1
|
Shi D, Chen J, Li M, Zhu L, Ji X. Closing the loop: autonomous intelligent control for hypoxia pre-acclimatization and high-altitude health management. Natl Sci Rev 2025; 12:nwaf071. [PMID: 40309344 PMCID: PMC12042754 DOI: 10.1093/nsr/nwaf071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 01/21/2025] [Accepted: 02/07/2025] [Indexed: 05/02/2025] Open
Abstract
Hypobaric hypoxia at high altitudes threatens the health of high-altitude residents. The development of effective methods to guarantee the safety of frequent human activities in high-altitude locations is therefore needed. Pre-acclimatization at sea level is an effective approach to mitigate subsequent altitude sickness for rapid ascent, which offers a viable substitute to on-site acclimatization, minimizes the associated risks that are linked to prolonged exposure in high-altitude environments and can be personalized to individual hypoxic responses. Another critical aspect to prevent long-term physical damage is personalized health management at high altitudes, which is enabled by the emerging technologies of wearable sensors, the Internet of Medical Things and artificial intelligence. In this review, we outline the progress in pre-acclimatization and high-altitude health management, as well as the understanding of physiological mechanisms under hypoxia, highlighting the important role that is played by wearable sensors and physiological closed-loop control systems in developing intelligent personalized solutions. We also discuss the challenges and prospects of deploying autonomous intelligent monitoring and control in high-altitude health management.
Collapse
Affiliation(s)
- Dawei Shi
- School of Automation, Beijing Institute of Technology, Beijing 100081, China
| | - Jing Chen
- School of Automation, Beijing Institute of Technology, Beijing 100081, China
| | - Meitong Li
- School of Automation, Beijing Institute of Technology, Beijing 100081, China
| | - Lingling Zhu
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
2
|
Joyce KE, Ashdown K, Delamere JP, Bradley C, Lewis CT, Letchford A, Lucas RAI, Malein W, Thomas O, Bradwell AR, Lucas SJE. Nocturnal pulse oximetry for the detection and prediction of acute mountain sickness: An observational study. Exp Physiol 2024; 109:1856-1868. [PMID: 39277825 PMCID: PMC11522851 DOI: 10.1113/ep091691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 07/31/2024] [Indexed: 09/17/2024]
Abstract
Acute mountain sickness (AMS) is a well-studied illness defined by clinical features (e.g., headache and nausea), as assessed by the Lake Louise score (LLS). Although obvious in its severe form, early stages of AMS are poorly defined and easily confused with common travel-related conditions. Measurement of hypoxaemia, the cause of AMS, should be helpful, yet to date its utility for identifying AMS susceptibility remains unclear. This study quantified altitude-induced hypoxaemia in individuals during an ascent to 4800 m to determine the utility of nocturnal pulse oximetry measurements for prediction of AMS. Eighteen individuals (36 ± 16 years of age) ascended to 4800 m over 12 days. Symptomology of AMS was assessed each morning via LLS criteria, with participants categorized as either AMS-positive (LLS ≥ 3 with headache) or AMS-negative. Overnight peripheral oxygen saturations (ov-S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_2}}}$ ) were recorded continuously (1 Hz) using portable oximeters. Derivatives of these recordings were compared between AMS-positive and -negative subjects (Mann-Whitney U-test). Exploratory analyses (Pearson's) were conducted to investigate relationships between overnight parameters and AMS severity. Overnight derivatives, including ov-S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_2}}}$ , heart rate/ov-S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_2}}}$ , variance, oxygen desaturation index, hypoxic burden and total sleep time at <80%S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_2}}}$ , all differed significantly between AMS-positive and -negative subjects (all P < 0.01), with cumulative/relative frequency plots highlighting these differences visually. Exploratory analysis revealed that ov-S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_2}}}$ from 3850 m was correlated with peak LLS at 4800 m (r = 0.58-0.61). The findings highlight the potential for overnight oximetry to predict AMS susceptibility during ascent to high altitude. Further investigation is required to develop, evaluate and optimize predictive models to improve AMS management and prevention.
Collapse
Affiliation(s)
- Kelsey E. Joyce
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
- Birmingham Medical Research Expeditionary SocietyUniversity of BirminghamBirminghamUK
| | - Kimberly Ashdown
- Birmingham Medical Research Expeditionary SocietyUniversity of BirminghamBirminghamUK
- Occupational Performance Research GroupUniversity of ChichesterChichesterUK
| | - John P. Delamere
- Birmingham Medical Research Expeditionary SocietyUniversity of BirminghamBirminghamUK
- Medical SchoolUniversity of BirminghamBirminghamUK
| | - Chris Bradley
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
| | - Christopher T. Lewis
- Birmingham Medical Research Expeditionary SocietyUniversity of BirminghamBirminghamUK
- Department of AnaesthesiaYsbyty GwyneddBangorUK
| | - Abigail Letchford
- Birmingham Medical Research Expeditionary SocietyUniversity of BirminghamBirminghamUK
- Greysleydale Healthcare CentreSwadlincoteUK
| | - Rebekah A. I. Lucas
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
| | - Will Malein
- Birmingham Medical Research Expeditionary SocietyUniversity of BirminghamBirminghamUK
- Department of AnaesthesiaNinewells HospitalDundeeUK
| | - Owen Thomas
- Birmingham Medical Research Expeditionary SocietyUniversity of BirminghamBirminghamUK
- Department of AnaesthesiaRoyal Gwent Hospital, NHS Direct WalesNewportUK
| | - Arthur R. Bradwell
- Birmingham Medical Research Expeditionary SocietyUniversity of BirminghamBirminghamUK
- Medical SchoolUniversity of BirminghamBirminghamUK
| | - Samuel J. E. Lucas
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
- Birmingham Medical Research Expeditionary SocietyUniversity of BirminghamBirminghamUK
| |
Collapse
|
3
|
Small E, Phillips C, Bunzel W, Cleaver L, Joshi N, Gardner L, Maharjan R, Marvel J. Prior Ambulatory Mild Coronavirus Disease 2019 Does Not Increase Risk of Acute Mountain Sickness. High Alt Med Biol 2023; 24:201-208. [PMID: 37306966 DOI: 10.1089/ham.2022.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
Small, Elan, Caleb Phillips, William Bunzel, Lakota Cleaver, Nishant Joshi, Laurel Gardner, Rony Maharjan, and James Marvel. Prior ambulatory mild coronavirus disease 2019 does not increase risk of acute mountain sickness. High Alt Med Biol. 24:201-208, 2023. Background: Given its long-term morbidity, understanding how prior coronavirus disease 2019 (COVID-19) may affect acute mountain sickness (AMS) susceptibility is important for preascent risk stratification. The objective of this study was to examine if prior COVID-19 impacts risk of AMS. Materials and Methods: This was a prospective observational study conducted in Lobuje (4,940 m) and Manang (3,519 m), Nepal, from April to May 2022. AMS was defined by the 2018 Lake Louise Questionnaire criteria. COVID-19 severity was defined using the World Health Organization-developed criteria. Results: In the Lobuje cohort of 2,027, 46.2% of surveyed individuals reported history of COVID-19, with 25.7% AMS point-prevalence. There was no significant relationship between prior ambulatory mild COVID-19 and AMS (p = 0.6) or moderate AMS (p = 1.0). In the Manang cohort of 908, 42.8% reported history of COVID-19, with 14.7% AMS point-prevalence. There was no significant relationship between prior ambulatory mild COVID-19 and AMS (p = 0.3) or moderate AMS (p = 0.4). Average months since COVID-19 was 7.4 (interquartile range [IQR] 3-10) for Lobuje, 6.2 (IQR 3-6) for Manang. Both cohorts rarely exhibited moderate COVID-19 history. Conclusions: Prior ambulatory mild COVID-19 was not associated with increased risk of AMS and should not preclude high-altitude travel.
Collapse
Affiliation(s)
- Elan Small
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - Caleb Phillips
- Department of Computational Science, University of Colorado, Boulder, Colorado, USA
| | - William Bunzel
- Department of Emergency Medicine, University of California San Francisco Fresno, Fresno, California, USA
| | - Lakota Cleaver
- Department of Emergency Medicine, Yale New Haven Health, New Haven, Connecticut, USA
| | - Nishant Joshi
- Department of General Practice and Emergency Medicine, Patan Academy of Health Sciences, Lalitpur, Nepal
| | - Laurel Gardner
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - Rony Maharjan
- Department of General Practice and Emergency Medicine, Patan Academy of Health Sciences, Lalitpur, Nepal
| | - James Marvel
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
4
|
Drago S, Campodónico J, Sandoval M, Berendsen R, Buijze GA. Voluntary Increase of Minute Ventilation for Prevention of Acute Mountain Sickness. Int J Sports Med 2022; 43:971-977. [PMID: 35760082 DOI: 10.1055/a-1832-0279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
This study evaluated the feasibility and efficacy of voluntary sustained hyperventilation during rapid ascent to high altitude for the prevention of acute mountain sickness (AMS). Study subjects (n=32) were volunteer participants in a 2-day expedition to Mount Leoneras (4954 m), starting at 2800m (base camp at 4120 m). Subjects were randomized to either: 1) an intervention group using the voluntary hyperventilation (VH) technique targeting an end-tidal CO2 (ETCO2)<20 mmHg; or 2) a group using acetazolamide (AZ). During the expedition, respiratory rate (28±20 vs. 18±5 breaths/min, mean±SD, P<0.01) and SpO2 (95%±4% vs. 89%±5%, mean±SD, P<0.01) were higher, and ETCO2 (17±4 vs. 26±4 mmHg, mean±SD, P<0.01) was lower in the VH group compared to the AZ group - as repeatedly measured at equal fixed intervals during the ascent - showing the feasibility of the VH technique. Regarding efficacy, the incidence of 6 (40%) subjects registering an LLS score≥3 in the VH group was non-inferior to the 3 (18%) subjects in the acetazolamide group (P=0.16, power 28%). Voluntary increase in minute ventilation is a feasible technique, but - despite the underpowered non-inferiority in this small-scale proof-of-concept trial - it is not likely to be as effective as acetazolamide to prevent AMS.
Collapse
Affiliation(s)
- Sebastian Drago
- Orthopedic Surgery, Hospital del Trabajador, Santiago, Chile.,Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
| | - Juan Campodónico
- Faculty of Medicine, Universidad de Los Andes, Santiago, Chile.,Grupo de rescate médico en montaña (GREMM), Santiago, Chile
| | - Mario Sandoval
- Sport Medicine Department; Clínica MEDS, Santiago, Chile
| | - Remco Berendsen
- Anesthesia, Leiden University Medical Center, Leiden, Netherlands
| | - Geert Alexander Buijze
- Orthopaedic Surgery and Sports Medicine, Clinique Générale, Annecy, France.,Orthopaedic Surgery, Lapeyronie Hospital, Montpellier University Medical Center, Montpellier, France.,Orthopaedic Surgery, Amsterdam University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
5
|
Garrido E, Botella de Maglia J, Castillo O. Acute, subacute and chronic mountain sickness. Rev Clin Esp 2021; 221:481-490. [PMID: 34583826 DOI: 10.1016/j.rceng.2019.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/16/2019] [Indexed: 11/29/2022]
Abstract
More than 100 million people ascend to high mountainous areas worldwide every year. At nonextreme altitudes (<5500m), 10-85% of these individuals are affected by acute mountain sickness, the most common disease induced by mild-moderate hypobaric hypoxia. Approximately 140 million individuals live permanently at heights of 2500-5500m, and up to 10% of them are affected by the subacute form of mountain sickness (high-altitude pulmonary hypertension) or the chronic form (Monge's disease), the latter of which is especially common in Andean ethnicities. This review presents the most relevant general concepts of these 3 clinical variants, which can be incapacitating and can result in complications and become life-threatening. Proper prevention, diagnosis, treatment and management of these conditions in a hostile environment such as high mountains are therefore essential.
Collapse
Affiliation(s)
- E Garrido
- Servicio de Hipobaria y Fisiología Biomédica, Universidad de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain; Instituto de Estudios de Medicina de Montaña (IEMM), Barcelona, Spain.
| | - J Botella de Maglia
- Servicio de Medicina Intensiva, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Instituto de Estudios de Medicina de Montaña (IEMM), Barcelona, Spain
| | - O Castillo
- Instituto Nacional de Biología Andina, Universidad Nacional Mayor de San Marcos, Lima, Peru
| |
Collapse
|
6
|
Wang Z, Lv B, Zhang L, Gao R, Zhao W, Wang L, Min Z, Mi Z, Song Y, Zhang J, Yu Y, Ji X, Li J, Wu L. Repeated remote ischaemic preconditioning can prevent acute mountain sickness after rapid ascent to a high altitude. Eur J Sport Sci 2021; 22:1304-1314. [PMID: 33977839 DOI: 10.1080/17461391.2021.1927197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND The aim of the present study was to assess the effectiveness of 4 different remote ischaemic preconditioning (RIPC) protocols varying in duration and frequency for preventing acute mountain sickness (AMS). Methods: The participants in the four RIPC groups received different RIPC treatments in the arms at a low altitude; the control group did not receive a specific sham treatment. The participants were then flown to a High Altitude (3650 m). The primary outcome was the incidence and severity of AMS evaluated by the Lake Louise score (LLS) after arrival; vital signs were collected simultaneously. We performed an intention-to-treat analysis. Results: A total of 250 participants were included with 50 participants in each group. The total AMS incidence in all participants was 26.4%. A total of 20 AMS cases (40%) occurred in the control group, whereas 15 AMS cases (30%) occurred both in the RIPC A and RIPC B groups (relative risk 1.3; 95% confidence interval 0.8 - 2.3; χ2 = 1.099; p = 0.29), and 8 AMS cases (16%) occurred both in the RIPC C and D groups (RR 2.5; 95% CI 1.2 - 5.2; χ2 = 7.143, p < 0.01), with significantly lower LLSs in the RIPC C and D groups (F = 6.51, p <0.001). Conclusion: This study demonstrated that a four-week RIPC intervention but not a one-week regimen reduced AMS incidence and severity; however, a placebo effect might have contributed to the results of this study. METHODS The participants in the four RIPC groups received different RIPC treatments in the arms at a low altitude; the control group did not receive a specific sham treatment. The participants were then flown to a High Altitude (3650 m). The primary outcome was the incidence and severity of AMS evaluated by the Lake Louise score (LLS) after arrival; vital signs were collected simultaneously. We performed an intention-to-treat analysis. RESULTS A total of 250 participants were included with 50 participants in each group. The total AMS incidence in all participants was 26.4%. A total of 20 AMS cases (40%) occurred in the control group after arrival at high altitude, whereas 15 AMS cases (30%) occurred both in the RIPC A and RIPC B groups (relative risk 1.3; 95% confidence interval 0.8 - 2.3; χ2 = 1.099; p = 0.29), and 8 AMS cases (16%) occurred both in the RIPC C and D groups (RR 2.5; 95% CI 1.2 - 5.2; χ2 = 7.143, p < 0.01), with significantly lower LLSs in the RIPC C and D groups (F = 6.51, p <0.001). CONCLUSION This study demonstrated that a four-week RIPC intervention but not a one-week regimen reduced AMS incidence and severity; however, a placebo effect might have contributed to the results of this study.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Bo Lv
- Department of Neurology, PKUCare Zibo Hospital, Zibo, People's Republic of China.,Department of Neurology, People's Hospital of Yuncheng County, Heze, People's Republic of China
| | - Lin Zhang
- Department of Emergency, People's Hospital of Rizhao, Rizhao, People's Republic of China
| | - Ran Gao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Lin Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zhaojun Min
- Department of Geriatric Medicine, People's Hospital of Lhasa, Lhasa, People's Republic of China
| | - Zhen Mi
- Department of Geriatric Medicine, People's Hospital of Lhasa, Lhasa, People's Republic of China
| | - Yang Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jing Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yabin Yu
- Capital Institute of Pediatrics, Beijing, People's Republic of China
| | - Xunming Ji
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China.,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Junjie Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
7
|
Cobb AB, Levett DZH, Mitchell K, Aveling W, Hurlbut D, Gilbert‐Kawai E, Hennis PJ, Mythen MG, Grocott MPW, Martin DS. Physiological responses during ascent to high altitude and the incidence of acute mountain sickness. Physiol Rep 2021; 9:e14809. [PMID: 33904650 PMCID: PMC8077104 DOI: 10.14814/phy2.14809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 11/24/2022] Open
Abstract
Acute mountain sickness (AMS) occurs when there is failure of acclimatisation to high altitude. The aim of this study was to describe the relationship between physiological variables and the incidence of AMS during ascent to 5300 m. A total of 332 lowland-dwelling volunteers followed an identical ascent profile on staggered treks. Self-reported symptoms of AMS were recorded daily using the Lake Louise score (mild 3-4; moderate-severe ≥5), alongside measurements of physiological variables (heart rate, respiratory rate (RR), peripheral oxygen saturation (SpO2 ) and blood pressure) before and after a standardised Xtreme Everest Step-Test (XEST). The overall occurrence of AMS among participants was 73.5% (23.2% mild, 50.3% moderate-severe). There was no difference in gender, age, previous AMS, weight or body mass index between participants who developed AMS and those who did not. Participants who had not previously ascended >5000 m were more likely to get moderate-to-severe AMS. Participants who suffered moderate-to-severe AMS had a lower resting SpO2 at 3500 m (88.5 vs. 89.6%, p = 0.02), while participants who suffered mild or moderate-to-severe AMS had a lower end-exercise SpO2 at 3500 m (82.2 vs. 83.8%, p = 0.027; 81.5 vs. 83.8%, p < 0.001 respectively). Participants who experienced mild AMS had lower end-exercise RR at 3500 m (19.2 vs. 21.3, p = 0.017). In a multi-variable regression model, only lower end-exercise SpO2 (OR 0.870, p < 0.001) and no previous exposure to altitude >5000 m (OR 2.740, p-value 0.003) predicted the development of moderate-to-severe AMS. The Xtreme Everest Step-Test offers a simple, reproducible field test to help predict AMS, albeit with relatively limited predictive precision.
Collapse
Affiliation(s)
- Alexandra B. Cobb
- University College London Centre for Altitude Space and Extreme Environment MedicineUCLH NIHR Biomedical Research CentreInstitute of Sport and Exercise HealthLondonUK
| | - Denny Z. H. Levett
- University College London Centre for Altitude Space and Extreme Environment MedicineUCLH NIHR Biomedical Research CentreInstitute of Sport and Exercise HealthLondonUK
- Anaesthesia and Critical Care Research UnitUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK
- Perioperative and Critical Care Research ThemeNIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation TrustSouthamptonUK
- Integrative Physiology and Critical Illness Group, School of Clinical and Experimental Sciences, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| | - Kay Mitchell
- University College London Centre for Altitude Space and Extreme Environment MedicineUCLH NIHR Biomedical Research CentreInstitute of Sport and Exercise HealthLondonUK
- Anaesthesia and Critical Care Research UnitUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK
- Perioperative and Critical Care Research ThemeNIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation TrustSouthamptonUK
- Integrative Physiology and Critical Illness Group, School of Clinical and Experimental Sciences, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| | - Wynne Aveling
- Anaesthetic DepartmentUniversity College London HospitalLondonUK
| | - Daniel Hurlbut
- University College London Centre for Altitude Space and Extreme Environment MedicineUCLH NIHR Biomedical Research CentreInstitute of Sport and Exercise HealthLondonUK
| | - Edward Gilbert‐Kawai
- University College London Centre for Altitude Space and Extreme Environment MedicineUCLH NIHR Biomedical Research CentreInstitute of Sport and Exercise HealthLondonUK
| | - Philip J. Hennis
- University College London Centre for Altitude Space and Extreme Environment MedicineUCLH NIHR Biomedical Research CentreInstitute of Sport and Exercise HealthLondonUK
| | - Monty G. Mythen
- University College London Centre for Altitude Space and Extreme Environment MedicineUCLH NIHR Biomedical Research CentreInstitute of Sport and Exercise HealthLondonUK
| | - Michael P. W. Grocott
- University College London Centre for Altitude Space and Extreme Environment MedicineUCLH NIHR Biomedical Research CentreInstitute of Sport and Exercise HealthLondonUK
- Anaesthesia and Critical Care Research UnitUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK
- Perioperative and Critical Care Research ThemeNIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation TrustSouthamptonUK
- Integrative Physiology and Critical Illness Group, School of Clinical and Experimental Sciences, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| | - Daniel S. Martin
- University College London Centre for Altitude Space and Extreme Environment MedicineUCLH NIHR Biomedical Research CentreInstitute of Sport and Exercise HealthLondonUK
- Intensive Care UnitUniversity Hospitals PlymouthPlymouthUK
- Peninsula Medical SchoolUniversity of PlymouthPlymouthUK
| |
Collapse
|
8
|
Shi YJ, Wang JL, Gao L, Wen DL, Dan Q, Dong Y, Guo YT, Zhao CH, Li TJ, Guo J, Li ZB, Chen YD. Altitude Cardiomyopathy Is Associated With Impaired Stress Electrocardiogram and Increased Circulating Inflammation Makers. Front Physiol 2021; 12:640302. [PMID: 33776794 PMCID: PMC7991828 DOI: 10.3389/fphys.2021.640302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Many sea-level residents suffer from acute mountain sickness (AMS) when first visiting altitudes above 4,000 m. Exercise tolerance also decreases as altitude increases. We observed exercise capacity at sea level and under a simulated hypobaric hypoxia condition (SHHC) to explore whether the response to exercise intensity represented by physiological variables could predict AMS development in young men. Eighty young men from a military academy underwent a standard treadmill exercise test (TET) and biochemical blood test at sea level, SHHC, and 4,000-m altitude, sequentially, between December 2015 and March 2016. Exercise-related variables and 12-lead electrocardiogram parameters were obtained. Exercise intensity and AMS development were investigated. After exposure to high altitude, the count of white blood cells, alkaline phosphatase and serum albumin were increased (P < 0.05). There were no significant differences in exercise time and metabolic equivalents (METs) between SHHC and high-altitude exposures (7.05 ± 1.02 vs. 7.22 ± 0.96 min, P = 0.235; 9.62 ± 1.11 vs. 9.38 ± 1.12, P = 0.126, respectively). However, these variables were relatively higher at sea level (8.03 ± 0.24 min, P < 0.01; 10.05 ± 0.31, P < 0.01, respectively). Thus, subjects displayed an equivalent exercise tolerance upon acute exposure to high altitude and to SHHC. The trends of cardiovascular hemodynamics during exercise under the three different conditions were similar. However, both systolic blood pressure and the rate-pressure product at every TET stage were higher at high altitude and under the SHHC than at sea level. After acute exposure to high altitude, 19 (23.8%) subjects developed AMS. Multivariate logistic regression analysis showed that METs under the SHHC {odds ratio (OR) 0.355 per unit increment [95% confidence intervals (CI) 0.159-0.793], P = 0.011}, diastolic blood pressure (DBP) at rest under SHHC [OR 0.893 per mmHg (95%CI 0.805-0.991), P = 0.030], and recovery DBP 3 min after exercise at sea level [OR 1.179 per mmHg (95%CI 1.043-1.333), P = 0.008] were independently associated with AMS. The predictive model had an area under the receiver operating characteristic curve of 0.886 (95%CI 0.803-0.969, P < 0.001). Thus, young men have similar exercise tolerance in acute exposure to high altitude and to SHHC. Moreover, AMS can be predicted with superior accuracy using characteristics easily obtainable with TET.
Collapse
Affiliation(s)
- Ya-Jun Shi
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jin-Li Wang
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ling Gao
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Dong-Lin Wen
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qing Dan
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ying Dong
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ya-Tao Guo
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Cheng-Hui Zhao
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Teng-Jing Li
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jun Guo
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zong-Bin Li
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yun-Dai Chen
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
9
|
Dünnwald T, Kienast R, Niederseer D, Burtscher M. The Use of Pulse Oximetry in the Assessment of Acclimatization to High Altitude. SENSORS 2021; 21:s21041263. [PMID: 33578839 PMCID: PMC7916608 DOI: 10.3390/s21041263] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Background: Finger pulse oximeters are widely used to monitor physiological responses to high-altitude exposure, the progress of acclimatization, and/or the potential development of high-altitude related diseases. Although there is increasing evidence for its invaluable support at high altitude, some controversy remains, largely due to differences in individual preconditions, evaluation purposes, measurement methods, the use of different devices, and the lacking ability to interpret data correctly. Therefore, this review is aimed at providing information on the functioning of pulse oximeters, appropriate measurement methods and published time courses of pulse oximetry data (peripheral oxygen saturation, (SpO2) and heart rate (HR), recorded at rest and submaximal exercise during exposure to various altitudes. Results: The presented findings from the literature review confirm rather large variations of pulse oximetry measures (SpO2 and HR) during acute exposure and acclimatization to high altitude, related to the varying conditions between studies mentioned above. It turned out that particularly SpO2 levels decrease with acute altitude/hypoxia exposure and partly recover during acclimatization, with an opposite trend of HR. Moreover, the development of acute mountain sickness (AMS) was consistently associated with lower SpO2 values compared to individuals free from AMS. Conclusions: The use of finger pulse oximetry at high altitude is considered as a valuable tool in the evaluation of individual acclimatization to high altitude but also to monitor AMS progression and treatment efficacy.
Collapse
Affiliation(s)
- Tobias Dünnwald
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT—Private University for Health Sciences, Medical Informatics and Technology, 6060 Hall in Tirol, Austria;
| | - Roland Kienast
- Department of Biomedical and Health Technology, Federal Higher Technical Institute for Education and Experimentation—HTL Anichstraße, 6020 Innsbruck, Austria;
| | - David Niederseer
- Department of Cardiology, University Hospital Zurich, University Heart Center Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, 6020 Innsbruck, Austria
- Correspondence:
| |
Collapse
|
10
|
Shen Y, Yang YQ, Liu C, Yang J, Zhang JH, Jin J, Tan H, Yuan FZY, Ke JB, He CY, Zhang LP, Zhang C, Yu J, Huang L. Association between physiological responses after exercise at low altitude and acute mountain sickness upon ascent is sex-dependent. Mil Med Res 2020; 7:53. [PMID: 33148321 PMCID: PMC7643355 DOI: 10.1186/s40779-020-00283-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 10/20/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Acute mountain sickness (AMS) is the mildest form of acute altitude illnesses, and consists of non-specific symptoms when unacclimatized persons ascend to elevation of ≥2500 m. Risk factors of AMS include: the altitude, individual susceptibility, ascending rate and degree of pre-acclimatization. In the current study, we examined whether physiological response at low altitude could predict the development of AMS. METHODS A total of 111 healthy adult healthy volunteers participated in this trial; and 99 (67 men and 32 women) completed the entire study protocol. Subjects were asked to complete a 9-min exercise program using a mechanically braked bicycle ergometer at low altitude (500 m). Heart rate, blood pressure (BP) and pulse oxygen saturation (SpO2) were recorded prior to and during the last minute of exercise. The ascent from 500 m to 4100 m was completed in 2 days. AMS was defined as ≥3 points in a 4-item Lake Louise Score, with at least one point from headache wat 6-8 h after the ascent. RESULTS Among the 99 assessable subjects, 47 (23 men and 24 women) developed AMS at 4100 m. In comparison to the subjects without AMS, those who developed AMS had lower proportion of men (48.9% vs. 84.6%, P < 0.001), height (168.4 ± 5.9 vs. 171.3 ± 6.1 cm, P = 0.019), weight (62.0 ± 10.0 vs. 66.7 ± 8.6 kg, P = 0.014) and proportion of smokers (23.4% vs. 51.9%, P = 0.004). Multivariate regression analysis revealed the following independent risks for AMS: female sex (odds ratio (OR) =6.32, P < 0.001), SpO2 change upon exercise at low altitude (OR = 0.63, P = 0.002) and systolic BP change after the ascent (OR = 0.96, P = 0.029). Women had larger reduction in SpO2 after the ascent, higher AMS percentage and absolute AMS score. Larger reduction of SpO2 after exercise was associated with both AMS incidence (P = 0.001) and AMS score (P < 0.001) in men but not in women. CONCLUSIONS Larger SpO2 reduction after exercise at low altitude was an independent risk for AMS upon ascent. Such an association was more robust in men than in women. TRIAL REGISTRATION Chinese Clinical Trial Registration, ChiCTR1900025728 . Registered 6 September 2019.
Collapse
Affiliation(s)
- Yang Shen
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Yuan-Qi Yang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Chuan Liu
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Jie Yang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Ji-Hang Zhang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Jun Jin
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Hu Tan
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Fang-Zheng-Yuan Yuan
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Jing-Bin Ke
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Chun-Yan He
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Lai-Ping Zhang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Chen Zhang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Jie Yu
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Lan Huang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China. .,Department of Cardiology, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
11
|
Garrido E, Botella de Maglia J, Castillo O. Acute, subacute and chronic mountain sickness. Rev Clin Esp 2020; 221:S0014-2565(20)30064-3. [PMID: 32197780 DOI: 10.1016/j.rce.2019.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/16/2019] [Indexed: 11/20/2022]
Abstract
More than 100 million people ascend to high mountainous areas worldwide every year. At nonextreme altitudes (<5500 m), 10-85% of these individuals are affected by acute mountain sickness, the most common disease induced by mild-moderate hypobaric hypoxia. Approximately 140 million individuals live permanently at heights of 2500-5500 m, and up to 10% of them are affected by the subacute form of mountain sickness (high-altitude pulmonary hypertension) or the chronic form (Monge's disease), the latter of which is especially common in Andean ethnicities. This review presents the most relevant general concepts of these 3 clinical variants, which can be incapacitating and can result in complications and become life-threatening. Proper prevention, diagnosis, treatment and management of these conditions in a hostile environment such as high mountains are therefore essential.
Collapse
Affiliation(s)
- E Garrido
- Servicio de Hipobaria y Fisiología Biomédica, Universidad de Barcelona, L'Hospitalet de Llobregat, Barcelona, España; Instituto de Estudios de Medicina de Montaña (IEMM), Barcelona, España.
| | - J Botella de Maglia
- Servicio de Medicina Intensiva, Hospital Universitario y Politécnico La Fe, Valencia, España; Instituto de Estudios de Medicina de Montaña (IEMM), Barcelona, España
| | - O Castillo
- Instituto Nacional de Biología Andina, Universidad Nacional Mayor de San Marcos, Lima, Perú
| |
Collapse
|
12
|
Kuenzel A, Marshall B, Verges S, Anholm JD. Positional Changes in Arterial Oxygen Saturation and End-Tidal Carbon Dioxide at High Altitude: Medex 2015. High Alt Med Biol 2020; 21:144-151. [PMID: 31985275 DOI: 10.1089/ham.2019.0066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Body position alters aspects of pulmonary function in health and disease. Although studies have assessed positional effects on the heart and lungs, little is known about positional changes in gas exchange parameters at high altitude. We hypothesized that following ascent, supine positioning would cause lower oxygen saturation than sitting, partially due to decreased ventilation and increased partial pressure of end-tidal carbon dioxide (Petco2). Materials and Methods: Twenty-eight healthy subjects were studied at sea level and following gradual ascent to 5150 m. After 10 minutes of sitting rest, subjects were studied for 5 minutes each in the sitting, supine, and prone positions with the order randomly assigned. Pulse oximeter oxygen saturation (SpO2), minute ventilation (VE), end-tidal O2 (Peto2) and Petco2, oxygen consumption, and CO2 production were continuously measured. Alveolar ventilation (VA) was calculated from the measured parameters. Results: At high altitude, VE was not affected by body position (12.96 ± 3.09 and 11.54 ± 3.45 L/min in the sitting and supine positions, respectively, p = 0.255). Petco2 increased from sitting to supine (22.8 ± 3.1 to 23.5 ± 3.3 mm Hg, p < 0.005), but VE and Petco2 were not different between the supine and prone positions. Calculated VA was not significantly affected by body position at either sea level or high altitude. SpO2 decreased from 81.3% ± 4.4% sitting to 78.8% ± 6.0% supine (p = 0.025), with a mean positional SpO2 difference of 2.5% ± 4.9% (95% confidence interval 0.6%-4.4%). SpO2 was not different between the supine and prone positions. Twenty-two of 28 subjects had lower SpO2 supine compared with sitting. Conclusions: These results extend earlier low-altitude studies and demonstrate the importance of postural regulation in different environments. As 79% of subjects had lower SpO2 while supine than sitting, control of body position is necessary for SpO2 comparisons at altitude to be meaningful.
Collapse
Affiliation(s)
- Arlena Kuenzel
- Department of Anaesthesia, Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, Scotland
| | - Ben Marshall
- Sheffield Teaching Hospitals, NHS Foundation Trust, Sheffield, United Kingdom
| | - Samuel Verges
- INSERM U1042 and HP2 Laboratory, Grenoble Alpes University, Grenoble, France
| | - James D Anholm
- Division of Pulmonary, Critical Care, Hyperbaric and Sleep Medicine, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
13
|
Pun M, Guadagni V, Drogos LL, Pon C, Hartmann SE, Furian M, Lichtblau M, Muralt L, Bader PR, Moraga FA, Soza D, Lopez I, Rawling JM, Ulrich S, Bloch KE, Giesbrecht B, Poulin MJ. Cognitive Effects of Repeated Acute Exposure to Very High Altitude Among Altitude-Experienced Workers at 5050 m. High Alt Med Biol 2019; 20:361-374. [DOI: 10.1089/ham.2019.0012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Matiram Pun
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Veronica Guadagni
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Canada
- O'Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Lauren L. Drogos
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Charlotte Pon
- Safety Group, Atacama Large Millimeter Submillimeter Array, Calama, Chile
| | - Sara E. Hartmann
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Michael Furian
- Department of Respiratory Medicine, Sleep Disorders Centre and Pulmonary Hypertension Clinic, University Hospital Zurich, Zurich, Switzerland
| | - Mona Lichtblau
- Department of Respiratory Medicine, Sleep Disorders Centre and Pulmonary Hypertension Clinic, University Hospital Zurich, Zurich, Switzerland
| | - Lara Muralt
- Department of Respiratory Medicine, Sleep Disorders Centre and Pulmonary Hypertension Clinic, University Hospital Zurich, Zurich, Switzerland
| | - Patrick R. Bader
- Department of Respiratory Medicine, Sleep Disorders Centre and Pulmonary Hypertension Clinic, University Hospital Zurich, Zurich, Switzerland
| | - Fernando A. Moraga
- Laboratorio de Fisiología, Hipoxia y Función Vascular, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Daniel Soza
- Safety Group, Atacama Large Millimeter Submillimeter Array, Calama, Chile
| | - Ivan Lopez
- Safety Group, Atacama Large Millimeter Submillimeter Array, Calama, Chile
| | - Jean M. Rawling
- Department of Family Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Silvia Ulrich
- Department of Respiratory Medicine, Sleep Disorders Centre and Pulmonary Hypertension Clinic, University Hospital Zurich, Zurich, Switzerland
| | - Konrad E. Bloch
- Department of Respiratory Medicine, Sleep Disorders Centre and Pulmonary Hypertension Clinic, University Hospital Zurich, Zurich, Switzerland
| | - Barry Giesbrecht
- Department of Psychological and Brain Sciences, and Institute for Collaborative Biotechnologies, University of California Santa Barbara, Santa Barbara, California
| | - Marc J. Poulin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Canada
- O'Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
14
|
Huang H, Dong H, Zhang J, Ke X, Li P, Zhang E, Xu G, Sun B, Gao Y. The Role of Salivary miR-134-3p and miR-15b-5p as Potential Non-invasive Predictors for Not Developing Acute Mountain Sickness. Front Physiol 2019; 10:898. [PMID: 31379603 PMCID: PMC6646415 DOI: 10.3389/fphys.2019.00898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/27/2019] [Indexed: 01/28/2023] Open
Abstract
Background Acute mountain sickness (AMS) is a crucial public health problem for high altitude travelers. Discriminating individuals who are not developing (AMS resistance, AMS−) from developing AMS (AMS susceptibility, AMS+) at baseline would be vital for disease prevention. Salivary microRNAs (miRNAs) have emerged as promising non-invasive biomarkers for various diseases. Thus, the aim of our study was to identify the potential roles of salivary miRNAs in identifying AMS− individuals pre-exposed to high altitude. Moreover, as hypoxia is the triggering factor for AMS, present study also explored the association between cerebral tissue oxygenation indices (TOI) and AMS development after exposed to high altitude, which was the complementary aim. Methods In this study, 124 healthy men were recruited, and were exposed at simulated high altitude of 4,500 m. Salivary miR-134-3p and miR-15b-5p were measured at baseline (200 m). AMS was diagnosed based on Lake Louise Scoring System at 4,500 m. The measurements of physiological parameters were recorded at both the altitudes. Results Salivary miR-134-3p and miR-15b-5p were significantly up-regulated in AMS− individuals as compared to the AMS+ (p < 0.05). In addition, the combination of these miRNAs generated a high power for discriminating the AMS− from AMS+ at baseline (AUC: 0.811, 95% CI: 0.731−0.876, p < 0.001). Moreover, the value of cerebral TOIs at 4,500 m were significantly higher in AMS− individuals, compared to AMS+ (p < 0.01). Conclusion Our study reveals for the first time that salivary miR-134-3p and miR-15b-5p can be used as non-invasive biomarkers for predicting AMS− individuals pre-exposed to high altitude.
Collapse
Affiliation(s)
- He Huang
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Huaping Dong
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Jianyang Zhang
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Xianfeng Ke
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Peng Li
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Chongqing, China.,Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Erlong Zhang
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Gang Xu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Bingda Sun
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Yuqi Gao
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| |
Collapse
|
15
|
Muza SR. Wearable physiological sensors and real-time algorithms for detection of acute mountain sickness. J Appl Physiol (1985) 2018; 124:557-563. [DOI: 10.1152/japplphysiol.00367.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This is a minireview of potential wearable physiological sensors and algorithms (process and equations) for detection of acute mountain sickness (AMS). Given the emerging status of this effort, the focus of the review is on the current clinical assessment of AMS, known risk factors (environmental, demographic, and physiological), and current understanding of AMS pathophysiology. Studies that have examined a range of physiological variables to develop AMS prediction and/or detection algorithms are reviewed to provide insight and potential technological roadmaps for future development of real-time physiological sensors and algorithms to detect AMS. Given the lack of signs and nonspecific symptoms associated with AMS, development of wearable physiological sensors and embedded algorithms to predict in the near term or detect established AMS will be challenging. Prior work using [Formula: see text], HR, or HRv has not provided the sensitivity and specificity for useful application to predict or detect AMS. Rather than using spot checks as most prior studies have, wearable systems that continuously measure SpO2 and HR are commercially available. Employing other statistical modeling approaches such as general linear and logistic mixed models or time series analysis to these continuously measured variables is the most promising approach for developing algorithms that are sensitive and specific for physiological prediction or detection of AMS.
Collapse
Affiliation(s)
- Stephen R. Muza
- Strategic Science Management Office, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
16
|
Meier D, Collet TH, Locatelli I, Cornuz J, Kayser B, Simel DL, Sartori C. Does This Patient Have Acute Mountain Sickness?: The Rational Clinical Examination Systematic Review. JAMA 2017; 318:1810-1819. [PMID: 29136449 DOI: 10.1001/jama.2017.16192] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
IMPORTANCE Acute mountain sickness (AMS) affects more than 25% of individuals ascending to 3500 m (11 500 ft) and more than 50% of those above 6000 m (19 700 ft). AMS may progress from nonspecific symptoms to life-threatening high-altitude cerebral edema in less than 1% of patients. It is not clear how to best diagnose AMS. OBJECTIVE To systematically review studies assessing the accuracy of AMS diagnostic instruments, including the visual analog scale (VAS) score, which quantifies the overall feeling of sickness at altitude (VAS[O]; various thresholds), Acute Mountain Sickness-Cerebral score (AMS-C; ≥0.7 indicates AMS), and the clinical functional score (CFS; ≥2 indicates AMS) compared with the Lake Louise Questionnaire Score (LLQS; score of ≥5). DATA EXTRACTION AND SYNTHESIS Searches of MEDLINE and EMBASE from inception to May 2017 identified 1245 publications of which 91 were suitable for prevalence analysis (66 944 participants) and 14 compared at least 2 instruments (1858 participants) using a score of 5 or greater on the LLQS as a reference standard. To determine the prevalence of AMS for establishing the pretest probability of AMS, a random-effects meta-regression was performed based on the reported prevalence of AMS as a function of altitude. MAIN OUTCOMES AND MEASURES AMS prevalence, likelihood ratios (LRs), sensitivity, and specificity of screening instruments. RESULTS The final analysis included 91 articles (comprising 66 944 study participants). Altitude predicted AMS and accounted for 28% of heterogeneity between studies. For each 1000-m (3300-ft) increase in altitude above 2500 m (8200 ft), AMS prevalence increased 13% (95% CI, 9.5%-17%). Testing characteristics were similar for VAS(O), AMS-C, and CFS vs a score of 5 or greater on the LLQS (positive LRs: range, 3.2-8.2; P = .22 for comparisons; specificity range, 67%-92%; negative LRs: range, 0.30-0.36; P = .50 for comparisons; sensitivity range, 67%-82%). The CFS asks a single question: "overall if you had any symptoms, how did they affect your activity (ordinal scale 0-3)?" For CFS, moderate to severe reduction in daily activities had a positive LR of 3.2 (95% CI, 1.4-7.2) and specificity of 67% (95% CI, 37%-97%); no reduction to mild reduction in activities had a negative LR of 0.30 (95% CI, 0.22-0.39) and sensitivity of 82% (95% CI, 77%-87%). CONCLUSIONS AND RELEVANCE The prevalence of acute mountain sickness increases with higher altitudes. The visual analog scale for the overall feeling of sickness at altitude, Acute Mountain Sickness-Cerebral, and clinical functional score perform similarly to the Lake Louise Questionnaire Score using a score of 5 or greater as a reference standard. In clinical and travel settings, the clinical functional score is the simplest instrument to use. Clinicians evaluating high-altitude travelers who report moderate to severe limitations in activities of daily living (clinical functional score ≥2) should use the Lake Louise Questionnaire Score to assess the severity of acute mountain sickness.
Collapse
Affiliation(s)
- David Meier
- Service of Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Tinh-Hai Collet
- Service of Endocrinology, Diabetes, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
- Ambulatory Care and Community Medicine, University of Lausanne; Lausanne, Switzerland
| | - Isabella Locatelli
- Ambulatory Care and Community Medicine, University of Lausanne; Lausanne, Switzerland
| | - Jacques Cornuz
- Ambulatory Care and Community Medicine, University of Lausanne; Lausanne, Switzerland
| | - Bengt Kayser
- Institute of Sports Sciences, University of Lausanne, Lausanne, Switzerland
| | - David L Simel
- Department of Medicine, Durham VA Medical Center, Durham, North Carolina
- Department of Medicine, Duke University Health System, Durham, North Carolina
| | - Claudio Sartori
- Service of Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
17
|
Davis C, Hackett P. Advances in the Prevention and Treatment of High Altitude Illness. Emerg Med Clin North Am 2017; 35:241-260. [PMID: 28411926 DOI: 10.1016/j.emc.2017.01.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
High altitude illness encompasses a spectrum of clinical entities to include: acute mountain sickness, high altitude cerebral edema, and high altitude pulmonary edema. These illnesses occur as a result of a hypobaric hypoxic environment. Although a mild case of acute mountain sickness may be self-limited, high altitude cerebral edema and high altitude pulmonary edema represent critical emergencies that require timely intervention. This article reviews recent advances in the prevention and treatment of high altitude illness, including new pharmacologic strategies for prophylaxis and revised treatment guidelines.
Collapse
Affiliation(s)
- Christopher Davis
- Department of Emergency Medicine, University of Colorado School of Medicine, 12401 East 17th Avenue, Aurora, CO 80045, USA.
| | - Peter Hackett
- Institute for Altitude Medicine, PO Box 1229, Telluride, CO 81435, USA
| |
Collapse
|
18
|
Sikri G, Srinivasa AB, Bhutani S. Acute mountain sickness and oxygen saturation. Sleep Breath 2016; 20:1075-6. [DOI: 10.1007/s11325-016-1324-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/16/2016] [Indexed: 11/29/2022]
|
19
|
Schobersberger W, Burtscher M, Leichtfried V. Acute mountain sickness and arterial oxygen saturation. Sleep Breath 2016; 20:1077-8. [PMID: 26922357 DOI: 10.1007/s11325-016-1325-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 02/16/2016] [Indexed: 11/25/2022]
Affiliation(s)
- Wolfgang Schobersberger
- Institute for Sports Medicine, Alpine Medicine and Health Tourism, UMIT - University for Health Sciences, Medical Informatics and Technology, and Tirol Kliniken Innsbruck, Eduard Wallnöfer Zentrum 1, 6060, Hall, Austria.
| | - Martin Burtscher
- Department of Sport Science, Medical Section, University of Innsbruck, 6020, Innsbruck, Austria
| | - Veronika Leichtfried
- Institute for Sports Medicine, Alpine Medicine and Health Tourism, UMIT - University for Health Sciences, Medical Informatics and Technology, and Tirol Kliniken Innsbruck, Eduard Wallnöfer Zentrum 1, 6060, Hall, Austria
| |
Collapse
|