Zisi C, Sampsonidis I, Fasoula S, Papachristos K, Witting M, Gika HG, Nikitas P, Pappa-Louisi A. QSRR Modeling for Metabolite Standards Analyzed by Two Different Chromatographic Columns Using Multiple Linear Regression.
Metabolites 2017;
7:metabo7010007. [PMID:
28208794 PMCID:
PMC5372210 DOI:
10.3390/metabo7010007]
[Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/05/2017] [Indexed: 01/07/2023] Open
Abstract
Modified quantitative structure retention relationships (QSRRs) are proposed and applied to describe two retention data sets: A set of 94 metabolites studied by a hydrophilic interaction chromatography system under organic content gradient conditions and a set of tryptophan and its major metabolites analyzed by a reversed-phase chromatographic system under isocratic as well as pH and/or simultaneous pH and organic content gradient conditions. According to the proposed modification, an additional descriptor is added to a conventional QSRR expression, which is the analyte retention time, tR(R), measured under the same elution conditions, but in a second chromatographic column considered as a reference one. The 94 metabolites were studied on an Amide column using a Bare Silica column as a reference. For the second dataset, a Kinetex EVO C18 and a Gemini-NX column were used, where each of them was served as a reference column of the other. We found in all cases a significant improvement of the performance of the QSRR models when the descriptor tR(R) was considered.
Collapse