic Products, Guangzhou, Guangdong, China
| | - Wen-Jie Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Min-Yi Si-Tu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Ling Zhuo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jie-Min Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Man-Xia Lei
- Department of Endocrinology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Rong-Bin Liu
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei-Guang Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jian-Jun Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiao-Chun Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Correspondence to: Guo-Kai Feng and Xiao-Chun Yang, Sun Yat-sen University Cancer Center/Cancer Hospital, State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, Guangdong 510060, China. ORCID: https://orcid.org/0000-0002-8251-291X (GKF), https://orcid.org/0000-0002-5508-5000 (XCY). Tel: +86-20-87340256 (GKF) +86-13503048769 (XCY), E-mail: mailto: (GKF), mailto: (XCY)
| | - Guo-Kai Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Correspondence to: Guo-Kai Feng and Xiao-Chun Yang, Sun Yat-sen University Cancer Center/Cancer Hospital, State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, Guangdong 510060, China. ORCID: https://orcid.org/0000-0002-8251-291X (GKF), https://orcid.org/0000-0002-5508-5000 (XCY). Tel: +86-20-87340256 (GKF) +86-13503048769 (XCY), E-mail: mailto: (GKF), mailto: (XCY)
| |
Collapse
|
4
|
Zhao D, Cao J, Zhang L, Zhang S, Wu S. Targeted Molecular Imaging Probes Based on Magnetic Resonance Imaging for Hepatocellular Carcinoma Diagnosis and Treatment. BIOSENSORS 2022; 12:bios12050342. [PMID: 35624643 PMCID: PMC9138815 DOI: 10.3390/bios12050342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most commonly malignant tumor and the third leading cause of cancer-related death in the world, and the early diagnosis and treatment of patients with HCC is core in improving its prognosis. The early diagnosis of HCC depends largely on magnetic resonance imaging (MRI). MRI has good soft-tissue resolution, which is the international standard method for the diagnosis of HCC. However, MRI is still insufficient in the diagnosis of some early small HCCs and malignant nodules, resulting in false negative results. With the deepening of research on HCC, researchers have found many specific molecular biomarkers on the surface of HCC cells, which may assist in diagnosis and treatment. On the other hand, molecular imaging has progressed rapidly in recent years, especially in the field of cancer theranostics. Hence, the preparation of molecular imaging probes that can specifically target the biomarkers of HCC, combined with MRI testing in vivo, may achieve the theranostic purpose of HCC in the early stage. Therefore, in this review, taking MR imaging as the basic point, we summarized the recent progress regarding the molecular imaging targeting various types of biomarkers on the surface of HCC cells to improve the theranostic rate of HCC. Lastly, we discussed the existing obstacles and future prospects of developing molecular imaging probes as HCC theranostic nanoplatforms.
Collapse
Affiliation(s)
- Dongxu Zhao
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China;
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jian Cao
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215006, China;
| | - Lei Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
- Correspondence: (L.Z.); (S.Z.); (S.W.)
| | - Shaohua Zhang
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China;
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Correspondence: (L.Z.); (S.Z.); (S.W.)
| | - Song Wu
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China;
- Department of Urology, The Affiliated South China Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Correspondence: (L.Z.); (S.Z.); (S.W.)
| |
Collapse
|
5
|
Zhang W, Li Y, Chen G, Yang X, Hu J, Zhang X, Feng G, Wang H. Integrin α6-Targeted Molecular Imaging of Central Nervous System Leukemia in Mice. Front Bioeng Biotechnol 2022; 10:812277. [PMID: 35284414 PMCID: PMC8905628 DOI: 10.3389/fbioe.2022.812277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/17/2022] [Indexed: 11/14/2022] Open
Abstract
Central nervous system leukemia (CNS-L) is caused by leukemic cells infiltrating into the meninges or brain parenchyma and remains the main reason for disease relapse. Currently, it is hard to detect CNS-L accurately by clinically available imaging models due to the relatively low amount of tumor cells, confined blood supply, and the inferior glucose metabolism intensity. Recently, integrin α6-laminin interactions have been identified to mediate CNS-L, which suggests that integrin α6 may be a promising molecular imaging target for the detection of CNS-L. The acute lymphoblastic leukemia (ALL) cell line NALM6 stabled and transfected with luciferase was used to establish the CNS-L mouse model. CNS-L-bearing mice were monitored and confirmed by bioluminescence imaging. Three of our previously developed integrin α6-targeted peptide-based molecular imaging agents, Cy5-S5 for near-infrared fluorescence (NIRF), Gd-S5 for magnetic resonance (MR), and 18F-S5 for positron emission tomography (PET) imaging, were employed for the molecular imaging of these CNS-L-bearing mice. Bioluminescence imaging showed a local intensive signal in the heads among CNS-L-bearing mice; meanwhile, Cy5-S5/NIRF imaging produced intensive fluorescence intensity in the same head regions. Moreover, Gd-S5/MR imaging generated superior MR signal enhancement at the site of meninges, which were located between the skull bone and brain parenchyma. Comparatively, MR imaging with the clinically available MR enhancer Gd-DTPA did not produce the distinguishable MR signal in the same head regions. Additionally, 18F-S5/PET imaging also generated focal radio-concentration at the same head regions, which generated nearly 5-times tumor-to-background ratio compared to the clinically available PET radiotracer 18F-FDG. Finally, pathological examination identified layer-displayed leukemic cells in the superficial part of the brain parenchyma tissue, and immunohistochemical staining confirmed the overexpression of the integrin α6 within the lesion. These findings suggest the potential application of these integrin α6-targeted molecular imaging agents for the accurate detection of CNS-L.
Collapse
Affiliation(s)
- Wenbiao Zhang
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yongjiang Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guanjun Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Hematological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaochun Yang
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Junfeng Hu
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaofei Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Xiaofei Zhang, ; Guokai Feng, ; Hua Wang,
| | - Guokai Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Xiaofei Zhang, ; Guokai Feng, ; Hua Wang,
| | - Hua Wang
- Department of Hematological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Xiaofei Zhang, ; Guokai Feng, ; Hua Wang,
| |
Collapse
|
6
|
Tang S, Yang X, Zhou C, Mei Y, Ye J, Zhang X, Feng G, Zhang W, Zhang X, Fan W. Sodium Pump Na + /K + ATPase Subunit α1-Targeted Positron Emission Tomography Imaging of Hepatocellular Carcinoma in Mouse Models. Mol Imaging Biol 2021; 24:384-393. [PMID: 34622423 DOI: 10.1007/s11307-021-01659-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/09/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Positron emission tomography (PET) imaging was not efficiently used in the early diagnosis of hepatocellular carcinoma (HCC) due to the lack of appropriate tracers. Sodium pump Na + /K + ATPase subunit α1 (NKAα1) emerges to be a potential diagnostic biomarker of HCC. Here, we investigated the feasibility of 18F-ALF-NOTA-S3, a PET tracer based on an NKAα1 peptide, to detect small HCC. PROCEDURES GEPIA database was searched to obtain the expression characteristics of NKAα1 in HCC and its relationship with the prognosis. PET/CT was performed in orthotopic, diethylnitrosamine (DEN)-induced and genetically engineered HCC mouse models to evaluate the use of 18F-ALF-NOTA-S3 to detect HCC lesions. RESULTS NKAα1 is overexpressed in early HCC with a high positive rate and may correlate with poor survival. In orthotopic, DEN-induced and genetically engineered HCC mouse models, PET/CT imaging showed a high accumulation of 18F-ALF-NOTA-S3 in the tumor. The tumor-to-liver ratios are 2.56 ± 1.02, 4.41 ± 1.09, and 4.59 ± 0.65, respectively. Upregulated NKAα1 expression in tumors were verified by immunohistochemistry. Furthermore, 18F-ALF-NOTA-S3 has the ability to detect small HCC lesions with diameters of 2-5 mm. CONCLUSIONS NKAα1 may serve as a suitable diagnostic biomarker for HCC. 18F-ALF-NOTA-S3 shows great potential for PET imaging of HCC.
Collapse
Affiliation(s)
- Si Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - XiaoChun Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Chao Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yan Mei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - JiaCong Ye
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - XiaoFei Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - GuoKai Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - WeiGuang Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China. .,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Xu Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China. .,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Wei Fan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China. .,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
7
|
Lin BQ, Zhang WB, Zhao J, Zhou XH, Li YJ, Deng J, Zhao Q, Fu G, Xie CM, Xu YK, Feng GK. An Optimized Integrin α6-Targeted Magnetic Resonance Probe for Molecular Imaging of Hepatocellular Carcinoma in Mice. J Hepatocell Carcinoma 2021; 8:645-656. [PMID: 34235103 PMCID: PMC8244641 DOI: 10.2147/jhc.s312921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/20/2021] [Indexed: 12/25/2022] Open
Abstract
Introduction Integrin α6 is an attractive diagnostic biomarker for molecular imaging of hepatocellular carcinoma (HCC) as it has an extremely high positive rate (approximately 94%) in clinical early-stage HCC. In this study, based on our previously identified integrin α6-targeted peptide, we developed an optimized integrin α6-targeted magnetic resonance (MR) probe dubbed DOTA(Gd)-ANADYWR for MR imaging of HCC in mice. Materials and Methods The longitudinal (R1) relaxivity of DOTA(Gd)-ANADYWR was measured on a 3.0 T MR system . The specific tumor enhancement of the agent was investigated in four distinct mouse models, including subcutaneous, orthotopic, genetically engineered and chemically induced HCC mice. Results The R1 relaxivity value of DOTA(Gd)-ANADYWR is 5.11 mM−1s−1 at 3.0 T, which is similar to that of the nonspecific clinical agent Gadoteridol. DOTA(Gd)-ANADYWR generated superior enhanced MR signal in HCC lesions and provided complementary enhancement MR signals to the clinically available hepatobiliary MR contrast agent gadoxetate disodium (Gd-EOB-DTPA). Importantly, DOTA(Gd)-ANADYWR could efficiently visualize small HCC lesion (approximately 1 mm) which was hardly detected by the clinical Gd-EOB-DTPA. Conclusion These findings suggest the potential application of this integrin α6-targeted MR probe for the detection of HCC, particularly for small HCC.
Collapse
Affiliation(s)
- Bing-Quan Lin
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, 510515, People's Republic of China
| | - Wen-Biao Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Medical Imaging, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Jing Zhao
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Xu-Hui Zhou
- Department of Radiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, People's Republic of China
| | - Yong-Jiang Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Jun Deng
- Department of Biological Products, Guangdong Institute for Drug Control, Guangzhou, 510663, People's Republic of China
| | - Qin Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Medical Imaging, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Gui Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Medical Imaging, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Chuan-Miao Xie
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Yi-Kai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, 510515, People's Republic of China
| | - Guo-Kai Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| |
Collapse
|