1
|
Rueda A, Serna N, Mangues R, Villaverde A, Unzueta U. Targeting the chemokine receptor CXCR4 for cancer therapies. Biomark Res 2025; 13:68. [PMID: 40307933 PMCID: PMC12044942 DOI: 10.1186/s40364-025-00778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/13/2025] [Indexed: 05/02/2025] Open
Abstract
The C-X-C chemokine receptor type 4 (CXCR4) has emerged as a key molecular biomarker for cancer therapies due to its critical role in tumor progression and metastases by displaying a stem cells phenotype. Its overexpression has been observed in more than 20 types of cancers, including solid tumors and hematological malignancies, and it is often associated with tumor aggressiveness and poor prognosis. Being initially recognized as a co-receptor involved in HIV infection, numerous CXCR4-targeting ligands and antagonists, including small molecules, peptides and biologics have been identified over the past decades. While only few of them have been used in the context of cancer therapies, recent biotechnological advancements using CXCR4 as a molecular target are showing significant potential to revolutionize future cancer therapies. Therefore, this review highlights the biotechnological innovations developed for cancer therapy and diagnosis by targeting the chemokine receptor CXCR4. It also discusses future perspectives on emerging therapeutic strategies, ranging from the use of small molecule inhibitors that block receptor signaling to cutting-edge nanocarriers designed for the targeted delivery of innovative drugs and proteins into cancer stem cells, aiming at cell-selective precision nanomedicines.
Collapse
Affiliation(s)
- Ariana Rueda
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77 - 79, Barcelona, 08041, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Josep Carreras Leukaemia Research Institute (IJC Sant Pau), 08041, Barcelona, Spain
| | - Naroa Serna
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Ramon Mangues
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77 - 79, Barcelona, 08041, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, 28029, Spain.
- Josep Carreras Leukaemia Research Institute (IJC Sant Pau), 08041, Barcelona, Spain.
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, 28029, Spain.
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain.
| | - Ugutz Unzueta
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77 - 79, Barcelona, 08041, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, 28029, Spain.
- Josep Carreras Leukaemia Research Institute (IJC Sant Pau), 08041, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain.
| |
Collapse
|
2
|
El Kheir W, Naasri S, Marcos B, Virgilio N, Paquette B, Faucheux N, Lauzon MA. CXCL12 impact on glioblastoma cells behaviors under dynamic culture conditions: Insights for developing new therapeutic approaches. PLoS One 2024; 19:e0315038. [PMID: 39715221 DOI: 10.1371/journal.pone.0315038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/19/2024] [Indexed: 12/25/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most prevalent malignant brain tumor, with an average survival time of 14 to 20 months. Its capacity to invade brain parenchyma leads to the failure of conventional treatments and subsequent tumor recurrence. Recent studies have explored new therapeutic strategies using a chemoattracting gradient to attract GBM cells into a soft hydrogel trap where they can be exposed to higher doses of radiation or chemotherapy. It has been demonstrated in vitro under static conditions, that nanoparticles (NPs) encapsulating the chemoattractant CXCL12 can create a gradient to attract GBM cell. However, GBM cell invasion is also largely dependent on interstitial fluid flow (IFF). In the present study, a custom-made in vitro 3D model with indirect perfusion to mimic IFF at flow rates of 0.5 μL/min and 3 μL/min was used to examine the invasive behavior of F98-rodent-derived and U87-human-derived GBM cells. This model simulated IFF and CXCL12 gradient within an alginate:matrigel-based hydrogel mimicking brain parenchyma. Findings revealed that CXCL12 (1600 ng/mL) released from NPs significantly increased the migration of F98 GBM cells after 72 hours under IFF conditions at both 0.5 and 3 μL/min. In contrast, U87 GBM cells required a higher CXCL12 concentration (2400 ng/mL) and longer incubation time for migration (120 hours). Unlike the F98 cells, U87 GBM cells showed a CXCL12 dose-dependent proliferation. Semi-quantitative qPCR showed higher CXCR4 mRNA levels in F98 cells than in U87 cells. CXCL12 significantly increased intracellular calcium levels via CXCR4 activation, with a 2.3-fold rise in F98 cells compared to U87, consistent with observed cell behavior during perfusion. This highlights the combined influence of IFF and CXCL12 on cell migration, dependent on cell line. This 3D dynamic model is a valuable tool to analyze parameters like interstitial fluid flow (IFF) and chemokine gradients, influenced by GBM tumor diversity.
Collapse
Affiliation(s)
- Wiam El Kheir
- Faculty of Engineering, Department of Chemical Engineering and Biotechnological Engineering, 3D Dynamic Cell Culture Systems Laboratory, Université de Sherbrooke, Sherbrooke, QC, Canada
- Faculty of Engineering, Department of Chemical Engineering and Biotechnological Engineering, Laboratory of Cell-Biomaterial Biohybrid Systems, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sahar Naasri
- Faculty of Medicine and Health Sciences, Department of Medical Imaging and Radiation Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Bernard Marcos
- Faculty of Engineering, Department of Chemical Engineering and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nick Virgilio
- Department of Chemical Engineering, Polytechnique Montréal, Montreal, QC, Canada
| | - Benoit Paquette
- Faculty of Medicine and Health Sciences, Department of Medical Imaging and Radiation Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Clinical Research Center of the Centre Hospitalier Universitaire de l'Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nathalie Faucheux
- Faculty of Engineering, Department of Chemical Engineering and Biotechnological Engineering, Laboratory of Cell-Biomaterial Biohybrid Systems, Université de Sherbrooke, Sherbrooke, QC, Canada
- Clinical Research Center of the Centre Hospitalier Universitaire de l'Université de Sherbrooke, Sherbrooke, QC, Canada
- The Quebec Network for Research on Protein Function, Engineering and Applications, Montreal, QC, Canada
| | - Marc-Antoine Lauzon
- Faculty of Engineering, Department of Chemical Engineering and Biotechnological Engineering, 3D Dynamic Cell Culture Systems Laboratory, Université de Sherbrooke, Sherbrooke, QC, Canada
- The Quebec Network for Research on Protein Function, Engineering and Applications, Montreal, QC, Canada
- Research Center on Aging, Sherbrooke, QC, Canada
| |
Collapse
|
3
|
Wang Y, Gao F. Research Progress of CXCR4-Targeting Radioligands for Oncologic Imaging. Korean J Radiol 2023; 24:871-889. [PMID: 37634642 PMCID: PMC10462898 DOI: 10.3348/kjr.2023.0091] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 08/29/2023] Open
Abstract
C-X-C motif chemokine receptor 4 (CXCR4) plays a key role in various physiological functions, such as immune processes and disease development, and can influence angiogenesis, proliferation, and distant metastasis in tumors. Recently, several radioligands, including peptides, small molecules, and nanoclusters, have been developed to target CXCR4 for diagnostic purposes, thereby providing new diagnostic strategies based on CXCR4. Herein, we focus on the recent research progress of CXCR4-targeting radioligands for tumor diagnosis. We discuss their application in the diagnosis of hematological tumors, such as lymphomas, multiple myelomas, chronic lymphocytic leukemias, and myeloproliferative tumors, as well as nonhematological tumors, including tumors of the esophagus, breast, and central nervous system. Additionally, we explored the theranostic applications of CXCR4-targeting radioligands in tumors. Targeting CXCR4 using nuclear medicine shows promise as a method for tumor diagnosis, and further research is warranted to enhance its clinical applicability.
Collapse
Affiliation(s)
- Yanzhi Wang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
4
|
Yu J, Zhou X, Shen L. CXCR4-Targeted Radiopharmaceuticals for the Imaging and Therapy of Malignant Tumors. Molecules 2023; 28:4707. [PMID: 37375261 DOI: 10.3390/molecules28124707] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
C-X-C chemokine receptor type 4 (CXCR4), also known as fusin or CD184, is a 7-transmembrane helix G-protein-coupled receptor that is encoded by the CXCR4 gene. Involved in various physiological processes, CXCR4 could form an interaction with its endogenous partner, chemokine ligand 12 (CXCL12), which is also named SDF-1. In the past several decades, the CXCR4/CXCL12 couple has attracted a large amount of research interest due to its critical functions in the occurrence and development of refractory diseases, such as HIV infection, inflammatory diseases, and metastatic cancer, including breast cancer, gastric cancer, and non-small cell lung cancer. Furthermore, overexpression of CXCR4 in tumor tissues was shown to have a high correlation with tumor aggressiveness and elevated risks of metastasis and recurrence. The pivotal roles of CXCR4 have encouraged an effort around the world to investigate CXCR4-targeted imaging and therapeutics. In this review, we would like to summarize the implementation of CXCR4-targeted radiopharmaceuticals in the field of various kinds of carcinomas. The nomenclature, structure, properties, and functions of chemokines and chemokine receptors are briefly introduced. Radiopharmaceuticals that could target CXCR4 will be described in detail according to their structure, such as pentapeptide-based structures, heptapeptide-based structures, nonapeptide-based structures, etc. To make this review a comprehensive and informative article, we would also like to provide the predictive prospects for the CXCR4-targeted species in future clinical development.
Collapse
Affiliation(s)
- Jingjing Yu
- HTA Co., Ltd., Beijing 102413, China
- Department of Nuclear Technology Application, China Institute of Atomic Energy, Beijing 102413, China
| | - Xu Zhou
- HTA Co., Ltd., Beijing 102413, China
| | - Langtao Shen
- HTA Co., Ltd., Beijing 102413, China
- National Isotope Center of Engineering and Technology, China Institute of Atomic Energy, Beijing 102413, China
| |
Collapse
|
5
|
Autoradiography on deparaffinized tissue sections - A feasibility study with 68Ga-labeled PET-tracers. Appl Radiat Isot 2022; 189:110425. [PMID: 36030760 DOI: 10.1016/j.apradiso.2022.110425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/23/2022]
Abstract
Tissue available for retrospective research questions is often already paraffin-embedded for better preservation. However, in vitro autoradiography (AURA) is normally performed on cryopreserved tissue sections. We hypothesized a) that it would also be feasible with deparaffinized tissue sections, enabling the use of human paraffin-embedded tissue for in vitro AURA and b) that the results would be comparable to those obtained with corresponding cryosections. For that purpose, the clinically relevant oncological targets CXCR4, SSTR and PSMA were evaluated. In vitro AURA on deparaffinized tissue sections was feasible, but only with the two receptor ligands [68Ga]Ga-PentixaFor and [68Ga]Ga-DOTANOC. [68Ga]Ga-PSMA-11 did not show any binding on deparaffinized tissue sections, suggesting that native tissue is required for an interaction between this inhibitor and the enzyme.
Collapse
|
6
|
Zhai Y, Zhou X, Wang X. Novel insights into the biomarkers and therapies for primary central nervous system lymphoma. Ther Adv Med Oncol 2022; 14:17588359221093745. [PMID: 35558005 PMCID: PMC9087239 DOI: 10.1177/17588359221093745] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is a rare and highly aggressive extranodal type of non-Hodgkin lymphoma. After the introduction and widespread use of high-dose-methotrexate (HD-MTX)-based polychemotherapy, treatment responses of PCNSL have been improved. However, long-term prognosis for patients who have failed first-line therapy and relapsed remains poor. Less invasive diagnostic markers, including the circulating tumor DNAs (ctDNAs), microRNAs, metabolomic markers, and other novel biomarkers, such as a proliferation inducing ligand (APRIL) and B-cell activating factor of the TNF family (BAFF), have shown potential to distinguish PCNSL at an early stage, and some of them are related with prognosis to a certain extent. Recent insights into novel therapies, including Bruton tyrosine kinase (BTK) inhibitors, immunomodulatory drugs, immune checkpoint inhibitors, PI3K/mTOR inhibitors, and chimeric antigen receptor (CAR) T cells, have revealed encouraging efficacy in treatment response, whereas the duration of response and long-term survival of patients with relapsed or refractory PCNSL (r/r PCNSL) need further improvement. In addition, the diagnostic efficiency of novel markers and the antitumor efficacy of novel therapies are needed to be assessed further in larger clinical trials. This review provides an overview of recent research on novel diagnostic markers and therapeutic strategies for PCNSL.
Collapse
Affiliation(s)
- Yujia Zhai
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, ChinaSchool of Medicine, Shandong University, Jinan, China
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324, Jingwu Road, Jinan 250021, Shandong, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- School of Medicine, Shandong University, Jinan, China
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China
| |
Collapse
|
7
|
Schottelius M, Herrmann K, Lapa C. In Vivo Targeting of CXCR4-New Horizons. Cancers (Basel) 2021; 13:5920. [PMID: 34885030 PMCID: PMC8656854 DOI: 10.3390/cancers13235920] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 01/23/2023] Open
Abstract
Given its pre-eminent role in the context of tumor cell growth as well as metastasis, the C-X-C motif chemokine receptor 4 (CXCR4) has attracted a lot of interest in the field of nuclear oncology, and clinical evidence on the high potential of CXCR4-targeted theranostics is constantly accumulating. Additionally, since CXCR4 also represents a key player in the orchestration of inflammatory responses to inflammatory stimuli, based on its expression on a variety of pro- and anti-inflammatory immune cells (e.g., macrophages and T-cells), CXCR4-targeted inflammation imaging has recently gained considerable attention. Therefore, after briefly summarizing the current clinical status quo of CXCR4-targeted theranostics in cancer, this review primarily focuses on imaging of a broad spectrum of inflammatory diseases via the quantification of tissue infiltration with CXCR4-expressing immune cells. An up-to-date overview of the ongoing preclinical and clinical efforts to visualize inflammation and its resolution over time is provided, and the predictive value of the CXCR4-associated imaging signal for disease outcome is discussed. Since the sensitivity and specificity of CXCR4-targeted immune cell imaging greatly relies on the availability of suitable, tailored imaging probes, recent developments in the field of CXCR4-targeted imaging agents for various applications are also addressed.
Collapse
Affiliation(s)
- Margret Schottelius
- Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine and of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Ken Herrmann
- Department of Nuclear Medicine, German Cancer Consortium (DKTK)-University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Constantin Lapa
- Nuclear Medicine, Medical Faculty, University of Augsburg, 86156 Augsburg, Germany
| |
Collapse
|